Jean Salencon

Continuum Mechanics

Short Reader

LES EDITIONS DE LECOLE POLYTECHNIQUE



Continuum Mechanics

Short Reader

Jean Salencon




DANGER

Ce logo a pour objet d'alerter le lecteur sur la menace que représente
pour I"avenir de I'écrit, tout particuliérement dans le domaine univer-
sitaire, le développement massif du « photocopillage ».

Cette pratique qui s'est généralisée, notamment dans les établissements
d’enseignement, provoque une baisse brutale des achats de livres, au
point que la possibilité méme pour les auteurs de créer des ceuvres nou-
velles et de les faire éditer correctement est aujourd’hui menacée. Nous
rappelons donc que la production et la vente sans autorisation, ainsi
que le recel, sont passibles de poursuites.

Les demandes d’autorisation de photocopier doivent étre adressées a

LE PHOTOCOPILLAGE
I"éditeur ou au Centre frangais d'exploitation du droit de copie :
4 TUE LE LIVRE 20, rue des Grands-Augustins , 75006 Paris. Tél. : 01 44 07 47 70.
Translated by Stephen Lyle

© Editions de I'Ecole polytechnique - Aot 2001
Direction des Etudes - 91128 Palaiseau Cedex



Contents

1 Modellingthe Continuum ..........cccivvirinninnrnnnenns 1
2 Delormaion .. v e e 5
O e i S G R e e S R S e e 9
4  The Virtual Work Approach to the Modelling of Forces ...... 14
5 Modelling Forces in Continuum Mechanics ................. 18
6 Local Analysis of SE1e88e8 . . ..ovummissssisaoav i 23
T 'Thermo@lastisttY . uvivivvvniirsenaarns sy e a e 27
8 Thermoelastic Processes and Equilibrium .................. 31
9  Classic Topics in Three-Dimensional Elasticity .............. 37
10 Variational Methods in Linearised Thermoelasticity ......... 42
11 Statics of One-Dimensional Media .. ....................... 48
12 Thermoelastic Structural Analysis......................... 53
Useful Formulas in Cylindrical Coordinates..................... 58

Useful Formulas in Spherical Coordinates ...................... 59



1. Modelling the Continuum

1. Modelling the Continuum

Notation Meaning
X Position vector in kg
x Position vector in x;
o(X,t) Bijection of 2, on 2,
J(X.1) Jacobian of the transformation
df2, Volume element in &g
de, Volume element in
U(X.1) Velocity in the Lagrangian description
U,(z.t) Velocity in the Eulerian description
B Value of a physical quantity
B(X.t) Physical quantity associated with a
particle in the Lagrangian description
b(z.t) Quantity at a geometrical point

in the Eulerian description
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o The concept of a continuous medium is a macroscopic physical model
arising from common experience. Its relevance depends on the problem
at hand and the scale of the phenomena to be modelled.

In the mathematical formulation of this concept, a mechanical sys-
tem is represented by a volume made up, on the differential level, of
particles. The geometrical state of these particles, rather like that of
a material point, is completely characterised by giving its position in a
reference frame R. The intuitive perception of continuity appeals to the
evolution of the system, during which particles initially close together
remain so.

e In order to specify such a model, the Lagrangian description iden-
tifies particles by their position in a configuration of the system taken
as reference. The motion is described by defining the position of each
particle during the evolution. In other words, we specify its pathline,
parametrised by time in the form

z=¢(X,1).

All physical quantities are defined in the same manner. Hence, for a
physical quantity associated with a particle,

B=B(X,1).

The continuity of the medium is expressed by the spatial and tempo-
ral continuity of the correspondence between the initial position of the
particle and its current position. Continuous differentiability conditions
with respect to the variables X and ¢ are also imposed:

¢ bijective, of class C' or C?, and likewise for o',
B of class C!' or C?,

from which
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D 1‘1.2‘ 3
0<J(£,t)=m<+m,

d, = J(X.t)de ,
and the velocity of the particle is

do(X,
u(x. =280

Experimental validation of the model shows that these regularity
hypotheses can be weakened in the sense that they need only be imposed
in a piecewise manner.

e The Eulerian description takes an incremental standpoint, defining
the motion of the system by giving, at each instant of time, the velocity
field of the particles. This formulation is made in the current configura-
tion and the spatial variables occurring in it have a purely geometrical
meaning,

U=U,z1).

In the Eulerian description, the notion of continuity corresponds to
the piecewise continuity and continuous differentiability of the velocity
field with respect to space and time.

All physical quantities are defined at each time in the current config-
uration as a function of the particle coordinates, viz.,

B =b(z.t) .

e The Lagrangian and Eulerian descriptions are equivalent:
pathlines

dz
Zl=o =X

and
B(X.t) = b(6(X. 1).t) .

In a frame of reference R, the streamlines at time 7" are the envelope
curves of the velocity field, defined by
daz! dz? da?
Utl(zv T) B Uf(i; T) B Uf(&! T) )
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e The motion is steady in the frame R if its Eulerian description is
independent of ¢, so that

U(z.t) = Ulz) .

The streamlines are then independent of time and identical to the path-
lines of the particles.
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2. Deformation

Notation Meaning
E(X.,t) Gradient of a transformation
dM,, , dsy Line element in kg, dsg = [dM|
dM . ds Line element in %, , ds = |dM|
dA=NdA Surface element in kg
da = nda Surface element in &
C(X,1) Expansion tensor
e(X.t) Green—Lagrange strain tensor
§(X, 1) Displacement
(X, 1) Linearised strain tensor
v Gradient in xg
grad Gradient in x;
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e In the Lagrangian representation, the comparison between the cur-
rent and initial configurations, without any reference to the intervening
history of the system in question, introduces two key concepts on the
geometrical level, namely, transport and deformation.

e The concept of convective transport, most simply exemplified for the
material point, expresses the correspondence between current and initial
positions of material elements.

e The special case in which the system undergoes a homogeneous trans-
formation, that is, one which is the same everywhere, allows us to ignore
local effects to begin with. The transformation is the linear mapping de-
fined by the tensor F(t) .

®

z=F(t). X +c(t)

e For the general case in which the transformation of the system is
arbitrary, we appeal to the notion of homogeneous tangent map. This
is defined by the gradient tensor of the vector function expressing con-
vective transport of the material point. We call this the gradient of the
transformation,

EX,t) = Vo(X,1).

The idea behind this is that, locally, the transformation of the infin-
itesimal element is quasi-homogeneous at each point.

Ko
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The transport equations for a material vector, surface or volume in-
volve the Euclidean tensor associated with this linear mapping:

dM = F(X.t).dM, .
d; = df det (g(_;lf_, t)) =J(X,t)d ,

da=J(X,t)'E ' (X,t).d4.

e The concept of deformation expresses locally the extent to which the
transformation suffered by the system from one configuration to another
differs from a direct isometry. Indeed, it measures the local change of
shape. To this end, we introduce the ezpansion tensor

C(X,t) =*E(X.1). E(X.t)
and the Green-Lagrange strain tensor
1

These enable us to express changes in length and angular variations

dM, e

M, dM M

dM .dM' = dM,.C(X,t).dM; ,
ds? — ds§ = 2dM, . (X 1) .dM, ,
sinf = C12(X,1)/v/Ci1(X,t)Caa(X, 1) .

€:

dM; X2 -8
&

—_ M, ;‘j_‘ M

e In the orthonormal basis of their common principal ares in Ko,
C(X,t) and e(X, t) assume diagonal form. Consequently,

CX,t) =N (X,t)e; @y + M (X t)ea @ ea + A(X,t)es @ ey
(Ai(X,t) >0, i = 1,2,3, principal stretches).
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The orthogonal triad of these principal axes in &g is convectively
transported in s, along orthogonal directions (characterising property).
e We define the displacement

§X,t)=0(X,t) - X.

_ Ko
K M, ’
Q
| E(Xn /,'
’

M
a“v -

Tt lx=gXn--T

s

e When the transformation is infinitesimal, equations can be simplified
by linearisation, giving

IVE(X. 1) < 1,

oX. ) > 5(X,t) = 5 (VEX, 1) +'VE(X. 1))

b =

(X, 1) ~ %( grad £(x,t) + 'grad £(z,1)), z= (X, 1),
de2, >~ d2 (1 +divE(X,t)) ,

(ds — dsg)/dsp = 11 (X, 1) ,
0=2¢12(X,1).

e The deformations are generated by external excitations of mechan-
ical, thermal, or hygrometric origin, or caused by chemical processes,
structural reorganisation, and so on. The question of their geometrical
compatibility thus arises: are these deformations compatible with the
continuity of the medium?

The necessary conditions for geometrical compatibility can be writ-
ten, if | VE]| < 1,

€ijkt + Eke,ij — Cikje — Ejeik =0, 1,5, k,€=1,2,3,

in orthonormal Cartesian coordinates. These six conditions are also suf-
ficient if the domain of definition of the field £ is simply connected.
Otherwise, closure conditions must be satisfied. In every case, we must
check that the displacement field solution is compatible with whatever
boundary conditions are imposed upon it.
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3. Kinematics

po(X)

Notation Meaning
%{g, t) Eulerian gradient of the velocity field
d(z,t) (Eulerian) strain rate
0 Angular distortion rate
2z, t) Spin tensor
2(z,t) Spin vector
d 2 &
Tl Symbols for the material derivative
w Propagation velocity
[ ] Symbol for discontinuity
plz,t) Mass per unit volume in &,

Mass per unit volume in xg
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The evolution of a system can be described from an incremental point
of view either within the Lagrangian or the Eulerian formulation.

e In the Lagrangian description, the time derivative is identified as the

material derivative, which follows the evolution of a quantity associated

with a particle, a discrete set of particles, or a material element. On a

geometrical level, the kinematics of the continuum follow directly from

the study of convective transport, transformation and deformation be-

tween an initial reference configuration and the current configuration.
The Lagrangian strain rate is naturally ¢ (X, 1), leading to

dM . dM’ = 2dM, . & (X, t).dM) .

e The incremental view finds its full mathematical coherence in the
Eulerian description, which it in fact inspires. At each time, the coming
infinitesimal evolution is defined in the current configuration. On the
geometrical level, the motion being given by the velocity field

U= Q(Q! t) s

it is the gradient of this field in the current configuration which defines
the infinitesimal transformation locally,

dM = gradU(z,t).dM ,
A0, = divU(z, t)d, .

e The (Eulerian) strain rate tensor, defined as the symmetric part of
this gradient,

d(z,) = 3 (gmd Uz, 1) + 'gmd Uz, 1)),

characterises the evolution of the metric, that is, of the deformation,
expressed relative to the current configuration, which plays here the role
of reference configuration at each instant of time:

dM.dM’ = 2dM .d(z.t) . AM’ ,
ds

a " dll(..z_st) il

é - 2d12(£| t) o
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K Kisar =
m2-6de
dM,
AM, + @M, dr M +@Msde
dM,
M \\________, M+Udt

The (Eulerian) strain rate and the Lagrangian strain rate are related
by the transport equation

dz.t) ="E (X.0).6(X.0). E™ (X.1), 2= (X

‘--f

e In the orthonormal bases of its principal axes in y, g(g, t) takes the
diagonal form

d(z,t) =di(z, t) e, ® € +da(z,t) ea ® ey +da(z,t) €3 D €3

(di(z,t), i = 1,2,3, principal strain rates).

A triad of material vectors lying along these principal axes in &y
remains orthogonal in the infinitesimal transformation between ¢ and
t + dt (characterising property).

Kpsedr
P

Ql‘_!_l(l +d"|df)\

/}d_u}{l +d2di)
\
\
de
I,
a1+ dydo)

e The antisymmetric part of the gradient of the velocity field is the
spin tensor,

Qz.t) = %(g‘md Ulz,t) - 'grad U(z, 1)) .
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It defines locally the angular velocity of the material triad of principal
axes of d(z,t), which is also the mean angular velocity of the matter.
2(z,t) is the spin vector,

VdM € &, , g(zvt)'SIM:Q(Est)AM‘

e The Eulerian description, defining physical quantities relative to the
current configuration as a function of the space and time variables, does
not identify the material elements. The material derivative must there-
fore be carried out as the derivative with respect to time following the
particle or material element in question.

This exhibits the structure of the related equations, where we system-
atically find a term corresponding to the partial derivative with respect
to time, the spatial variables being held constant (the point or geomet-
rical element being frozen, as it were), together with a convective term.
The latter is the contribution from the convective transport of the par-
ticle or material element with which the relevant quantity is associated:

B=b(z,t), B= % = f—‘i’ +gradb.U .

e Special attention is paid to the material derivative of volume in-
tegrals, since these have a privileged role to play in defining physical
quantities when a system is modelled by the continuum. We find that

I= b(z,t)df2, , band/or U discontinuous on X ,
2,

I= ﬁdn,- [b]Wdx, + (baU).da.
ffgdt Et

a9,
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e The mass of a system is given by the integral of its mass per unit
volume. The law of conservation of mass is expressed by saying that the
material derivative of this integral is zero. Use of this global equation
leads on a local level to the continuity equation, which can be written as
a differential equation

dp

'('17+pdwg=0,

and the associated discontinuity equation
[pU-W)].n=0 onX,

in the Eulerian description.
The mass of the material element defined by df2; at M in the refer-
ence configuration kg is

dm = po(X) df2 = p(z.t)d2, .
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In order to model forces, we must begin with a geometrical model of
the system and the force model must be consistent with it.

e The example of a system of material points brings out the idea of
a subsystem within a given system, and the distinction which must be
made between external and internal forces acting on the system or sub-
system.

The virtual velocities of each of the material points making up the
system (or subsystem) generate the virtual motions of this system (or
subsystem).

For a system or subsystem, the external forces, internal forces and
quantities of acceleration (masses times accelerations) define linear forms
on the vector space of its virtual motions.

® The dualised formulation of the fundamental law of dynamics arises
on the vector space of virtual motions. The sum of the virtual rates of
work by internal and external forces is equal to the virtual rate of work
by quantities of acceleration in the Galilean frame, for any virtual motion
of the system (or subsystem):

in a Galilean frame R ,
vs'csS,

VO v.m. , Pl (0) + P}, (0) = A(0).

® The dualised formulation of the law of mutual actions refers to rigid
body virtual motions. The virtual rate of work by internal forces within
the system (or subsystem) is zero in any rigid body motion of the system
(or subsystem):

vs'cs,
vOr.b.v.m. for 8, P}, (0) =0.

® These two results are then raised to the status of a principle. They
form the foundation stone for the virtual work approach to modelling
forces.

e The key role played by rigid body virtual motions leads us to make
a special study of them. We introduce the notion of distributor,

(D} ={0,0,, 8} ={0, Uy +@,A00', &},
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which defines the rigid body virtual velocity field U by
U(z) = Uy + @9 AOM
The notion of wrench then arises by duality,

[F]1=1[0, Ey, Cy] = [0, Ey, Co + Q'O N Fy]

[F].{D} = Fy. Uy + Co- o -
e General results are derived, valid for any mechanically consistent
model, which express the fundamental law of dynamics

in a Galilean frame R ,
ve' cs,
(7 = [Ma],

and the law of mutual actions in terms of wrenches

vs'cs, [Fl=0.

e If we are concerned in particular with the classical continuum, with-
out further information concerning the model, the fundamental law of
dynamics can also be expressed through the momentum conservation
law in terms of wrenches, )

in a Galilean frame R ,
vs8' cé§,

7 = M),

or by Euler’s theorem,
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in a Galilean frame R ,
a(pU ;
_(._ ——) deo, on 2,

VS’ < S' [‘F;] - p(_{_}r_@wgg_ on 0!)‘ '

(=[pU]IWdAE, on £,N &’ if shock wave)

and leads to the kinetic energy theorem

K@= / ol t) UP(z, £) A2
m
in a Galilean frame R ,

VS'C S, Py(U) + P (U) = %K'(U) :
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5. Modelling Forces in Continuum Mechanics

(X, t)

Notation Meaning
F(z) Body force per unit mass
To(z) Surface force on boundary of §
T (z) Surface force on boundary of &'
af Infinitesimal surface force
a(z) Cauchy stress tensor
T(z,n(z) Stress vector

Piola-Kirchhoff stress tensor
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e In classical continuum mechanics, the force model is built upon a
geometrical picture in which the real motions of a system are defined,
in the Eulerian description, by the particle velocity field given in the
current configuration.

In order to apply the virtual work method, we choose for the vector
space of virtual motions the set of continuous and continuously differ-
entiable vector fields (virtual velocities) specified relative to the current
configuration of the system. This space is then extended to the piecewise
continuous and continuously differentiable vector fields.

e External forces on the system are modelled, using the expression for
the associated virtual rates of work, by volume densities of forces within
the system and surface densities of forces on its boundary.

The same form is adopted relative to any subsystem, adding the
hypothesis that there are no internal forces at a distance between the
constitutive particles of the system:

Piy(@) = [n ADE@.- U@ a2+ [ To). U@ da.

e We postulate that the virtual rate of work by internal forces can be
put into the form of a volume density which is a linear form in the local
values of the virtual velocity field and its gradient, independent of the
subsystem under consideration. The principle of virtual work specifies
the structure of this density in such a way that the law of mutual actions
is satisfied. It allows us to check in an a posteriori manner that the choices
made for the various linear forms are mutually compatible.

It shows that the internal forces thus modelled correspond to contact
Jorces between the system particles.

e The most general approach in this framework models internal forces
by the field of a second rank tensor, which must be symmetric in order
to respect the law of mutual actions. This tensor is dual to the virtual
strain rate (up to a sign) in the density of the virtual rate of work by
internal forces:

Po@ = [ -g@:dwan+ [ oy 12020 ) da.

The equations of motion provide three first order partial differential
equations for this symmetric tensor field, viz.,

divg(z) + p(z) (E(z) - a(z)) =0 on 2,
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and three boundary conditions on the surface of the system, viz.,
g(z).n(z) =Tq(z) ond .

The external forces on the boundary of an arbitrary subsystem are
then determined by

T (z) = g(z).n(z) ond.
e The mechanical interpretation of the model shows that internal
forces, reduced to contact forces between the particles of the system,
can be viewed schematically in the following way. Particles situated on
either side of a geometrical plane within the system, and infinitely close

to this plane, exert forces on one another that can be represented by
surface forces distributed over the plane,

df = g(z).n(z)da.

Such a plane is called a facet. The corresponding surface density is the
stress vector on the facet,

T(z,n(z)) = a(z) .n(z) .

df=T(xn(x)) da =0 (x).n(x)da

The symmetric tensor field in this model is the Cauchy stress tensor
field, or (Cauchy) stress field.
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e When the stress field is piecewise continuous and continuously differ-
entiable the equations of motion also include a discontinuity equation,

[2(2)].n(z) =0 on X,

provided that there is no shock wave (or surface density of external forces
inside the system). This expresses the continuity of the stress vector at
the discontinuity surface of the field g.

df=0*(x.1).n(x)da

]
I3

n(x)

I'IH

e Considering the integral that gives the virtual rate of work by internal
forces, in the absence of velocity discontinuities, and transporting it to
the initial reference configuration, the Lagrangian strain rate is found to
be associated by duality with a symmetric tensor. From this standpoint,
the latter is analogous to the Cauchy stress tensor:

Py (0) = fI ) —x(X.t): &(X. 1)y .

x.dA=F".df

e

dA
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This is the Piola-Kirchhoff stress tensor,

1 =
=£ l.?.lg 1!

2 =

which corresponds to the convective transport of the force on an ori-
ented surface element, as if this force were a material vector. z (X, 1) is

symmetric.
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6. Local Analysis of Stresses

Notation Meaning
o Normal stress
T Shear stress
01,02,03 Principal stresses
0,1, I Invariants of a
Om Mean normal stress
s Deviator of g
Ja, J3 Invariants of s

Equivalent stress (von Mises)
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e The Cauchy stress tensor at a point defines the linear map which
determines the stress vector for any facet passing through this point,

I(n) =

o

In an orthonormal basis,
T‘ — O'(J' ﬂ.J 3

and the following interpretation can be given for the components of g:
the component o;; of the Cauchy stress tensor represents the component
in the direction ¢; of the stress vector on the facet with normal ;-

e On an arbitrary facet, we calculate the normal stress o (positive in
traction) and the shear stress 7:

o=T(n).n=n.g.n,

I(p)=on+z,

Iz| = ((z.n)* - (n.g.n)?)""*.

I
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e In the general case, for a given stress state, there exist three facets
on which the stress vector is normal. These facets are orthogonal to the
principal azes of the stress tensor and the corresponding stresses are
called the principal stresses.

A
Ty

a,

1

In the orthonormal basis of principal axes,
g=01€6 ®Re +026,0e +03e3De;.
Invariants (under any change of basis) are
L =trg = o'; =01+02+03,
L=tr(a?)/2 =(c'j0')/2 = ((01)®+(02)% + (03)%)/2,
I3 =tr(g®)/3 = (0 jo' k0% i) /3 = ((01)* + (02)* + (03)*) /3 .

e ¢ is decomposed into its spherical part oy, 1, and its deviatoric part
8, or stress deviator:

Ji=trs=0, Jp= (trg’)ﬂ - (trg:*)/.'i i
and we have the relations

Iy=J2+ (11)*/6 ,
L= J3+21'1J2/3+ (11)3/27 .
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e With regard to the behaviour of the constitutive materials, the stress
tensor arises as the load on material elements. The yield function is
a scalar measure of this load, providing bounds which mark out the
domain in which a model based on elastic behaviour is relevant, before
irreversible plastic deformations occur. In other words, it determines the
elastic domain of the material and defines its yield criterion.

Two criteria are commonly used for isotropic materials, the Tresca
yield criterion,

f(g) =Sup{0',‘ ] "'Jol‘i,j = 1$2v3} '

and, most often, the von Mises yield criterion

]
fl@=Vh-k= {é[(ﬂl - 03)* + (02— 03)* + (03 — 01)2]} -k,

from which we may define the (von Mises) equivalent stress

Oeq = \/3J2 .

This expresses the magnitude of the simple tension state which is equiv-
alent from the standpoint of the von Mises criteria to the applied stress
tensor o .
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7. Thermoelasticity

Notation Meaning
r(z,t) Internal heat source per unit volume
e(z,t) Internal energy per unit mass
q(z.t) Qutward heat flux
s(z,t) Entropy per unit mass
T(z,t) Absolute temperature
/)] Free energy per unit mass
epl(e) = 0, internal constraint
My Lagrange multiplier for an internal
constraint
112,13 Invariants of ¢
é Elasticity tensor
k Tensor of thermal coefficients
T Temperature variation
A Lamé constant
G Shear modulus
E Young modulus
v Poisson ratio
a Linear thermal expansion coefficient

Bulk modulus
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e Experience shows that certain materials have thermoelastic behav-
iour, characterised by the reversibility of their response to conditions
they are subject to.

The corresponding model is built upon general principles that ap-
ply to any constitutive law, amongst which are the laws of continuum
thermodynamics expressed locally by:

the energy equation from the first law,
pe=g:d+r—divg,

the fundamental inequality from the second law,
o (YT
”""d“'(?) 720
or the Clausius-Duhem inequality, obtained by combining with the first,

g:g—P(lf;’+8T)—%-gde20.

e The model for thermoelastic behaviour is obtained from the hypoth-
esis that the current values of the temperature and strain tensor of the
material element suffice to define its state. The Clausius-Duhem inequal-
ity then determines the constitutive law. In the Lagrangian formulation,
the free energy is a function of the current values of the temperature and
the strain tensor, and arises naturally as the thermodynamic potential.
The stress tensor is found from it by differentiating with respect to the
strain tensor,

M(T, e)

K= pD_BF—_ for a material without internal constraints .

When there are internal constraints, ¢,(e) = 0, the constitutive law
introduces an arbitrary scalar 1, for each such constraint, so that

_ 9U(T.e) iz pp(e)

Sop(g):n!p:l!“'sn! IS“'S-G'
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e The constitutive law must respect symmetries of the material.

For an isotropic material,
"b(T!g) = lf’(Tn I;! I;!I:;) L]
I=tre, I = % tr(e)?, Iy = -;- tr(e)® .

The same is true for internal constraints if these are isotropic,

_ N &ff 31.9 dop I¢p % 2
= (af, < on € )* "Ip (ar' L+ <t or &

II=|

ep(lt s I3, I§) =0,p=1,...,n,1<n<3.

In this case, the tensors m and ¢ have the same principal axes.

e When deformations are infinitesimal and the temperature variation
small (in some well-defined sense), this constitutive law can be linearised.
The result is a physical linearisation of the relation between stresses,
deformations and temperature variation:

z=z'+4:¢-k7,

where the elasticity tensor A has the following symmetries (in an ortho-

normal basis):

Aijie = Ajire = Aijo = Axeij -

e If, moreover, the transformation is infinitesimal, linearisation can be
taken further. The result is a geometrical linearisation and we arrive at
a linear (affine) relation between the Cauchy stress tensor, the linearised
strain tensor and the temperature variation from a prestressed reference

configuration:

The linearised constitutive law brings in the elastic constants and
thermal expansion coefficients, intrinsic physical characteristics of the
material, whose number is reduced by material symmetries and which
satisfy the stability condition for the material.

e For an isotropic material, linear thermoelasticity is characterised by
two elastic constants, A (the Lamé constant) and u (the shear modulus),
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or by Young's modulus E and the Poisson ratio v, and also by a single
thermal expansion coefficient a or the thermal constant k:

=g+ A(tre)L+2ug — k7'l

(3A +2u) A
E =
(A+p) ¥ 0T )
= E
A= Toi— M iz
- Ea g
e T W
§ E
3K =30+ 2p= o

3\+2u>0 and p>0

E>0 and _1<U<%
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J

Notation Meaning
éo (T,e) Thermal conductivity tensor
T3 Specified value of a component of I’
& Specified value of a component of £
St Portion of boundary where T; is given
Se, Portion of boundary where &; is given
S(E,Sr, ,T?) Set of S.A. stress fields
with F, T8 on Sy,.
C(Se, ,£%) Set of K.A. displacement fields
with & on Sg,.
C Twisting moment
ez, y) Warping function
a Differential rotation (angle of twist)

Torsional inertia
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e Mechanical and thermal excitations are generally imposed on a sys-
tem as a function of time in the form of volume effects (known body
forces) and surface effects, which include the known temperature on the
boundary of the system and the boundary conditions on the stress vec-
tor and the displacement. The evolution of a system made up of a ther-
moelastic material is then specified by a system of equations expressed
both in the known initial geometrical configuration of the system and in
the current configuration which is an unknown for the evolution problem.
These equations are the equations of motion, the continuity equations,
the constitutive equation, the heat equation and the boundary condi-
tions.

e When the process is quasi-static, this system of equations can be
written, at each time,

{ diva(z,t) + p(z.t) E(z,t) =0 on 2,

[g(z.t)].n(z) =0 on X,
po(X)/p(z,t) = det E(X,1),

pple) =0,p=1,...,n,(1<n<6),
N(T,e) i deple)
divx (K°(T,e) - VT) =0 in the steady regime,

I|'-=

7 arbitrary scalars ,

T(z,t) = T%(z, 1) on O, ,
oij(z,t) nj(z) = T (z, 1) on St,(t) ,
Ui(z,t) = Uj(z.t) on Sy,(t) ,

with Sg, (t) U S, (t) = 92 and Sy, ()N Sp,(t) =@, i=1,2,3.

82,



8. Thermoelastic Processes and Equilibrium 33

Quasi-static thermoelastic processes can be tackled classically using
the displacement method. The uniqueness of the solution is not estab-
lished.

e A set of hypotheses is grouped together under the heading of the
small perturbation hypothesis because they enable us to linearise the
thermoelastic equilibrium problem. They comprise the small transforma-
tion hypothesis, the small displacement hypothesis and the assumption
of small temperature variations:

IVE|| <1, 7 small, small displacements .

All the equations can then be expressed in the known initial configuration
of the system, and they are linear.

divg(z,t) + po(z) F(z,t) =0 on 2,
{ [2(z.t)].n(z) =0 on 5,
g(@:t) = g°(2) + A) : glz. 1) - k(@) 7(z.t)
div(g(g).ggiﬂ"(;)) =0 onf
p(z,t) = po(z)(1 — tr £(z, 1))

T(z,t) = Tz, t) on 912 ,
oij(z, t)n;(z) = Txd(ﬁ- t) on Sy,
&ilz,t) = &l(z.1) on S,

Sg.-UST' =0f} , Sg,.nST,. =2,i=1,2,3

e The thermal problem decouples and can be solved independently. The
temperature change field determined in the system at each time becomes
a known component of the problem specifications.

At each instant of time, the linearised quasi-static thermoelastic
process defines a thermoelastic equilibrium problem that only depends
on the current excitations and the initial state.

Uniqueness of the solution to this problem is guaranteed when the
boundary conditions determine a well-posed problem. If the small per-
turbation hypothesis holds throughout the process, the current state of
thermoelastic equilibrium is completely determined when we know the
current excitations and the initial state.

The principle of superposition expresses linearity of the problem.
With the proviso that the small perturbation hypothesis remains valid
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throughout, the solution to the problem is linearly dependent on the
boundary conditions specifying the problem. In practice, the principle of -
superposition enables us to solve complex problems using linear combi-
nations of solutions to simpler ones.

e The solution comprises a kinematically admissible displacement field
for the problem,

&=& oS, & £eC(S, &),
and a statically admissible stress field for the problem,

divg+pE=0 (p=py)

as'jﬂj=TI-d on S’I‘.} A gES(E' ST:*T:I)!

related by the thermoelastic constitutive law.

( @,& ) Solution to the problem

gES(FE, S5,,T,") EecC(sy.8%)
[

e Classical methods for direct solution start out with hypotheses in-
spired by the form of the boundary conditions and choose one or other
of these kinematically or statically admissible fields as the principal un-
known. They then express the fact that the field associated with it by the
constitutive law is statically or kinematically admissible, respectively.

~ The displacement method sets out with a postulated expression for
£ that is kinematically admissible for the problem. We must then
check that the stress field elastically associated with £ is statically
admissible for the problem.
When there is isothermal equilibrium, starting from the natural ini-
tial state, in a homogeneous system made from an isotropic material,
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we may use the Navier equations

9%; '
(A+p)8xi333 +”A£l+PFi—O ""192!3v

(in orthonormal Cartesian coordinates) which express the equilibrium
equations for the stress field elastically associated with §.

~ The stress method sets out with a postulated expression for g that is
statically admissible. We must then check that the (linearised) strain
field associated with ¢ is geometrically compatible and generates a
kinematically admissible displacement field for the problem.
When there is isothermal equilibrium, starting from the natural ini-
tial state, in a homogeneous system made from an isotropic material,
we may use the Beltrami-Michell equations

az(trg) -

(l+v)da'5j+m =0,

i=1,2,3 if grad F=0,
(in orthonormal Cartesian coordinates) for the geometrical compati-
bility of the (linearised) strain field elastically associated with g.

— The uniqueness theorem justifies a posteriori the hypotheses made at
the outset concerning the form chosen for the field, provided they do
lead to a solution.

e The linearised elastic equilibrium problem associated with the isother-
mal torsion of a cylindrical rod made from a homogeneous and isotropic
material can be solved by either method when the boundary conditions
on the end faces assume a well-specified form, related to the geometry
of the orthogonal section of the rod.

The stress field solution is a pure shear stress field, not homogeneous
over the cross section but invariant under translation along the rod, viz.,

=

dp
= o (a—y) (e, ®e, +e.®¢;)

+pa (g% +I) (e, ®e. +e.®¢,) .

The displacement field reveals warping of the cross sections, as well
as differential rotation, both constant along the rod,

§=-azye, +azze, +ap(x,ye, .
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The differential rotation (angle of twist) a is proportional to the applied
twisting moment C:

C=pjdo-:

e The Saint Venant principle asserts that the solution to the torsion
problem obtained for the boundary conditions thus specified on the end
sections of the rod remains valid in the central part of this same rod,
provided it is sufficiently long, for any surface force distribution on the
end sections whose wrench reduces to a couple with axis parallel to
that of the rod. Hence, the precise form of the imposed conditions only
introduces effects in the vicinity of the end sections.

More generally, the Saint Venant principle can be stated for slender
objects, loaded at the ends.
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Notation Meaning
X Resultant on the cross section
M Bending moment
M. Component of M along e.
M, Component of M along ¢,
L, I, Principal moments of (geometric) inertia
for the cross section
w(zx) Rotation of the cross section
X Curvature of fibres
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Four isothermal elastic equilibrium problems are presented for solids
made from a homogeneous and isotropic material. In each case, the initial
state of the system under zero loading is taken as reference and assumed
natural.

e Tension-Compression of a Cylindrical Rod. The solution, obtained
for specified boundary conditions at the ends, is extended by the Saint
Venant principle to the central part of a slender rod, for which the
wrenches of external forces applied at the ends both reduce to a force
parallel to the axis of the rod, exerted at the centre of the cross section.

The stress field solution is uniform. It is uniaxial, in tension or com-
pression, and parallel to the rod,

)
g=E;¢e®¢-

The displacement field

§= %(fﬁ: -v(ye, +z¢.))

shows that the rod extends in proportion to its length and the applied
tension force,

X 0

- A E 7
There is also a constant transverse contraction along the rod, propor-
tional to the tension force.

e Normal Bending of a Cylindrical Rod. The solution established under
particular boundary conditions is extended by the Saint Venant principle
to the central part of a sufficiently slender rod when the forces applied
to the ends have wrenches that reduce to a moment about a principal
axis of (geometric) inertia of the cross section.
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The stress field is uniaxial, in tension or compression, and parallel to
the rod. It is invariant under translation along the rod and varies linearly
over the cross section, vanishing on the neutral azis which coincides with
the axis of inertia about which the bending moment is applied,

z

I

The displacement field shows that the cross sections remain planar
and orthogonal to the mean fibre, which deforms into the arc of a cir-
cle. Their rotation about the neutral axis, and also the curvature of
the deformed mean fibre, are both proportional to the applied bending
moment:

g ==

ye, ®e, .

M. dw M.
w(z) = EL %&> x(z) = df:) -

By linear combination of the solutions obtained for the bending mo-
ments about one or other of the principal axes of inertia of the cross
section, we can solve the bending problem for a moment of arbitrary
direction: M = Mye, + M:e, .

The solution has the same linearity properties but the neutral axis on
which the stress field vanishes and about which the cross section rotates
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no longer coincides, in general, with the direction of the applied bending
moment. The bending is said to be off-axis:

M M
w(x) = (ﬁ&**ﬁgy) s

g=(-2y+ 22 g 0.,
Iz Iw

e The equilibrium problem of a spherical shell subject to internal and
external pressures is solved by the displacement method.

The solution is spherically symmetric and the displacement field is
radial:

= A r+4 B )e
&= 3N+ 2 2ur2 ) =’

_porg—piry _L(po—pi)rgri
A= B=_-—2 0]
;1";0 ; 2 ri-rg .

At each point, the radial direction and directions perpendicular to it
are the principal axes of the stress field:

U"=A-2£ 099=0'W=A+—B—, other g;; = 0.

e The equilibrium problem for a eylindrical tube under internal and
external pressure is solved in an analogous way.

The solution is cylindrically symmetric. The displacement field has a
radial component that depends on the distance from the tube axis and a
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component parallel to the tube and proportional to the distance up the
axis:

gz((A(1+vg1—2v)_u%) ’"+WB:~) §r+z%§“

A Pri—mri

ri

g Po—priri

= ri-1g

At each point, the directions of the local basis vectors for cylindrical
coordinates are the principal axes of the stress field:

B B )
O',-,»=A-r—2, 090=A+r—2, 0’;;=2VA+E'E,

other g;; =0.
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10. Variational Methods
in Linearised Thermoelasticity

w*(r.g') - 9*(g)

A(St,)

Q=@ ....Qu)
_Q_=(q1$ versGn)

wi(r,Q)

w(r.Q. X')

Notation Meaning
3 Virtual displacement field
g Linearised strain associated with g
w(r,£) Elastic strain energy of £’
W(r,£') - ®(£') | Potential energy of ¢
W*(r,g') Elastic stress energy of g’

Complementary energy of g’

Vector space of self-equilibrating
stress fields for the problem

Loading parameters
Kinematic parameters

Elastic stress energy, function
of @

Elastic stress energy, function
of Q' and X’
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e The small perturbation hypothesis allows us to express the principle
of virtual work in the initial configuration of the system, and relate a
Cauchy stress tensor with a virtual displacement field and its linearised
strain field. The corresponding statement is the virtual work theorem :

piecewise continuous and continuously differentiable,
Vg*{ divg"+pE=0o0n 2,
[g°].n=00n %,. ,

Vi continuous and piecewise continuously differentiable,
[r@:@ae- [ o E@ E@an
n = n
—f £(z).2(z).n(z)da=0.
an~— -
e This hypothesis also allows us to linearise the thermoelastic consti-
tutive law, which derives from a quadratic potential, a conver function

of the linearised strains, or its conjugate potential, a convez function of
the Cauchy stress tensor:

5o o (0
£=r—%
() =g:e—pd(r.g) ,
_ 0¥(r,0)
£E=p o

e These two arguments are the basis for variational principles. Such
principles characterise the displacement and stress field solutions of the
linearised thermoelastic equilibrium problem by a minimum of a convex
functional on the set of kinematically admissible fields or the set of
statically admissible fields, respectively. This minimisation guarantees
that the stress field or strain field, associated by the constitutive law with
the minimising field in the respective cases, satisfies the field equations
and boundary conditions relating to it.

e Any displacement field solution minimises the potential energy func-
tional over the set of kinematically admissible fields for the boundary
conditions specifying the problem:
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W(r,€) = [ p(ng)de,

#¢)= [ pEgan+ T [ Tigda,

(W —~®) minimal over C(S,, &) .

e The stress field solution minimises the complementary energy func-
tional over the set of statically admissible fields for the boundary condi-
tions specifying the problem:

wing) = [ wrng)ae. #@)=3 /. stoiynsda.
i £

(W* —@*) minimal over S(E, Sy, , T7).

e The two variational principles are dual. The minimal values of the
two functionals attained for the solution to the problem are equal and

opposite.

Minimum Principle Minimum Principle
Jfor the Displacements Jor the Stresses
min (W - ®) min (W' - &)

on C(S;.5") on S(F,S,.T*)

\ min (W - @)+ min(W' - ®") =0 /

(@.&) Solution to the problem

Simultaneously implementing the variational principles for displace-
ments and stresses leads to energy bounds on the solution (g, §):
Ve €C(S,, &), Vg eS(E, Sr,, T,
-W*(r,g) +8*(g') < -W*(r,0) + 9*(2)
=W(r,§) - 2(§) < W(r,§) - o) .
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e Apart from demonstrating uniqueness theorems for the displace-
ment field solution (up to a possible rigid body displacement) and the
stress field solution to the problem, these results lead to variational
methods of solution. We explore one or other of the sets of kinemati-
cally admissible displacement fields or statically admissible stress fields
and minimise the appropriate functional.

Variational methods allow us to introduce the idea of an approxi-
mate solution. They are exploited analytically or numerically, partic-
ularly by discretising the problem, as in the finite element method.

e In the special case of isothermal equilibrium from the natural ini-
tial state, the values of the elastic strain energy and the elastic stress
energy of the system in its present equilibrium state are equal and, by
the Clapeyron equation, equal to half the work done by all the external
forces in the solution displacement field.

Minimum Principle Minimum Principle
Jor the Displacements Jor the Stresses
min (W - @) min (W' - @)

on C(S;“gjd) on S(E.S.’l’:d)

(o, &) Solution to the problem
NATURAL initial state, ISOTHERMAL equilibrium

W(E) =W (D) =5 (LpF.£4Q+[, T(). & da)

The elastic potential p¢/(¢’) and conjugate potential p *(¢’) are then
homogeneous quadratic forms. Hence, for an isotropic material,

“"(E_') - /‘? (%(tr é’}z +p tr(g’)z) a0
- ./n 2(1!fr V) ( 1 _V 5, (tre)’ + tr(g’)?) an
W‘(g’) = -/n (12-;;’ tr(gf)z _ ;_,E(tr gf)2) 40

= __!_ 12__’\__*_ n2
_fnw (tr(g) el ) a0 .
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e Within the same hypothetical framework as for the Clapeyron equa-
tion, the Maxwell-Betti reciprocity theorem expresses the symmetry ex-
isting between two distinct equilibrium states for the same system:

fpz‘.f’dm/ z’(a)-fzda=f p_E’.e‘dm/ T*(n).¢ da.
n = an - n - an -

e The set of statically admissible stress fields for the problem is an
affine space for which the space of self-equilibrating stress fields for the
problem is the associated vector space:

A(S1,) =8(0, $1,,0) .

The self-equilibrating stress fields are statically admissible for the prob-
lem with zero static boundary conditions. The dimension of this vector
space defines the degree of static indeterminacy for the problem.

Expanding the self-equilibrating fields in a basis allows us to define
a system of redundant unknouns.

e Making the small perturbation hypothesis, we may consider the
family of equilibrium problems that depend linearly on the parame-
ters Qj, (j = 1,....m), for the static boundary conditions, and on
gj, (j =m+1, ... ,n), for the complementary kinematic boundary con-
ditions, for the same system. We define the sets of statically admissible
stress fields and kinematically admissible displacement fields § and C,
respectively, for the problem parametrised in this way. The theorem of
virtual work then states that

n
Vg‘ES.Véec, [g':§d9=ZQ}fij=2'-i*
2 j=1

thereby defining complementary parameters Qj, (m + 1, ... ,n) and
gj~ (1, ... ,m). The correspondences

g-es_’gs=9-(g't)ekﬂ‘

§eC— g=g(@eRr",

are linear. The vectors Q and g are the loading parameters and the kine-
matic parameters for the system, respectively, in the family of problems
considered.

e In these circumstances, if the system is made from a thermoelastic
material, the Castigliano theorem gives an expression for the global ther-
moelastic constitutive law for the system, relating the parameters Q and
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g. It can be written, in an analogous way to the local thermoelastic con-
stitutive law for the material, by means of the global potential W* (7, Q),
a convex function of @, whose value is equal to the elastic stress energy
of the system in its thermoelastic equilibrium state under the loading Q:

ow*(r,Q)
80

Q)=

e The Castigliano theorem assumes that W* (7, Q') is known, in other
words, that the thermoelastic equilibrium problem under the loading Q'
has been solved. The minimum potential theorem allows us to determine
this solution when the kinematic boundary conditions are zero and when
the vector space of self-equilibrating fields for the parametric problem
is finite dimensional. The elastic stress energy of the system is a known
convex function of the redundant unknowns X’ and the loading Q' :

w*(r,Q . X).
The thermoelastic equilibrium state of the system is obtained from
W (rQ.X°Q) _,
oxX' :

which determines X°(Q), and then

oW (r,Q. X°(Q)
Q' '

Q=

We have

WH(r,Q) =W*(1,Q.X°(Q)) -

The redundant unknowns can be interpreted as extra loading para-
meters for which the associated kinematic parameters must be zero in
the thermoelastic equilibrium state.
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11. Statics of One-Dimensional Media

(R ), [RE)
{D(s)}

[X(s)]
X(s), L(s)
[Fi)
N(s)
V(s)
C(s)
M(s)

Notation Meaning
AB Arc of director curve: geometrical
description of S
A'B’ Geometrical description of &’
8 Curvilinear coordinate of field point P
along the director curve
t(s) Unit vector tangent to the director curve
{0} Field of distributors of a virtual motion
on AB
U(s), 2(s) Reduced elements of the distributor { U(s) }
at P
U Virtual motion
[F(s)] Line density of external force wrenches

Wrenches of external forces applied at the
endpoints of S’

Virtual strain rate of the one-dimensional
medium at P

Internal force wrench

Reduced elements of [X(s)] at P

Wrench of concentrated external forces
Normal force at P

Shearing force at P

Twisting moment at P

Bending moment at P
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e Many structures used in industrial practice are made up of slen-
der elements. This geometrical feature suggests implementing a one-
dimensional model associated with a director curve for analysing such
elements.

e Inorder to account for stiffness in slender three-dimensional elements,
the system is modelled as a set of particles specified by their geometrical
position on the director curve and by the orientation of a transverse
microstructure associated with each such position. The real motion is
described by the field of distributors given at each point by the rigid
body motion of the oriented particle specified in this way.

@

—
A

The virtual motions U are defined in a similar way by a piecewise
continuous and continuously differentiable distributor field along the di-
rector curve in the current configuration,

{U()} ={P,Uls), 2s)} -

e External forces are modelled by the wrenches [RS, ] and [R$, | ap-
plied at the endpoints of the system or subsystem, [F;] applied at a
discrete set of points in the system, and by a line density of wrenches

[f(s)] :

Piey(0) = fA,B,[ffs)l-{ﬁ(s>}ds+[nﬁil-{m»}+[R$11-{ﬂs-}

+ Y [F]{0(s0)}.

B 1 <Bi<8p
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e Internal forces are represented by a field of wrenches
[X(s)] =[P, X(s), L(s)],

which express contact forces between the particles:

xwn K R _ixan
h’. [=r il

ir

'p‘{’t)=—./;'B'[X(s)].{ﬁ(s)}d3—- Y [X(s)]-[{U(s5)}],

(b(s)} = LT}

e The model built in this way is useful for the general study of beam
statics. It includes the special case of the statics of wires and cables
without stiffness.

The equilibrium equations for beams are given, for the field of
wrenches [X], by a differential equation along the director curve, with
the associated discontinuity equation and two boundary equations,

[[X(s)]]+ [Fi] =0

[X(sa)]=—[R3], [X(sB}] =[R3].

External forces at the endpoints of an arbitrary subsystem are then
determined by

[Rar]==[X(sa)], [Rp]=[X(sp)].

Explicitly, we obtain the vector equations
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dX(s)

3 tL{(®)=0 [X(s:)]+Ei =0
Lt na@+me) =0 [LE)1+C=0
X(sa) = -RS, X(sp) = R},
L(sa) = -HS L(sp) = HY

RS, = X(sa) RY = X(sp)
HS = -L(sar) H3 = L(sp)

The equilibrium equations for beams can be integrated immediately to
give [X(s)] eaplicitly:

[X(s)1=[R§1+LB(f(o)1m+ Y (R

s<8;<sp

e The classic terminology used for the reduced elements of the internal
force wrench at the field point on the director curve refers to the trans-
verse microstructure, the orthogonal cross section, reflecting the key role
it plays in the transmission of forces:

W(s)
g Mis)

s

e

N(s)t(s)

— "/”
Cis)t(s)

normal force, shearing force,
X(s) = N(s) t(s) + V(s) ;
twisting moment, bending moment,

L(s) = C(s) t(s) + M(s) .
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e Comparing this model with the classical three-dimensional contin-
uum, we can express the internal force field in the one-dimensional
medium as a function of the stress field in the slender three-dimensional
solid:

N(s) = /b o11(Q) da,
V(s) = ﬁ (e2012(Q) + £5.013(Q)) da,

"

Cls) = [ (22013(Q) — 23 012(Q)) da,

Sp

M(s) = 4 (x3€9 — 23) 011(Q)da .

e In order to analyse structures, we must define endpoint, support and
assembly boundary conditions for the constitutive members. Explicit
integration of the static equations shows that the degree of static in-
determinacy of the structures modelled in this way, when there are no
continuous supports, is always finite. From the kinematic point of view,
geometrical compatibility conditions concern the respect for assembly
boundary conditions and support boundary conditions. They are conve-
niently expressed in dualised form.
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12. Thermoelastic Structural Analysis

Notation Meaning
{¢} Distributor field of real displacements
£(s), w(s) Reduced elements of {£(s)} at P
wi(s) Component of w(s) along (s)
w,(s) Component of w(s) in the plane normal
to t(s)
{E(s)} Deformation of one-dimensional

medium at P

£(s) Extension per unit length of the
direction curve

NP VP MP, CP Reduced elements for the prestressed
initial state

7(s) Temperature variation

w* ([X(s)],;(s).gy(s).g:(s)) Line density of elastic stress energy
for the one-dimensional medium
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e Having set up a geometrical model and force model for the one-
dimensional medium, the analysis of structures also requires a constitu-
tive law.

e The assumption of infinitesimal transformations for the one-dimen-
sional medium allows us to introduce displacement and strain distribu-
tors,

{€)} ={P,&(s), w(s)} ={P,&(s), we(s)t(s) +w,(s)},
(£(e)) = HECN

e The linear thermoelastic constitutive law, which satisfies the general
principles stated in the case of the three-dimensional thermoelastic con-
tinuum, is a linear relation between the strain distributor, the internal
force wrench and the temperature variation at the field point. This re-
lation is oriented in space. It is the components of the reduced elements
of the strain distributor and the internal force wrench along the tangent
to the direction curve and along the axes specifying the orientation of
the transverse microstructure which enter explicitly into the constitutive
law.

Q

e The constitutive law commonly used for one-dimensional media in
structural analysis when modelling rods or, more generally, slender
arches with low curvature and slowly varying cross section, assumes that
real motions of the one-dimensional medium satisfy the Navier-Bernoulli
condition. This says that the displacement £ of the direction curve and
the rotation w of the microstructure represented, for example, by the
orthogonal section are related by
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dg(s)
w, (s) =t(8) A ==
in such a way that the orthogonal section remains orthogonal to the
direction curve.
The strain distributor can then be written

(E@) = (P, e)1(s), 22,

where

dg(s) dg(s)
ds

e(s) =45 1) = £(8) t(s) +w(s) A t(s) .

e The constitutive law can be identified for a straight beam ele-
ment (one-dimensional medium) by appealing to the solution of the
Saint Venant problem for a homogeneous cylindrical rod, made from
an isotropic linear thermoelastic material, subject to a combined bend-
ing and a torsion. This determines the position of the direction curve of
the beam element. In fact, it must follow the mean fibre of the cylindrical
rod. The microstructure of the one-dimensional medium, for its part, is
oriented by the principal axes of inertia of the orthogonal section of this
same rod.

This constitutive law is then adopted for the one-dimensional model
of straight rods and slender arches with low curvature and constant or
slowly varying cross section. Such an arch is thus modelled by a hetero-
geneous curved beam, whose microstructure is oriented at each point by
the principal azes of inertia of the orthogonal section of the arch, and
which behaves like the homogeneous straight beam modelling a cylindri-
cal rod of the same cross section as the arch at the point in question.

e(s)
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e It is convenient to express this linearised thermoelastic constitutive
law in terms of the elastic stress energy of the one-dimensional medium:

(N(s) - N°(s))”
2ES(s)

(My(9) = Mp(3)" (Mu(s) - M2())’
3EL(s) | 2EL()

(ct) - vs))” i
T et (N(s) -N (s)) ar(s),

w* (1X()] o)., (5)..(s)) =

" ([X()].£(s). €,(5). £.(s))

which becomes, in detail,
N(s) — NP(s)

e(s) = ES(s) +art(s),
dw(s) M, (s) - Mj¥(s) b (s) 4 M_.(8) — MP(s) . (5)
ds ~ EI(s) 9" EL(s) =\*
C(s) —CP(s)
T

e The small perturbation hypothesis allows us to linearise the ther-
moelastic equilibrium problem for structures composed of one-dimensional
members. It must be carefully justified by checking that displacements
do indeed remain small. Under this hypothesis, the uniqueness results
established in the context of three-dimensional thermoelastic equilibrium
problems still hold. Without this hypothesis, however, we may well have
to face stability problems, in which different solutions can be found for
the same problem.

e Statically determinate problems are solved by appealing to the con-
stitutive law for the one-dimensional medium in order to determine the
deformations and displacements within the structure. The Castigliano
theorem is often used.

e For statically indeterminate problems, the constitutive law is required
to determine internal forces, deformations and displacements. We may
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proceed directly by expressing compatibility between deformations of the
members making up the structure, the continuity of the structure, and
the support boundary conditions. We may also use the minimum potential
theorem which expresses these compatibility conditions in dualised form.
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Useful Formulas in Cylindrical Coordinates
(Orthonormal Basis e,., e, €.)

Kinematics

U=U,e,.+Upep+U: e,

U, 13Uy | U, U,
8:" do=22gF7: Gu=7
iy (0T 1O
_2 r r&B
11 _1(8U, U,
=—§(,- + 5 ) dﬂ-‘(a—ﬁw)
wyo U 10U U, U,
trd_ leQ-ar-i-;-Ee--F 3~

Linearised strains (infinitesimal transformations)
§. ef‘ &+ E& + Ez...z

_ 9% _19% & _ 9%
Err = Br * Srw T f==7,
E, =-l- 6£9 €0 l_{..

n=a\or " rTr M

~1(19 9% _ 170 %)

692—2(1'00*-82)' Cor = (82+3r

afr 1 a‘fﬂ 'fr' dez
or r 89 az

Equations of motion

60rf + l 80]'9 ao'rz + a'rr - a”
or r 00 0z r

Jdoey 1 dogg . Doy Oro _
Or +; 0 + D2 +2-—-+p{Fg—aa)

do., 100, Oo.. o,
& Ior 4 o(F. —a;) =0
or Tr o8 To: Ty tAfi-a)

+p(Fr‘_ar)=0
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Useful Formulas in Spherical Coordinates
(Orthonormal Basis e, , €, e,)

Kinematics

U ="U,e, + Upey +Uyge,

g e A
=1r-:2ni11168_45:.};,::2-}-U:B t9+ﬁ
d‘”%(‘ri%ﬂsilus%_b:“ﬂ:ﬁ%)
e )

r 16U3 1 3U¢, Ua U
trg = de-— or +r 00 +rsin9$+ r t9+2_

Linearised strains (infinitesimal transformations)

§=6re,+80es+E0¢,

- ?_E_r 1 a‘f& £r
Epp = (97' ' Eop = - 89
19, Er
¥ = rsin 0 8p+rmt9+_r-
Erp = aEr d&ﬂ é)
w %0 T or T r

1
2
o 1(1%, 1 % s
%=2\r o0 rsin @ dp r ¥
(L % g
2\rsinf 9o Or r

06 106, 1 % & &
raﬁ rsinﬂ&p

trg= dlvg’— t9+2
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Equations of motion

do,. 1 00,4 1 doy, 1
or * r 00 * rsin 0 Odp x ;(20" T et f)
+p(Fr—a;) =0

809.- 1 30'99 1 aagv 1
or "7 00 tremo op T ;((a” ™ Fion) Ok 9+3”"’)
+p(Fp —ag) =0

ar r 90  rsinf dy

1
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Achevé d'imprimer en aoiit 2001
Imprimé en France



Mechanics




