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A THEORY OF YIELD DESIGN

“One of the principal objects of theoretical research in any department of knowledge is to find the point
of view from which the subject appears in its greatest simplicity”

This book originates from the lecture notes for a Course on Yield Design taught at Hong
Kong City University during the recent years. It comes out in the form of a survey of the
theory of Yield Design which brings together and summarises the books and lecture notes I
published in French on that topic when teaching at Ecole nationale des ponts et chausssées and
Ecole polytechnique (France).

The terminology “Yield Design” has been chosen as a counterpart and translation of the
French “Calcul a la rupture” or “Analyse a la rupture” which have been used for long by
civil engineers and others to refer to stability analyses of structures where only the concepts
of Equilibrium and Resistance are taken into account.

In an explicit form such analyses have been carried out for nearly four centuries, if one takes
Galileo’s Discorsi as a starting point of the story, but they were overshadowed by the
achievements of the theory of Elasticity in the 19th century.

Making the long story short, we may jump to the mid of the 20t century when we observe a
renewal of interest for the Yield Design methods with the development of the theory of
Plasticity. At that time, within the framework of the perfectly plastic model with associated
flow rule for the constituent material, the lower and upper bound theorems of Limit Analysis
and the Theory of Limit loads are established, which provide the traditional Yield Design
approaches with sound theoretical bases. In particular, the upper bound theorem of Limit
Analysis refers to the kinematic approach where the rate of work by the external forces is
compared with the plastic dissipation rate. Also, after several not fully convincing attempts
based on the concept of a rigid perfectly plastic material, the status of the limit loads is
definitely settled in the 1970s through the mathematical theorem of existence and uniqueness
of the solution to the elastoplastic evolution problem: under the assumption of elastic and
perfectly plastic behaviour with associated flow rule, these loads are the maximum loads that
can be actually sustained by the system considered in a given geometry.

This is a happy ending to the story from the theoretical point of view but, since it is
dependent on the assumption of a perfectly plastic behaviour with associated flow rule, it
may appear as substantiating the idea that the Yield Design approaches lose all interest when
this assumption is not valid (which is often the case for practical problems: e.g. stability
analyses of earth structures in civil engineering).



As a matter of fact, the lower and upper bound theorems are just consequences of the sole
assumption that the resistance of the constituent material is defined by a convex domain
assigned to the internal forces. In particular, the upper bound theorem is derived from the
dual definition of this domain without referring to a flow rule or constitutive equation.
Therefore, these theorems hold as the lower and upper bound theorems for the extreme
loads in the Yield Design theory, encompassing the many aspects of its implementation to
various stability analysis problems. From the theoretical viewpoint, the status of the extreme
loads is now restricted to that of upper bounds for the stability or load carrying capacity of
the system. This does not make any difference in what concerns the application of the
method to practice since practical validation is the general rule whatsoever.

The purpose of this book is therefore to present a Theory of Yield Design within the original
“Equilibrium/Resistance” framework not referring to the theories of Plasticity or Limit
analysis. The general theory is developed for the three-dimensional continuum model in a
versatile form based upon simple arguments from the mathematical theory of convexity. It is
then straightforwardly transposed to the one-dimensional curvilinear continuum, for the
Yield Design analysis of beams, and the two-dimensional continuum model of Plates and
thin slabs subjected to bending. The book is structured as follows.

e Chapter I is devoted to an introduction of the concept of Yield Design, starting from
historical landmarks and based upon field and laboratory observations of the collapse of
mechanical systems. Compatibility between the equilibrium of the considered system
subjected to prescribed loads and the resistance of its constituent material is set as the
cornerstone of Yield Design analyses as it is apparent in recent construction codes
implementing the Ultimate Limit State Design philosophy.

e  Chapter II presents the simple example of a truss structure in order to give an outline of
the method introducing the concept of potential stability.

e Since the general theory will be developed within the Continuum mechanics framework,
Chapter III recalls the fundamentals of this model in its primal formulation, leading to
the classical equilibrium equations, and its dual formulation with the theorem/principle
of virtual (rate of) work.

Chapters IV to VI present the core of the theory.

e In Chapter IV, after defining the concept of multi-parameter loading mode, the
compatibility between equilibrium and resistance is first expressed in its primal form, on
the basis of the equilibrium equations and the strength domain of the material defined
by a convex strength condition. The definition of the domain of potentially safe loads
follows from the mathematical compatibility between the equilibrium equations and the
strength condition. As a consequence of the convexity of the strength condition the
domain of potentially safe loads is convex, which makes it possible to obtain convenient
interior estimates through the construction of statically admissible stress fields which
comply with the strength condition.

e Chapters V and VI are devoted to the dual approach of the domain of potentially safe
loads. Through the theorem/principle of virtual (rate of) work, it is possible to derive a
necessary condition to be satisfied by the potentially safe loads, which does not refer to
any stress field but uses kinematically admissible virtual velocity fields as test functions.
This leads to the kinematic exterior approach of the domain of potentially safe loads,
where the material strength condition is expressed in its mathematical dual formulation
of maximum resisting (rate of) work. It is essential to keep in mind that this formulation
does not imply any constitutive law and is just the mathematical dualisation of the
primal one.



e Chapter VII is some kind of a return to Chapter I, which highlights the role played
implicitly by the theory of Yield Design as the fundamental basis of the Ultimate Limit
State Design (ULSD) philosophy. It appears that the fundamental inequality of the
kinematic exterior approach makes it possible to give an unambiguous quantified
meaning to the symbolic inequality of ULSD.

e  With the explicit introduction of resistance parameters, Chapter VIII takes advantage of
the symmetric roles played by the loads applied to a system on the one side and the
resistance of its constituent materials on the other in the equations to be satisfied for
potential stability. It introduces the concept of potentially safe dimensioning of a system
under a given set of prescribed loads as the counterpart of potentially safe loads when
the dimensioning of the system is given. Potentially safe dimensionings generate a
convex domain for which interior and kinematic exterior approaches are derived from
the general theory. Optimal dimensioning of the system results in minimising a given
objective function. Also it is possible to account for the variability of the prescribed loads
and for the physical scattering of the resistance parameters by giving a stochastic
character to these data. From the definition of the domains of potentially safe loads and
potentially safe dimensionings, there is no ambiguity in defining the concept of
Probability of stability of a system. Again, the interior approach and, essentially, the
kinematic exterior approach provide lower and upper bound estimates for this
probability.

e Chapter IX gets on to the Yield Design of structures. The curvilinear one-dimensional
continuum model is first recalled with the concepts of wrench of forces and velocity
distributor. The implementation of the Yield Design theory is straightforward provided
the strength criteria of the constitutive elements, the joints and supports of the structure
are correctly written.

e In order to conclude with a concise presentation of the Yield Design analysis of plates
and thin slabs, Chapter X is devoted to the construction of the corresponding two-
dimensional model. The kinematics is defined by velocity distributor fields. The external
forces are represented by force and moment densities, the internal forces are modelled
by tensorial wrench fields.

e Chapter XI presents the implementation of the Yield Design theory to metal plates and
reinforced concrete slabs subjected to pure bending with strength criteria depending
only on the internal moment tensor. The kinematic exterior approach appears as the
most popular method, especially with relevant virtual motions based on the concept of
hinge lines.

Acknowledgment: The author wishes to express his gratitude to Profs. Habibou MAITOURNAM,
Noél CHALLAMEL and Pierre SUQUET for their friendly comments and suggestions which
contributed to the improvement of this document.

1 GIBBS, J. W. (1881) - Proceedings of the American Academy of Arts and Sciences, May 1880 - June 1881,
XVI, VIII, Boston, University Press: John Wilson & Co., pp.420-421.
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YIELD DESIGN

Origins and topicality of a concept

Limit state design is, to some extent, a familiar terminology within the syllabuses of civil
engineers education, as it appears explicitly in the stability analyses of various types of
structures or is present “anonymously” in the methods used for such analyses. Nevertheless,
the variety of the corresponding approaches often makes it difficult to recognize that they
proceed from the same fundamental principles, which are now the basis of the Ultimate Limit
State Design approach to the safety analysis of structures (ULSD). As an introduction to the
theory, this chapter will both present some famous historical milestones and the topicality of
the subject referring to the principles of ULSD.

1 Historical milestones

1.1 Galileo’s Discorsi e dimostrazioni mathematiche interno a due nuove scienze
(1638)1

The fundamental concept to be acknowledged first is that of Yield strength as
introduced by Galileo in the Discorsi [1] on the simple experiment of a specimen in
pure tension (Figure 1).

Figure 1. Longitudinal pull test (Galileo, Discorsi, 1st day [1])

Galileo uses this first characterization of the tenacity and coherence (tenacita e
coerenza) of the material to explain the difficulty he finds in breaking a rod or a beam
in tension while it is far easier to break it in bending: “A prism or solid cylinder of glass,

1 apy: . .
“Dialogues concerning two new sciences” [1].
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steel, wood or other breakable material which is capable of sustaining a very heavy weight
when applied longitudinally is, as previously remarked, easily broken by the transverse
application of a weight which may be much smaller in proportion as the length of the cylinder
exceeds its thickness.” Considering a cantilever beam (Figure 2) built in a wall (section
AB) and subjected to a weight applied at the other extremity (section CD), he first
defines the “absolute resistance to fracture as that offered to a longitudinal pull”. Then he
assumes that this resistance to tension will be localised in the section of the beam
where it is fastened to the wall and that “this resistance opposes the separation of the part
BD lying outside the wall, from that portion lying inside.” The reasoning follows “it is
clear that if the cylinder breaks, fracture will occur at the point B where the edge of the
mortise acts as a fulcrum for the lever BC” [1]. Introducing the second fundamental
concept of the Yield Design approach, namely Equilibrium, by writing the balance
equation for the lever about B, Galileo finally relates the “absolute resistance of the
prism BD” to its “absolute resistance to fracture” through the ratio of the short lever arm
BA/2 to the long one BC.

Figure 2. Prism subjected to the transverse application of a weight (Galileo, Discorsi, 2nd day))

Galileo’s reasoning has been criticized, as shown in Figure 3, on the basis that the
equilibrium of the cross section BA is not satisfied.

* The one fundamental error which is implicitly introduced into this
proposition and which is carried through the entire discussion of the

Second Day consists in a failure to see that, in such a beam, there must
be equilibrium between the forces of tension and compression over any
cross-section. The correct point of view seems first to have been found
by E. Mariotte in 1680 and by A. Parent in 1713. Fortunately this
error does not vitiate the conclusions of the subsequent propositions
which deal only with proportions—not actual strength—of beams.
Following K. Pearson ('Igdhunter's History of Elasticity) one might say
that Galileo’s mistake lay in supposing the fibres of the strained beam to
be inextensible. Or, confessing the anachronism, on¢ might say that the
error consisted in taking the lowest fibre of the beam as the neut[r;} a:isi

rans,

Figure 3. Translator note, page 115 in [2]

Staying within the framework of the Yield Design approach for the beam, the
criticism amounts to pointing out that the global equilibrium equation for the
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horizontal resultant force has not been taken into consideration. As a matter of fact,
by focusing his attention only on the moment equation for the global equilibrium of
the beam, Galileo obtains a necessary condition for the beam to sustain the load in a
model where the constituent material is considered at the meso-scale of the section,
with its resistance determined through the longitudinal pull test, and not at a more
local level such as the longitudinal fibres as the criticism in Figure 3 would require:
this is consistent with the fact that resistance to compression is never referred to.

1.2 Coulomb’s Essai sur une application des régles de Maximis & Minimis a
quelques problémes de Statique relatifs a I’Architecture (1773)2

The appearance of Soil mechanics as an engineering science is often associated with
Coulomb’s memoir [3] presented to the French Academy of sciences in 1773 after
Coulomb returned from his 8-year period in Martinique as a lieutenant in the French
military corps of engineers. This Essay was devoted to various problems which he
had encountered when building the “Fort Bourbon”: stability of pillars, arches and
vaults, calculation of earth pressure on retaining walls, etc. (Figure 4).

PLr v, Ltrang 1773 Py, 382, Pl X0 PO Jay. Blrang. 1773, Pag 382, FL. TFT.
-~ £y
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Figure 4. Figure plates in Coulomb’s Essay [3]

The first guiding idea of Coulomb’s rationale in tackling those problems is making a
clear distinction between the active forces, that are the prescribed loads acting on the
structure under consideration, and the characteristics of resistance of the material,
which set the bounds to the "coherence" forces that can be mobilized (Figure 5).

* “Note on an application of the rules of maximum and minimum to some statical problems,
relevant to architecture” [3].
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Du Frortement.

Le frottement & la cohéfion ne font point des forces
aftives comme la gravité, qui exerce toujours fon effet en
entier, mais feulement des forces coércitives; I'on eftime
ces deux forces par les limites de leur réfiftance. Lor(qu'on

Figure 5. Defining friction and cohesion? in Coulomb’s Essay [3]

The second guiding idea is that the resistance forces are exerted locally along an
assumed failure surface, anticipating, to a certain extent, on the concept of stress
vector to be introduced some fifty years afterwards. In the simple case of a stone
column under a compressive load (Figure 4), Coulomb explains the principles of the
analysis: the active force on the assumed fracture surface must be balanced by the
"coherence" force; the fracture surface will be determined through a minimisation
process.

Based upon the same principle, Coulomb’s stability analysis of a retaining wall is a
fundamental landmark for the theory of Yield Design. Coulomb starts with the
celebrated “Coulomb’s wedge” reasoning (Figures 4, 6), where he assumes the failure
surface to be plane, and states as a condition for stability that the active forces on the
assumed fracture surface Ba must be balanced by the "coherence" forces; from which
he derives, through minimisation and maximisation processes, two bounds for the
horizontal force that can be applied to CB so that the wall be stable. Due to its
simplicity this reasoning is often presented as the Coulomb analysis of the stability of
a retaining wall. In fact, Coulomb, after showing how the friction along the wall
could be taken into account, states that, to be complete, the analysis should look for
the curve that produces the highest pressure on CB and sketches the process for this
determination.

Figure 6. Coulomb’s wedge [3]

* “Friction and cohesion are not active forces such as gravity that always act with its full
intensity, but only coercive forces; those two forces are characterized by the limits set to their
resistance”
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1.3 Compatibility between equilibrium and resistance

It is not difficult to point out the common features of the analyses that have been
briefly presented here above.

First, the concept of resistance is introduced as a mechanical characteristic of
the constituent material. After having been determined through a given
simple experiment, it is used in any other circumstances and sets the limits to
the resisting forces that can be actually mobilized.

Then, the idea that the resistance of a given structure - a result at the global
level - can be derived from the knowledge of the resistance of its constituent
material(s), which is a property at the local level.

For this determination, the rationale is based upon the statement that
equilibrium equations of the structure must be satisfied while complying with
the limits imposed by the resistance of the constituent material(s). In other
words, Equilibrium and Resistance must be mathematically compatible.

The practical implementation of this statement is made through the choice or
the assumption of some particularly crucial zone in the structure (cross section
in the first case, failure surface in the second) where it is anticipated that
compatibility between equilibrium and resistance should be checked.

As it appears in Figure 3 in the case of Galileo’s analysis, it may be objected that such
approaches do not take into account the behaviour of the material, i.e. the fact that
the material deforms under the forces it is subjected to. But it must be recalled that
although the concept of linear elasticity was first introduced by Hooke in the 1660s, it
was only in 1807 that Young recognized shear as an elastic deformation; three-
dimensional linear elasticity itself was only really formalized in the 1820s (Navier,
Cauchy...) at the same time as the concept of stress tensor. As noted before, the Yield
Design approach implicitly embodies an anticipation of the concept of internal
forces. This is not surprising since the intuition of internal forces is primarily linked
to that of rupture being localized on surfaces or lines as observed on full scale,
reduced scale or small scale experiments (Figures 7, 8).

Figure 7. “Slip line” pattern under a foundation in a purely cohesive material
(medium scale experiment) [4]
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Figure 8. Bending of a reinforced plaster slab: evidence of hinge curves (M. Milicevic)

2 Topicality of the Yield Design approach

2.1 - The Coulomb’s Essay legacy

Coulomb’s Memoir was at the origin of many methods used by engineers for the
stability analyses of various types of structures. In the case of masonry vaults, the
works by Méry [5], and Durand-Claye [6,7] have been extensively studied by
Heyman [8-13] and Delbecq [14, 15]: it is interesting to note that they often combined
Coulomb’s original reasoning with elastic arguments, thus losing its original
theoretical meaning without any damage from the practical point of view.

Soil mechanics, which is sometimes considered as having found its very origin in
Coulomb’s Memoir, exhibits numerous methods clearly related to it, for the stability
analysis of slopes, retaining walls, fills and earth dams or for the calculation of the
bearing capacity of surface foundations [16-63], including the limit equilibrium
methods and the slip line methods, which were also applied to solving metal forming
problems. Finite element methods have also been developed and used extensively

within this framework for applications to Soil mechanics and to some related
problems [64-77].

Another field of application is the bearing capacity of metallic plates and reinforced
concrete slabs through the yield hinges theory as developed by Johansen, Save,
Massonnet... [78-83].

Considerable attention has been devoted by Chen, Drucker and co-workers to
applying the theorems of limit analysis to the determination of the bearing capacity
of concrete blocks and fibre reinforced concrete [84-87].

More recently, it has been applied to the determination of the resistance of long fibre
composites from the knowledge of the resistances of the components, through a
homogenization process leading to the definition and determination of a
homogenized yield criterion (Suquet, de Buhan, [88-95]).
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2.2 - Topicality

Obviously the Yield Design approach did play a highly important role in civil
engineering and construction as a scientific approach before the theory of Elasticity
was elaborated and could be practically implemented for the design of structures.
One may wonder now about its topicality, taking into account both the constant
improvement of the formulation and determination of constitutive laws and the
development of computational methods and tools which can be applied to determine
the behaviour of a structure along a given loading path. It must be understood that
there is no inconsistency between the different approaches provided they are used
within their proper domain of validity, depending on the available data, and with
their results interpreted accordingly. Moreover, the Yield Design approach proves
quite efficient for back calculations after the collapse of a structure without knowing
the exact circumstances of its occurrence.

Recent construction codes such as the Eurocodes are based on the concept of Limit
State Design which includes Ultimate Limit State Design (ULSD) the principle of
which may be stated as follows [96]:

“The design criterion is simply to design for equilibrium [under the design loads] in the
design limit state of failure. The design criterion could be expressed in the following way:
R, 2S,”

which means that the design load effect S,should be inferior to the effect of the design
resistances R .

Three words are familiar to us in this statement, namely “equilibrium”, “loads” and
“resistances”, as a follow up to Coulomb’s Memoir. The word “design” needs being
explained and “effect” must be defined. As far as design is concerned, it means that
the values that are considered for the design and the dimensioning of the structures
are not the actual values of the loads or of the resistances but conventional values
derived from them through properly chosen partial safety coefficients (“partial
factors”) and thus setting the “rules of the game”. Regarding the effect, it must be
quantified as a scalar in order to make the inequality practically meaningful.

Thanks to the theoretical basis of the ULSD approach to safety provided by the
theory of Yield Design [97], it is possible* to make the necessary clear distinction
between the active forces and the resisting forces, exactly in the same spirit as
explained by Coulomb more than 200 years ago. Also, through a quantified
definition of the effects, it provides at the same time scientifically consistent and
efficient methods for its implementation [98, 99].

* Cf. Chapter VIL
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AN INTRODUCTORY EXAMPLE
To the Yield Design approach

The variety of topics that have been studied through the Yield design approach calls for a
unifying presentation that might both enhance the common features of the corresponding
analyses and make their joint implementation for the solution of a problem easier. In order to
make this general theory as versatile as possible for its application to the different mechanical
models commonly used in practice - e.g. rods, beams, arches, plates, shells, 2-D or 3-D
continua, micropolar media - it will be presented within the framework of the classical 3-D
continuum mechanics. As a preliminary, a very simple example will now be analysed in order
to point out the guidelines of the rationale without being confused by the formalism of the
mechanical modelling.

1 Setting the problem

1.1 The considered structure

The geometry of the structure to be analysed is presented in Figure 1. It consists of
three vertical rods 4’4, B'B and C'C with length (, which are fixed by pinned joints
offering no resistance to bending moments in 4’, B" and C’ respectively to a rigid
support and in 4, B and C to a rigid transverse beam. The points B’ and B are in
the middle of A'C" and AC respectively.

The structure is thus made of 11 elements, namely the 3 rods, the support, the
transverse beam and the 6 pinned joints as encompassed by the broken line in
Figure 1.

1.2 Loading mode of the structure

The structure is subjected to two active vertical loads applied in D, and D,,
respectively the middle points of 4B and BC. The intensities of the loads are O, and
0,, the loading parameters in the problem, counted positive when the loads are

going downwards. We define the two-dimensional loading space of the structure as
generated by the vector 0=(Q,,0,).
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Figure 1. Description of the structure

1.3 Resistance of the elements of the structure

Since no load is applied to the rods except at their extremities by the support and by
the rigid transverse beam and due to the fact that these extremities are pin connected
with no resistance to bending moment, the internal forces in the vertical rods are
constant axial forces. They are denoted N,,N,, N, and counted positive when tensile.

Regarding the resistance of the constituent elements of the structure, it is assumed
that the support and the transverse beam are rigid - which amounts to saying that
they can sustain any internal forces whatever their magnitudes - and that the
resistances of the joints are infinite in tension or in compression. It follows that the
only data to be introduced are the values of the resistances of the vertical rods to
axial internal forces. The rods are supposed to be identical and their resistance is
defined by Eq. (1)

1) L <N, <L, i=1,23.

1.4 The question

It is worth noticing that the data of this problem concern on the one side the structure
itself, through the definition of its geometry and the definition of its loading mode
which depends on two loading parameters and, on the other side, the elements of the
structure which are only characterised by their resistances that are the bounds
imposed to the internal forces.

The governing question of the problem is then to investigate whether it is possible to
derive some relevant information regarding the resistance of the structure from those
crude data. This question will be formulated as follows:

Given the geometry of the structure, given a load Q=(0,,0,), is it possible to state whether

the structure will sustain that load while complying with the resistance of its elements?
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As a short cut the question will also be referred to in terms of “stability”:

Is the structure “stable” under the load Q=(0,,0,)?

Consistently with the data of the problem, which do not provide any constitutive law
for the behaviour of the constituent elements, this question does not refer to any
loading process or loading path of the structure nor is there any mention of the initial
state of internal forces. As a consequence the answer, if any, will be valid whatever

those missing data, but it may be expected that it will suffer some drawbacks which
will be commented later on.

2 Potential stability of the structure

2.1 A necessary condition for the stability of the structure

As the meaning of the word “stability” here is explicited in the full version of the

question, it follows that a necessary condition to be satisfied for the stability of the

structure is the mathematical compatibility between the equations of equilibrium of

the structure and Eq. (1) which defines the resistance of its elements.

The two equilibrium equations of the structure are written:

) {N1+N2+N3:Q1+Qz
2N =2N; =0, -0,.

The structure is statically indeterminate with degree 1. Taking into account Eqs (2)

the internal forces in the rods may be written as functions of Q,, O, and N, which is

taken as the redundant unknown

o) N, =-N,/2+30,/4+0Q,/4
N,=-N,/2+30,/4+0Q,/4.

Then Eq. (1) yields:
2L +30,/2+0,/2<N, <2L +30,/2+0, /2
(4) L <N, <L
2L +Q,/2+30,/2<N,<2L +Q,/2+30,/2.
The necessary condition for the existence of at least one set of values N,,N,,N,
satisfying Eqs (1) and (2) is just the existence of N, complying with Eqs (4). Writing
the mathematical compatibility of the double inequalities in Eqs (4) we obtain:
—6L <30,+0, <6L'
(5) ~6L <Q,+30, <6L
“2(L"+L)<0, -0, <2(L"+L).

These conditions must be satisfied by the load Q=(Q,,0,) for the existence of at least

one set of values N, N,, N, satisfying Eqs (1) and (2). They are a necessary condition
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for the stability of the structure subjected to Q. In the two-dimensional loading

space, Egs (5) define a convex domain as shown in Figure 2, which will be denoted
by K.

2.2 Instability and potential stability of the structure

It is clear from the rationale which has been developed that any load Q outside K

will not be sustained by the structure with the resistance of its elements defined by
Eq. (1): the structure is not stable under such a load since it cannot be equilibrated by
internal forces complying with Eq. (1). Such loads will be called “certainly unsafe”.

Regarding the loads inside K, the conclusion which can be derived is restricted to
potential stability. It means that, since we have only been working with a succession
of necessary conditions for stability, it is not possible to assert that the structure will
be stable under such a load. We can only state, as the logical converse of the above
statement about the certainly unsafe loads, that the structure may be stable under a
load Q inside K, depending on the data which have not been specified when setting

the problem: initial state of internal forces, loading history, constitutive equation. The
loads inside K will thus be called “potentially safe” loads.

The loads lying on the boundary of domain K are called the “extreme” loads for the
problem.

Figure 2. Convex K in the loading space of the structure

3 To what extent is potential stability a relevant concept?

So far, the problem has been treated in its mathematical form without knowing the
physical origin of the limits set to the resistance of the rods. This means that the
results in terms of “certainly unsafe”, “potentially safe” and “extreme” loads are
valid in the given geometry, whatever that origin. For instance the limits may come
from physical phenomena such as brittle behaviour, plastic behaviour or instability.
They may be either the original values determined from the tests performed on the

elements to determine their resistance or their constitutive law or they may be
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conventional values derived from these tests through the application of various
coefficients (“factors”) for safety or other reasons, which is the most frequent case. In
plain words, the results for what concerns the “certainly unsafe” loads set a limit
frame which cannot be exceeded once Eq. (1) has been accepted as the “rule of the
game”. As an example, Figure 3 presents the results of Figure 2 when L =0 and
L' =L, a model for the structure when A4'A, B'B and C'C are cables with zero
resistance to compression due to buckling instability.

@

Figure 3. Convex K in the case of no resistance to compression

But it must be observed also that the answer given in section 2.2 to the initial
question of section 1.4 is just a partial one through the concept of potential stability,
which may appear somewhat frustrating for practical applications. It is therefore
quite natural to investigate whether a more affirmative conclusion could be derived
from the same data.

With this object in view, we will try to investigate the relevance of the extreme loads
of the structure in various circumstances depending on the “missing data” which
will now be introduced, such as the constitutive laws of the elements, including their
behaviour when the limit of resistance is reached, the loading path and loading
history of the structure in Figure 1, including the initial state of internal forces.

Linearly elastic and perfectly plastic rods

Let us first assume that the rods in Figure 1 are linearly elastic (with cross section
area S and Young modulus E') and exhibit a perfectly plastic behaviour when their
limits of resistance either in tension or compression are reached. The loading path
starts from Q=(Q,,0,)=0 with the initial state of internal forces N, =N, =N, =0.

Not taking into account any geometry change, the analysis is classical (e.g. [1]). It
brings out first the existence of an elastic domain in the loading space where the
behaviour of the structure remains linearly elastic. Then it shows that the loading
process of the structure can be continued until the boundary of K is reached by the
loading path (Figure 4). In other words the loading process of the structure can be
pursued until the corresponding extreme load is reached.

If the initial self-equilibrated state of internal forces complying with Eq. (1) is no
more zero the same result is obtained as regards the relevance of the extreme loads,
while the initial elastic domain changes.
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As a conclusion: assuming no geometry change and under the hypothesis of linear
elasticity and perfect plasticity for the constitutive law of the elements, the answer to
the initial question is independent of the initial state of internal forces and of the
loading path: potential stability amounts to stability as defined in the present context.

Figure 4. Elastic domain and convex K

Linearly elastic and perfectly plastic/brittle rods

For the same structure we now assume that the rods are linearly elastic (with cross
section area S and Young modulus FE) in tension and compression, perfectly plastic
in compression, and that they exhibit brittle behaviour in tension when the limit
value L' is reached (Figure 5).

N,

Lt
ES

&

¢ '/ -

Figure 5. Linearly elastic, perfectly plastic/brittle behaviour

The loading path starts from Q=(Q,,0,)=0 with the initial state of internal forces
N, =N, =N,=0 and, just for simplicity, we consider the particular case of a radial
loading where 0, is kept equal to zero and O, is made to increase.

From the elastic domain in Figure 4, we see that the elastic behaviour of the structure

12
is maintained until O, =7L+. For this value the tensile force in C'C is N,=L". It
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results in the brittle fracture of that rod with N, dropping to zero. Then, from Eqs (2),

1
equilibrium of the structure would require N, = 78L+ , which induces brittle fracture

of the rod B'B and, as a consequence, the collapse of the structure.

The conclusion is that, following this loading path and starting from the initial state
of zero internal forces, the extreme load (Q, =0, O, =2L") cannot be sustained by the
structure.

It is clear however that this conclusion is highly dependent on the initial state of
internal forces when Q=(Q,,0,)=0 and on the chosen loading path as shown by the

two following examples.

o If we follow the same loading path with O, =0 and start from the initial self-
equilibrated state of internal forces defined by

L L L
6 Ny=——,N,=—, Ny=——,
( ) 1 6 2 3 3 6
provided the condition L"<[L is satisfied, then the extreme load

(O, =0, O, =2L") will be reached.

e If the radial loading path defined by O =0, is followed, starting from the

same initial zero state of internal forces, the extreme loads (either positive or
negative) will be sustained.

As a conclusion

As it was already said the “extreme” loads, at the boundary of the domain of the
potentially safe loads, set the limits of the resistance of the structure. Thanks to the
simplicity of the mechanical model involved, two thorough analyses were easily
performed with completed data for the constitutive laws of the constituent elements
and on the loading path and loading history of the structure. They have shown that
the incomplete relevance of the answer, which is marked by the adjective “potential”,
is not due to the rationale of the Yield Design approach but is a consequence of the
set of available data being restricted.

Physically, full relevance of the Yield design approach is essentially linked to the
possibility for the elements to reach and sustain their limit of resistance without
breaking. They must exhibit ductility as opposed to brittle fracture.

When brittle behaviour is encountered, if the loading path is given, pre-stressing of
the structure by a conveniently determined initial state of internal forces makes it
possible to reach the corresponding extreme load when this loading path is followed.

In addition, the assumption that geometry changes remain negligible during the
whole loading process must be checked systematically. This necessity comes out
clearly from second order analyses, taking into account the geometry changes during
the loading process, which have been carried out on simple structures made up of
linearly elastic and perfectly plastic elements: they brought out what is called the “P-
0 “ effect, meaning that the actual maximum load that can be supported by the



Chapter II - An introductory example to the Yield Design approach

structure may be either higher or lower than the extreme load determined through
the Yield Design approach, depending on the geometric characteristics of the
structure [2].

More comments on this topic will appear in Chapter IV (§ 3.4).
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THE CONTINUUM MECHANICS FRAMEWORK

Chapter IV will be devoted to a first step in the presentation of the general theory of Yield
Design: the primal approach, which follows the same track as in the example that has just
been analysed. The mechanical framework chosen for this presentation is the classical 3D
continuum mechanics model which is, at the same time, sufficiently general to be transposed
easily later to more or less sophisticated models and quite frequently used for the many
applications of the theory to wvarious practical problems. This Chapter recalls the basic
fundamental concepts and results of the classical presentation of the continuum mechanics
model. We leave it to the reader to refer to comprehensive textbooks and treaties for more
precisely detailed and alternative presentations (e.g. [1-8]).

1 Modelling the continuum

1.1 Geometrical description

The concept of a continuous medium is a macroscopic physical model arising from
common experience. Its mathematical formulation is represented by a volume 2
made up of particles on the differential level. The geometrical state of the system is
described by the position of these particles in a reference frame: x=OM is the

position vector of such a particle in a given configuration of the system?.

- Q
3\ A
X
O L i- >
1 2

Figure 1. Geometrical description of a system

1 Notation: one-stroke underlined symbols denote vectors.
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1.2 Kinematics
The velocity field

The evolution of the system at a given instant of time ¢ is defined, from the
geometrical point of view, by the velocity field of the constituent particles at that
instant. For the particle at the point M the velocity is denoted:

d
1) Ulx,0)=- (OM).

Since the intuitive perception of continuity of the medium appeals to the evolution of
the system, during which particles initially close together remain so, the velocity field
U(x,t) is subjected to the following mathematical conditions: piecewise continuity

and continuous differentiability with respect to space and time in Q.
The strain rate field
The gradient of U(x,?) is the second rank tensor noted?

(2) gradU(x,0) = g, ®e,
Ox . :

J

with summation on the repeated indices (dummy index convention), where e¢,

(i=1, 2, 3) are the unit vectors of an orthonormal basis, and ® is the notation for the
tensor product.

This tensor is the relevant operator to follow the variation of the metric during the
infinitesimal evolution at time 7 .

Let dM be an infinitesimal material vector at point M

(3) dM = gkdxk;

it becomes dM + (% dM)dt at time (¢+dr) and we get from Eq. (1)

d ouU,
Z! —dM)=(—"dx))e,.
(4) (5, 9M) (axj e
Denoting by “.” the scalar product or dot product, this equation is written:
d ou, oU,
) (Ed—M) = gf% (e;.e)dx, = (gfgi ®e,).(e, dx,) = gradU(x,t).dM .

J J

Let us now consider the variation of the scalar product of 2 infinitesimal material
vectors dM and dM' at point M . From Eq. (5) we derive:

(6) %(d_M-dZ\_f) = dM.(grad U (x, 1).dM") + AM".(grad U (x, 1).dM).

2 Notation: two-stroke underlined symbols denote second-rank tensors.
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By introducing the symmetric tensor?

- oU.
@) d(x.0) = S (grad Ul 0) + grad U, 1) =+ (2 + Thye ®e,
==V = 2 ox,  ox, /
Eq. (6) becomes
d 1A 1
®) o (MLAM') = 2dM.d (). AM" =2, e,

The tensor d(x,?) is the strain rate tensor.

With dM =dM’=eds in Eq. (8) we obtain the rate of extension of any infinitesimal
material vector dM

d
) 549 =di(x0ds.

The rate of angular distortion of two orthogonal infinitesimal material vectors
dM, =eds, and dM,=e,ds, is @, such that %(ML-MZF%‘] ds,, as shown in

Figure 2. From Eq. (8) we obtain:

(10) 0=2d,(x,1).
72 - Odt
dMm,
dM, +dM, dt dM, +dMsdt
dM-
M \\\___// M+Udt

Figure 2. Rate of angular distortion of two orthogonal material vectors

Since d(x,?) is a symmetric Euclidean tensor the eigenvectors of its associated linear

mapping are real and mutually orthogonal. They define the principal axes of the
tensor. In the orthonormal basis of its principal axes, d(x,t) is written

(11) d(x,)=d\(x,t)e, ®¢, +d,(x,t)e, ®e, +d;(x,1)e; Oe,

and it follows from Eq. (10) that a triad of infinitesimal material vectors attached to
the material point M remains orthogonal in the infinitesimal transformation
between ¢ and (z+d¢) while its orientation is conserved.

3 The symbol ' “denotes the transpose of the concerned tensor.
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The rate of volume dilatation is easily obtained considering such a triad of
infinitesimal material vectors along the principal axes of d(x,?) (Figure 3)

(12) %(dﬂ) = trd(x,1)dQ2 = divU(x,1)dQ2.

As a consequence, an evolution in which there is no volume change at time ¢
(isochoric evolution) is characterised by the zero divergence condition:

(13) divU(x,1)=0.

Figure 3. Triad of material vectors along the principal axes of d(x,7)

1.3 Conservation of mass

The mass of a system is obtained as the integral on the volume 2 of a finite volume
density which is the mass per unit volume

(14) M= jg p(x,0)dQ = .[Qdm

where dm appears as the mass of the infinitesimal material element with volumed<2.

According to the fundamental principle of mass conservation in classical mechanics,
the total derivative of M with respect to time must be zero. It yields the continuity
equation in the global form:

d,. d pdo
(15) M= jg o(x,1)dQ2 = jg _(dm)=0

and, in the case of continuous and continuously differentiable fields p and U, the
local form

(16) P (s, 1) + div p(x, U 5,1) =0

If these fields are just piecewise continuous and continuously differentiable, the
continuity equation must also be expressed on any discontinuity surface X with
normal n and propagation velocity W :

(17) Lo -)].n=0

with [[ ]| the jump of the concerned quantity when crossing 2" in the direction of » .



Chapter III - The continuum mechanics framework

2 Dynamics

2.1 Quantity of acceleration

The acceleration of the particle at point M is denoted a(x,#). The quantity of
acceleration of the material element with volume d2 and mass dm is

(18) a(x,tydm = p(x,t) a(x,t)dQ2.

2.2 External forces

External forces acting on the system are modelled by volume densities of forces
(body forces) acting within the volume 2 and surface densities of forces acting on its
boundary 042.

More precisely, the body forces are described by a density per unit mass F(x,7) in

such a way that the infinitesimal body force acting on the element d2 at point M is
given by

(19) Fx,0ydm= p(x,0) F(x,1)d2.

The surface forces are defined at each point of 02 by a surface density 7'(x,#) and
the infinitesimal force acting on the surface element da is

(20) df (x.0)=T(x.0)da.

2.3 Internal forces: the Cauchy stress tensor

The following presentation adopts the classical viewpoint historically introduced by
Cauchy [9].

§ S

Figure 4. Internal contact forces modelled by the stress vector

The fundamental hypothesis is that the only internal forces in the system S are
contact forces between its constituent particles. At any point M within £, consider a
surface element da with normal n(x): it is assumed that the forces exerted by the

particles infinitely close to da on the (+) side on the particles infinitely close to da on
the (-) side can be modelled by a force acting at M and proportional to da (Figure 4)

(21) df =T(x,t,n(x))da..
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The vector T(x,t,n(x)) is the stress vector acting at point M on the facet da with
normal n(x) at time .

Through the “small tetrahedron” argument illustrated in Figure 5 it is proven that
T(x,t,n(x)) is a linear function of n(x) through a second rank tensor o(x,?):

{ T(x,t,n(x)) = o(x,1).n(x)

(22)
o(x,t)=0,,(x,1)e, D¢,

The tensor o(x,t) is the Cauchy stress tensor at point M at time 7.

X3
T df=Tda

X1

Figure 5. The small tetrahedron argument

Then, the “small parallelepiped” argument, illustrated in Figure 6, is used to prove
the symmetry of o(x,?)

(23) o, (x,1) =0, (x,1).

2.4 Equation of motion

Through the same small parallelepiped argument the equation of motion is obtained
in its explicit form in orthonormal Cartesian coordinates:

0
oo, N o, +80'xz +p(F.—a)=0
Ox oy 0z
0 0 0
(24) T SO0 9% | (F —a)=0
ox oy Oz Y
0
00 20204 9% | p(F.-a) =0
ox Oy Oz
This vector equation can be written
(25) VM € 2, divo(x,t)+ p(x,0) (F(x,0)—a(x,1)) =0
where
, oo,
(26) divo(x,t)=—"(x,0)e,.
= ox;

J
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It is the field equation of motion that must be satisfied at any point inside .

X3 (013 + doy dx3) dx; dxz
3X3

As B

BZ 5 C —an dxz dxa

- opdx da—p 0 |

,y | . o2+ doy dxz)dx; dx;

o
d
(011 + ?] dx;) dxz dxs— e

|
X1
s M/?
A1 :
{ I B3

X1 — opdx; dxa

Az L]

Figure 6. The small parallelepiped argument

The explicit form of the equation of motion in cylindrical coordinates is also of great
practical importance:

oo +160'r3+60' O, —0,

1 rz r
+

or r 06 oz

oo, 10o, 0o, _o,

L+ — + +2—"+p(F,—a,)=0
o Trae Ta TP TPV
80'”+180'29+8022+p(Fz_a2):O
or r 00 0z

+p(F,—a,)=0

At the boundary of the system, the equation of motion can be interpreted as
expressing the equilibrium between the surface external forces acting on the surface
element da on its external side and the surface contact internal forces acting on this
same element (Figure 7) on its internal side. Hence the boundary equilibrium
equation is written

(28) VM €00, o(x,0).n(x) = T(x.1).

In other words, the stress vector 7'(x,t,—n(x)) acting on da with normal —n(x)
equilibrates the surface external force acting on the same element.

T(x.t)da

as2
n(x)

I(x.t.—n(x))da /

Figure 7. Stress vector on the boundary of S
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2.5 Discontinuity of the Cauchy stress field

The Cauchy stress tensor field must be piecewise continuous and continuously
differentiable. The equation of motion should also be expressed on the jump surfaces
2, of this stress field in the form of a jump equation (Figure 8).

Figure 8. Cauchy stress field discontinuous on 2,

Provided there is no surface density of external forces and no discontinuity of the
velocity field (shock wave) on X the equation of motion on that surface is written:

(29) VM e Z,, [o(x,0)].n(x,1)=0

which means that across a discontinuity surface of the stress field, the stress vector
acting on the facet tangent to that surface is continuous.

Figure 9 illustrates a demonstration of this result, following the spirit of the small
tetrahedron and small parallelepiped arguments. The jump surface is split into two
parallel surfaces 2, and 2, separated by an infinitesimal distance A: the

fundamental law of mechanics applied to the small parallelepiped region limited by
these two surfaces, to order zero in 4, yields:

(30) o’ (x.0).n(x)da~g'(x.1).n(x)da =0.

df=02(x,r).n(x)da

Figure 9. Discontinuous stress field: small parallelepiped argument
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It is worth noting that, from a mathematical point of view, Eq. (29) is actually the
jump equation associated with Eq. (25) as a conservation law; one may also say that
Eq. (29) is embedded in Eq. (25) within the framework of the theory of distributions.

If a surface density of external forces or a discontinuity of the velocity field (shock
wave) exists on X, Eq. (29) is modified. The corresponding jump equations for Eq.

(25) can be obtained mathematically through the theory of distributions or be easily
established through the same demonstration as above in Figure 9 (v.z. [6]).

2.6 Local analysis of stresses

At point M, Eq. (22) defines the linear map which determines the stress vector
T(x,t,n) for any facet with normal »n passing through this point.

From the stress vector we define the normal stress o acting on the facet as the
component of I'(x,z,n) along n; the component z in the plane of the facet is the

tangential stress or shear stress (Figure 10)

(31) T(x,t,n)=o(x,t,n)n+7(x,t,n).

Figure 10. Normal stress and shear stress

From the symmetry of the Euclidean tensor o(x.,r) it follows that the three

eigenvectors of the linear mapping defined by Eq. (22) are real and mutually
orthogonal. They define the principal axes of o(x,?). The corresponding principal

values of ¢ are the principal stresses o,,0,,0;.

1

Figure 11. Stress vectors on facets normal to the principal axes of o
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Relative to an orthonormal basis arranged to coincide with the principal axes, o(x,?)

is written
(32) g(J_C,t) =0,(x,0)e, Qe +0,(x,1)e, Ve, +o3(x,1)e; De;.

For a facet orthogonal to a principal axis the stress vector is purely normal (there is
no shear stress on such a facet) and its magnitude is equal to the corresponding
principal stress (Figure 11). Mathematically speaking, this is a characteristic property
of the principal axes.

3 The theory of virtual work

3.1 Virtual velocity fields

Virtual motions of the system S are defined by vector fields U of virtual velocities
given on (2 and 002 which are required to be piecewise continuous and
continuously differentiable. The same symbol U is used to denote the virtual
motion defined by a virtual velocity field U . It is essential to note that the set of the
virtual motions of the system is a vector space.

Regarding the terminology, one should not be confused by the words “velocity” and
“motion”. As a matter of fact, real velocity fields of the system obviously generate a
subset of the virtual motion vector space because, beside the regularity conditions,
they must comply with imposed boundary conditions, constitutive laws, etc. From a
mathematical point of view, the virtual velocity fields will be used as test functions
in the duality processes.

In the same way as for the real velocity field we define the virtual strain rate field c=;’

from the gradient of U
(33) d(x)= % (erad U(x) +' grad U(x)).

It 2, is a jump surface for the field U, the discontinuity at point M following the

outward normal 7 is denoted [U(x)]|=U ’ (x)-U l (x) (Figure 12).

Figure 12. Discontinuous virtual velocity field
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3.2 Theorem/Principle of virtual work
The divergence theorem

The divergence theorem for a piecewise continuous and continuously differentiable
vector field V' defined in © and on 042, with %, denoting the jump surfaces is

written
(34) jﬂ divy do+ L [V1.nds, = jm V.nda.

The same equation is valid for any Euclidean tensor field with the same
differentiability conditions. As an example, let T be a second rank Euclidean tensor
field continuous and continuously differentiable in 2, with 2, denoting the jump

surfaces, we have

(35) [ divTdQ+| [77.nd2, = T.nda

oT,
where T=T, ¢, ®e; and divl =—¢,.
= ' = ox,

J
Theorem of virtual (rate of) work
As a particular application of Eq. (34) let us consider the case when V = g.Q where

o is the Cauchy stress tensor field which satisfies Eqgs (23), (25), (28) and (29), and U
is a virtual velocity field piecewise continuous and continuously differentiable. It is
assumed that the fields U and o have no common jump surface, 2, # 2.

“

Introducing “:” as the symbol for the doubly contracted product of two 2rd-rank
tensors ¢ and u

(36) tu=t u,
the following identity is recalled
(37) div(c.U)=c:gradU +U.div(‘0),

and it is observed that, in consideration of the symmetry of o, it may be written

(38) div(c.U)=0:d +U.dive
with d defined by Eq. (33).

Applying the divergence theorem (34) we get

(39) [ divie.0)d2+[  [o.01ndx=[ (o.0).nda.

Since Eg and 2, are distinct from each other, the second term of the first hand of Eq.

(39) can be split and reduces to the integral on 2, in consideration of Eq. (29).
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Combining Eqgs (38) and (39) yields
(40) J.Qg:cid.()ﬂ;g (o.[0).nd> = —jgz_}.divgdg+jm(g.g).gda .

Taking Eq. (25) into account we finally obtain
(41) jgg:gdngg_ (c[UN-ndE=[ p(F-a).U d2+[ T.Uda

which is valid whatever the virtual velocity field U piecewise continuous and
continuously differentiable with X, = X .

Eq. (41) expresses the theorem of virtual (rate of) work.
Dual Statement
Given a second rank symmetric tensor field o defined in ©2 and on 0, let us

assume that VU a piecewise continuous and continuously differentiable field in £
with 2+, the following equation holds

(42) [,g:dd2+], (@ IUD.nd=[ p(F-a).Ud2+[ T.Uda,

then, the tensor field satisfies the equations of motion with the acceleration field a,
the body forces p F' and the surface forces T

VM € Q, divo(x,0)+ p(x,0) (F(x,1) —a(x,7)) =0
(43) VM e X, [o(x,0)]].n(x,1)=0
VM €0€2, o(x,t).n(x) =T(x,1).

Eq. (42) is the dual statement of the equations of motion. It can be rearranged to
make the generic virtual rates of work more conspicuous:

(44) jgp}_«*.t_} dQ+J.EQJ_“.Qda—.[Qg:£d_Q—J.X (o.[UT).ndx =jgpg.z_7 dQ

In the left-hand member of Eq. (44), the first two terms stand for the virtual rate of
work by the external forces and the last two terms express the virtual rate of work
by the internal forces. The right-hand member is the virtual rate of work by the
quantities of acceleration.

Thence, the dual statement may be expressed in the form:

The sum of the virtual rate of work by the external forces and the virtual rate of
work by the internal forces is equal to the virtual rate of work by the quantities of
acceleration.

This statement may be taken as a basic principle for the modelling of external and
internal forces (e.g. [6]).
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4 Statically and Kinematically admissible fields

4.1 Volume and boundary data

Since the Yield Design approach is based upon the compatibility between
equilibrium and resistance, only equilibrium problems will be considered from now
on and we will refer to the equation of motion in its particular form corresponding to
equilibrium (a=0) and to the virtual work equation with zero virtual rate of work

by the quantities of acceleration.

For such problems the data consist of volume data, with the given values of the body
forces pF in 2, and of boundary data which are given values either for the surface

density of external forces 7 or for the velocity U on 0£2. These boundary data take
the following form (Figure 13):

Three mutually orthogonal components are given for the two vectors, 7 and U .

Figure 13. Boundary data

Introducing an index i=1,2,3 to denote the three directions of these orthogonal

components, the known components are labelled by an upper index °:

T¢ onS,
(45) ; ‘
U5 on§,
with
S, uS, =002
(46) L ,i=1,2,3.
Sy NSy, =<

Note that the directions i =1, 2, 3 may vary from one point of 42 to another.

4.2 Statically admissible stress fields

A stress field o is said to be statically admissible with the data p F in £ and 7 on
S, if it is piecewise continuous and continuously differentiable and satisfies the
equilibrium equations (25), (29), (28) with these data:
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divo(x)+pF(x)=0in 2
(47) [o()].n(x)=0 on X,

_md
o,n,=T" on S,

1

4.3 Kinematically admissible virtual velocity fields

A virtual velocity field U is said to be kinematically admissible with the data U® on
Sy, if it is piecewise continuous and continuously differentiable and such that:

(48) U,(x)=U(x) onS,, .

4.4 The virtual work equation

Let o be such a statically admissible stress field and U a kinematically admissible

virtual velocity field with the data pF in 2 and 7, U on 60. Taking Eq. (46) into
account, the virtual work equation (44) takes the form

(49) .[gg:édg+.[z. (g'[[Q]])-KldE:IQPE-Q dQ+ZL Y;dUidaJrZJ.S T(o) U da.

In this equation, the right-hand side is the virtual (rate of) work by all the external
forces in equilibrium with ¢ in the virtual velocity field U .Itis denoted P.(o, U)

(50) (e 0)=| pFUdR+Y | T'Uda+Y [ T(0)U} da.

Note that the left-hand side of Eq. (49) is the opposite of the virtual rate of work by
the internal forces due to the presence of the minus signs in Eq. (44) where this
virtual work is defined.
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PRIMAL APPROACH
Of the theory of Yield Design

This Chapter presents the theory of Yield Design in its primal approach directly derived from
the basic principle of mathematical compatibility between the equilibrium equations of the
system under the prescribed loads in the given geometry with the resistance of its constituent
materials. It leads to the definition of the domain of potentially safe loads. This domain is
convex as a consequence of the convexity of the strength domains of the constituent materials,
which makes the determination of interior estimates much easier. For the relevance of the
concept of potentially safe loads to practical applications, the deformations necessary to
mobilize the given resistances must be physically compatible.

1 Settlement of the problem

1.1 Geometrical data

The system under consideration is defined by its volume 2 with boundary 6¢2. This
generic definition of the given geometry includes the case, most frequent, when the
system actually consists of several subsystems related to each other through
interfaces which are also considered as parts of the system.

1.2 Loading mode of the system

The pattern of the data for the Yield Design problem is as described in Chapter III
(§ 4.1): body forces defined throughout the volume 2 of the system and boundary
data defined on the surface 02. The specificity is now that these data are prescribed
through the use of loading parameters in the following way.

For any set of data for the problem under consideration,

let o be a Statically Admissible (S. A.) stress field with these data,

let U be a Kinematically Admissible (K. A.) virtual velocity field with these data,
then the virtual (rate of) work by all the external forces in equilibrium with o in the
virtual velocity field U is written
M 2(e:0)=0()-4U)
where the vectors Q(o)=(Q,(0)...0,(c)) and Q(Q )=(q, (Q ),--q, (l_7 )) are linear

functions of o and U respectively.
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The vector O(o) =(0,(9)....0,(0)) is the loading vector or the load of the system. Its
components are the loading parameters. The vector Q(Q )=(q, a )s--q, (U)) is the

generalized virtual velocity of the system.

It follows that the virtual work equation (III, 49) is written

Vo S. A with O(o),

) VU K. A. with g(U),

[,o:dd2+[ (o.UN.ndx =0(c).qU)

o> Q(o) linear
Q — Q(Q ) linear.

Figure 1 presents a simple 2-dimensional example that will help understanding this
definition.

U'(7)=U(0)e, +U,(0)e,~oye,

*=3,

v

— —_— - o -
pF:?l

X
Figure 1. Indentation of a half space by a rigid plate

In this example the volume 2 of the system consists of the half space x>0, the rigid
plate A’A=2a acting on this half space, and the interface between these two
elements. The boundary 02 of the system is made up of the boundary of the half
space at infinity (x — o0,y — 1), the surface of the half space on both sides of the

plate (x=0,| y|>4a), and the upper surface of the plate.

The body forces in the half space are vertical uniform pFe =ye where y is a
parameter.

Regarding the boundary data:

e At infinity (x—>o0,y —>100) the velocity is prescribed: the medium is

motionless, U 1-0;

e On the surface of the half space on both sides of the plate (x=0,|y|>a), a

uniform density of downward vertical surface forces is prescribed, T.' =S
where S is a parameter;
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e The plate being rigid, the corresponding boundary conditions on its upper
surface refer to the velocities and take the form of a rigid body motion
depending on three parameters U (0),U,(0),®:

(4) U'(y)=U,(0O)e, +U,(O)e, -mye,.

With these data, for any stress field o S. A. and any virtual velocity field U K A,

the virtual (rate of) work by all the external forces in equilibrium with o is written

©) P 0=y U.d2+S[  U.(0.y)dy
+N(0)U,(0)+T(a)U (0)+M(0) @
with
N@)=[, o d
(6) T(o)=|, -0, dv
M(g)=| yo.dy

It comes out from Eq. (5) that 7 (o, U) is the product of two 5-dimension vectors

Q(c) and ¢(U), as in Eq. (1), with
7) Q@ =7 %@ =S, O(a)=N(a), O)(a)=T(2), O(a)=M(c)

and
o@)=[,U0.0d2 ¢;@)=] U.(0.dy

(8) . . ]
4;(U)=U(0), ¢,(U)=U,(0), ¢5(U) = .

It is worth pointing out that the two first components of the loading vector Q(o)

come straight from the parametric data on the forces while the three last ones are
defined by duality from the parametric data on the velocities. Conversely, the two
tirst components of the generalized velocity of the system are the dual quantities of
the corresponding parametric data on the forces.

1.3 Resistance of the constituent material

The third set of data for the Yield Design problem refers to the resistance of the
constituent material of the system.

At any point M of the system, a domain G(x) is given in the 6-dimension vector
space of the stress tensor o(x), which defines the stress states that comply with the

resistance of the constituent material at that point:

) o(x) € G(x) cR°



Chapter IV - Primal approach of the theory of Yield Design

with the following assumptions
(10) o(x)=0eG(x)

and G(x) convex

(11) o' (x)€G(x), o’ (x) € G(x) = VA €[0,1], 15 (x)+(1- ) 5" (x) € G(x).

G(x) is commonly defined by means of a convex scalar function! of the tensor o(x)

(12) f(x,0(x) <0 < o(x) € G(x)
with
[(x,0)<0
- { VAel0l] f(Ag +(1-D)a)<Af(@)+(1-D (@)

The boundary of the strength domain G(x) is thus defined by f(x,o(x))=0, which

is commonly named the criterion of resistance of the material; the same terminology
may be used for the function f(x,o(x)) itself without ambiguity. The conditions (10)

and (11) are met by all the criteria of resistance that are implemented in usual
practice, whether they come directly from experimental results or are the design
criteria prescribed by construction codes.

Being a material function, f(x,o(x)) must be invariant through the group of

symmetries of the material [3] at the considered point. In the case of an isotropic
material, it takes the form of a function of the principal invariants of the tensor g()_c) ,

a symmetric function of the principal stresses.

Figure 2. Domain G(x)

The usual pattern for G(x) is to be bounded in R® but with the possibility of

extension to infinity in some directions (this being the model for a very high
resistance). In such cases the convexity of G(x) implies that all the directions of

extension to infinity form a convex cone /(x) (Figure 2).

LCf 1, 2.
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When the material is modelled as a perfectly rigid solid, the domain G(x) obviously
extends to infinity for all directions in R°.

1.4 The Question

With the data listed above, the Yield Design problem takes the same form as in
chapter II, with the question to be answered:

Given the geometry of the system (§ 1.1), given the n-parameter loading mode (§ 1.2),
determine whether a given load Q can be sustained by the system complying with the

resistance criteria (§ 1.3) of the constituent material.
This question may again be stated in terms of “stability”:

Is the system “stable” under the load Q ?

2 Potentially safe loads

2.1 Domain K

A necessary condition for the system to be stable under the load Q is the existence of
a stress field o S. A. with O and such that Eq. (9) be satisfied at any point in ©:

{g S. A. with Q

(14) o
o(x)eG(x) VM € Q.

Since Eq. (14) is only a necessary condition, the concerned loads Q will be called

potentially safe loads. They generate a domain K in the n-dimension loading space
of the system

o S. A. with (o)
(15) Oo)ekK < Elg{ o(x) < G(x) VM € 2

2.2 Mathematical properties of the domain K

From Eq. (15) we derive simple and important properties of the domain K which are
transmitted from the local level of the material to the global level of the system
thanks to the linearity in Eq. (3):

e The zero load is potentially safe

(16) 0=0ekK

as a consequence of Eq. (10), since the stress field o =0 equilibrates 0=0.
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e The domain X is convex in R”

It is a consequence of the convexity of G(x) and of the linearity in Eq. (3): if gl and
gz satisty Eq. (15) with Ql and Qz respectively, then VAe[0,1], ﬂ,gl +(1-4) gz
satisfies Eq. (15) with 20" +(1-2)Q".

From this second result, it follows that the boundary of K is a surface in R" which
separates the potentially safe loads from the certainly unsafe loads outside K for
which the necessary condition (15) is not satisfied. Due to this specificity among the
potentially safe loads, the loads on the boundary of K are called extreme loads.

It may result from Eq. (15), in some very specific cases, that K is not bounded in the
n-dimension loading space of the system. In such a case, due to the convexity of K,
the directions of extension to infinity form a convex cone.

2.3 Interior approach of the domain K

Eq. (15) is the definition of the domain X . It also provides the construction method of
this domain through a static approach. Any stress field o satisfying the left-hand
side of Eq. (15) determines a potentially safe load. This process is made much more
efficient by taking advantage of the convexity of K. Once k potentially safe loads Q[

have been obtained, taking the convex hull of these loads, as shown in Figure 3,
provides an interior approach of the boundary of K or, briefly said, an interior
approach of K . In this process the goal will be to extend the interior approach as far
as suited to practical applications.

A
o

Figure 3. Interior approach of K

In the case of one positive loading parameter, the interior approach provides lower
bound estimates for the extreme load Q" of the system (Figure 4):

(17) 0(c)<0* < 30{ 25 A-with Qlg)
= | ax)eCG(x) VM € 2

In this case, extending the interior approach results in maximising Q(o) in Eq. (17).
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©]
0 0
Figure 4. Interior approach of K in the case of one positive loading parameter

More generally the same result holds when a radial loading mode is considered, i.e.
when the loading parameters of the problem vary proportionally to a single positive

parameter 4 which may stand for some “safety coefficient” of a given load Qd . The

interior approach provides a lower bound for the extreme value 1* of this coefficient
and results in a maximisation process:

S ASA*

. ; {g S. A. with 10"
.12 Y

o(x)eG(x) VM € 2

3 Comments

3.1 Permanent loads

At a first glance the theory just presented, where the loading mode depends on n
parameters, seems to exclude the possibility of permanent loads acting on the
system. Such loads can easily be taken into account by considering that they depend
on a complementary fictitious loading parameter O,, by implementing the theory

with the (n+1) parameters and then by fixing O, at its prescribed value Q,°. The
domain of potentially safe loads for (Q,,0,,..0,) is the section of the domain

determined for (Q,,0,,..0,.0;) by the plane O, =Q,°. It is still convex but it may
happen that it does not include the load 0=(0,,0,,..0,) =0 (Figure 5).

O,

=1

)‘1! -~
E e
0,
0
0,

Figure 5. Taking permanent loads into account

The case of the “genuine” variable loads depending on one single positive loading
parameter deserves special attention because, in the same way as in Figure 5, it may
happen that the zero load does not fall within the segment of the potentially safe
loads. Thence the interior approach will still provide a lower bound for the higher
extreme load but an upper bound for the lower extreme load.
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This is actually the case for “active” and “passive” pressure calculations in Soil
mechanics for instance.

Systematically referring to the general formulation (Figure 3) makes it easier to avoid
misunderstandings in such circumstances, especially when “safety coefficients” are
concerned.

3.2 Convexity of G(x)

Convexity of the domain of resistance of the material has been assumed through Eq.
(11). As already said, this property is commonly satisfied by the criteria of resistance
that are implemented practically, at least for isotropic materials. The case of
anisotropic materials has been studied by numerous authors (e.g. [4-7]) using
different approaches.

As an example, Tristan-Lopez [7], for the application of the Yield Design approach to
soil mechanics practical problems (bearing capacity of strip footings [8], slope
stability...), starting from the experimental analyses carried out by Bishop [4] for
over-consolidated clays, obtained a domain of resistance on the stress tensor which
was not convex but only star-shaped with respect to o =0, i.e. such that

(19) o(x) e G(x) = VA €[0,1], Aa(x) e G(x).

This affects neither the definition (15) of domain K nor the principle of the interior
approach but, in this case, the implementation can only benefit from the fact that the
domain K itself is proved to be star-shaped with respect to Q=0 (the property is

conveyed from the local level to the global level in the same way as for convexity).

This is, by far, less efficient than in the “convex case” as it appears in Figure 6.

A
9

Figure 6. Interior approach of K in the case of a star-shaped G(x)

Moreover, as it will be underscored in Chapter VII (§ 3.1) and Chapter VIII (§ 2.5), the
convexity of K as a consequence of G(x) being convex VM € (2 is essential for the

practical implementation of the Yield Design approach to the dimensioning of
systems or structures.
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3.3 Constituent materials of the system

The description given in § 1.1 encompasses the case when the system (2 consists of
several subsystems (2, (2,,..€, connected to each other through interfaces. The
stress vector T'(n) acting on such an interface X is continuous when crossing the

surface from one subsystem to the other (Figure 7). The interface itself plays the role
of a constituent material for the whole system due to the fact that 7(n) must comply

with a condition of resistance which sets the “contact condition” between the two
concerned subsystems such as perfect bonding, friction, cohesion, smoothness...

The condition of resistance of the interface is defined by a convex domain G(x)
assigned to the vector T'(n) at point M. When the interface is isotropic, G(x)
on 2

concerns only the normal stress o and the modulus of the tangential stress |z

at point M .

Figure 7. Interface between two subsystems

As a consequence, at point M, the stress field o must comply with the criteria of

resistance of the constituent material on both sides of 2 and with the criterion of
resistance of the interface itself on 2':

(x)eG'(x)
(x) e G ()
(x).n(x) =0’ (x).n(x) € G(x)

IS

(20)

IS}

IS}

Note that the last line in Eq. (20) defines a convex cylindrical domain for gl()_c) and

o' (x).

3.4 The relevance of the concept of potentially safe loads

The first analysis of the relevance of the concept of potentially safe loads which was
made on the introductory example (Chapter II, section 3) led to the general
conclusion that the words “potential” and “potentially” are the consequence of the
restricted set of data of the Yield Design problem: the concept of potentially safe
loads is the best answer that can be given to the question stated in Section 1.4.

As a positive consequence it must be retained that the Yield Design approach and the
concepts of potentially safe loads, extreme loads and certainly unsafe loads are valid
whatever the missing data such as the full description of the constitutive law of the
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constituent material, the self-equilibrated initial state of stress, the loading path and
the loading history, once the geometrical data of the system are given. This makes
them particularly useful for back-calculations in post collapse analyses in the absence
of sufficient data for modelling the entire process which resulted in the failure of a
system.

If the constitutive law of the constituent material is known to be linear elastic and
perfectly plastic, obeying the principle of maximum plastic work [9], the quasi-static
elastoplastic evolution problem can be solved. A fundamental theorem established
by Moreau [10] states that, in the absence of geometry changes, the solution to this
problem exists as long as Qe K , with K defined by Eq. (15). Consequently, the

potentially safe loads are now certainly safe loads, whatever the self-equilibrated
initial state of stress and whatever the loading path and the loading history. The
extreme loads are the limit loads of the system actually and the Yield Design
approach will be termed Limit analysis. The interior approach of Limit analysis
makes it possible to estimate the limit loads directly without solving the elastoplastic
quasi-static evolution problem [11].

Retaining the linear elastic constitutive law for the material, without more
information about its behaviour when its limit of resistance is reached, the
significance of the extreme load depends on such data as the loading path and the
initial stress state. In the case of a radial loading path (the Q, being proportional to

each other), it is proven that a self-equilibrated stress of state can always be
determined such that the extreme load on the considered loading path starting from
this initial stress state is the limit load reached after a fully elastic response of the
system along this loading path.

Apart from these mathematical statements, more physical considerations can be
developed from the long lasting experience of practical implementations of the
theory. The relevance of the concept of extreme load is essentially dependent on the
ductility of the material once its limit of resistance is reached, and on the physical
compatibility of the deformations of the material which are necessary to mobilize the
assumed resistances within the assumption of no geometry changes [12].

One must also bear in mind that the limits of resistance (strength criteria) which
appear in the data are most often imposed by regulations or codes and are not
necessarily associated with a constitutive law, all the more so since they refer to
conventional values of the resistance parameters which are derived from the physical
ones through partial safety coefficients (factors).

Finally, as already remarked in Chapter II (section 3), the assumption that geometry
changes remain negligible during the whole loading process must be checked
systematically. A striking example is given by the problem of the quasi-static
expansion of a spherical (or cylindrical cavity) subjected to an increasing internal
pressure in an indefinite homogeneous medium with Tresca’s strength criterion [13-
15].
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Figure 8. Expansion of a cavity in an indefinite elastoplastic medium

If no geometry changes are taken into account, it is shown that the pressure can
increase indefinitely: the extreme load is infinite. But, following the geometry
changes, i.e. the increase of the radius of the cavity, brings out the existence of a finite
asymptotic critical value for the internal pressure (Figure 8).

This result, also valid for a material obeying Coulomb’s strength criterion, is the
theoretical basis of the pressuremeter test in geotechnical engineering.

4 Some usual isotropic strength criteria

4.1 3-D isotropic materials

e The Tresca criterion

(21) f(@)=sup{o,~0c,~0,|i,j=1273},

where o, is the resistance of the material under simple tension. The resistance under

simple compression is equal to —o,, and the resistance under simple shear is o, /2.2

e The von Mises criterion

(22) f(g)z\/é((o-l—gz)z+(02—a3)2+(a3—al)2)_k,

where £ is the resistance of the material under simple shear. The resistance under
pure tension is k~3 ; under pure compression it is equal to NER

e Comments on these two criteria

It is easily observed that these two criteria do not depend on the value of the first
invariant /, of the tensor o

(23) I, =troc=0,+0,+0;.

2 f(o) can also be written as a function of the principal invariants of ¢ , but since it is only piecewise

continuously differentiable this expression is not a closed form one.
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It means that the resistance of the material is not affected by the addition of an
isotropic, tensile or compressive, stress tensor. The corresponding domains G(x) are,

respectively, a prism and a circular cylinder in (o,,0,,0,) Cartesian coordinates.

This model is usually accepted with regard to isotropic compressive stresses, at least
for current pressures.

For tensile isotropic stresses, it is questionable due to the decohesion of the material
when the normal stress on a facet at point M reaches a limit value 7. To take this
phenomenon into account, a tension cut-off may be introduced in the expression of
the criteria.

e Tresca’s and von Mises’ criteria with tension cut-off

The expressions of these criteria are derived from Eqs (21) and (22) with the
limitation on the normal stress. For Tresca’s criterion with tension cut-off we get:

(24) f(g):sup{o;—oj—ao,a—T

1

i,j=12.3}
In (o0,,0,,0;) Cartesian coordinates, the domain G(x) is now the preceding prism
truncated by the three planes o, =7, i=1,2,3 as shown in Figure 9.

For the von Mises criterion with tension cut-off (25), the geometrical representation is
similar.

(25) f(g)zsup{\/é((al—(;2)2+(o*2—o-3)2+(0'3—o-1)2)—k, o,-T|i=12,3 }

Figure 9. Tresca’s criterion with tension cut-off

e Coulomb’s criterion
For frictional and cohesive materials Coulomb’s criterion is written
(26) f(o)=sup{ o,(1+sing) —o,(1-sin¢)—2Ccos | i, j =1,2,3 },

with ¢ the friction angle and C the cohesion of the material.

This criterion is clearly dependent on the value of tro. The corresponding domain
G(x) extends to infinity: it is represented geometrically in (o,,0,,0,) Cartesian
coordinates by a pyramid.
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G(x) is bounded in the directions of the tensile stresses but allows some tensions
which are sometimes considered as not reliable for practical applications. Coulomb’s

criterion with tension cut-off is then considered.
e Coulomb’s criterion with tension cut-off

The Coulomb strength criterion with zero tension cut-off (Figure 10) is derived from

Eq. (26) in the same way as Eq. (24).

(27) flo)= sup{ o;(1+sing)—o;(1-sing)—2Ccos ¢, o, —T

i,j=1,2,3}

o,

G,

Figure 10. Coulomb’s criterion with tension cut-off

The Tresca and Coulomb criteria with zero tension cut-off, 7'=0 in Eqs (24) and (27),
at first, and then small but not zero tension cut-off, have been introduced and
implemented by Drucker, Chen and co-workers [16-18] to deal with some stability
analysis problems in soil mechanics such as the critical height of a free standing
vertical bank and also to model the resistance of concrete and rock as constituent
materials.

More recently, the Tresca criterion with zero tension cut-off has been used as a
conservative model in earthquake engineering problems for the determination of the
bearing capacity of surface footings subjected to eccentric inclined loads [19-21].

e The Drucker-Prager criterion

This criterion for frictional and cohesive materials is expressed as a closed form
function of the principal invariants of o . Its relation to the Coulomb criterion is

similar to that of von Mises’s criterion to Tresca’s one.

3sin g C —ltro-)

1 2 _ 2 _ 2\
(28) f(g)—\/g((al—a» +(0,~03) +(0y,—-0,)’) mgﬂ 273

o Comments

As it can be seen easily from Eqs (21) and (26), Coulomb’s criterion reduces to
Tresca’s criterion when ¢=0 and C #0. Obviously also, when 7'— «, Tresca’s and

Coulomb’s criteria with tension cut-off (24) and (27) simplify to the original Tresca’s
and Coulomb’s strength conditions.
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4.2 Isotropic interfaces

e The smooth interface

With the notations introduced in § 3.3, the domain of resistance G(x) reduces to

o <0 (no tension) and |z|=7=0 (no friction):
(29) f(T)=sup{o,7}.

o The Tresca interface

This condition is also called the interface with layer friction. The normal stress must
be non-tensile and the tangential stress is limited to a fixed value £;:

(30) f(Z)=sup{0',T—ki}.

e The Coulomb interface

It is the historical condition. The normal stress must be non-tensile and the limit for
the tangential stress is a linear function of the normal stress:

(31) f(I)=r+otang

where ¢, is the friction angle of the interface.

e Fully rough interface

The normal stress must be non-tensile and the tangential stress is not limited:

(32) f(H=o.

e The interface with perfect bonding

This interface is a model similar to the perfectly rigid solid (§ 1.3): the domain of
resistance G(x) extends to infinity in any direction. No limit is imposed on the

components (o,7) of the stress vector 7'(n)
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DUAL APPROACH
Of the theory of Yield Design

The dual approach of the theory of Yield Design is based upon the dual definition of the
domain of resistance of the constituent material through the concept of maximum resisting
work in a virtual velocity field. A kinematic necessary condition for the potentially safe loads
is thus established where kinematically admissible virtual velocity fields are used as test
functions for the compatibility between equilibrium and resistance. It yields a sufficient
condition for the certainly unsafe loads, which provides the basis for an exterior approach of
the domain K .

1 A static exterior approach

The static interior approach presented in Chapter IV provides an estimate “from
inside” of the boundary of the convex K or, in other words, lower bound estimates
for the extreme loads of the system. If, for practical applications, the exact
determination of K is, most often, not necessary (nor really meaningful), on the other
hand the determination of an estimate “from outside” of the boundary of X, i.e.
“upper bounds” for the extreme loads, will be a highly valuable result. This calls for
an exterior approach of X .

From the definition of the convex K given by Eq. (15) in Chapter IV, the outside of
K is generated by the certainly unsafe loads that are the loads for which
Equilibrium and Resistance are not mathematically compatible:

o S.A. with Q

W QﬁK@th@eG@, M <2

Implementing this static definition to prove that a given load Q is certainly unsafe
requires an exhaustive exploration of all the stress fields statically admissible with Q

and the proof that none of them complies with the condition of resistance. Despite its
difficulty, this procedure turns out to be feasible in some cases, a typical example of
which is the famous Coulomb’s wedge approach for the stability analysis of a slope
or a retaining wall [1, 2].
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The governing idea is to start from the definition of K and to derive a necessary
condition on Q such that Equilibrium and Resistance be compatible. In order for the

method to be practically applicable, this condition should not refer to the stress field
anymore and must refer only to the load @ itself and to the resistance of the

constituent material. Such a condition usually results from a smart combination of
the global equilibrium equations of the system with the condition of resistance: this is
precisely the case when performing a stability analysis “a la Coulomb” or with
Coulomb’s analysis of the bearing capacity of a pillar [1].

The condition so obtained is weaker than the definition of K: it is a necessary
condition for a load to be potentially safe. With R as a symbolic notation for the

strength characteristics of the constituent materials! we can write this necessary
condition in the form:

(2) OeK = #(Q.B
where 77(Q,R) stands for the necessary condition being fulfilled.

It follows from Eq. (2) that if the condition _#(Q,R) is not satisfied by a load QZ this

load is certainly unsafe and contributes to an exterior approach of K (Figure 1); we
write:

©) JR) =0 eK.

Moreover, if an interior approach of X is already available (at least 0 =0), it follows

from the convexity of K that the infinite cone, opposite to the cone with summit Q[
and the interior approach as a base, is exterior to K, as shown in Figure 1a.

‘_\-l".

Q.-’ | & | Q i

Figure 1. Static exterior approach of K

It commonly happens that the condition _#7(Q,R) appears in the form of a scalar

inequality between a linear form in Q and a scalar function of R

1 This notation will be made more explicit in Chapter VII and even more in Chapter VIIL
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(4) F(Q.R) = 0.9<P(R),

where P(R) is non-negative since Q=0 is a potentially safe load. In such a case, the
half-space defined by

() 0.9>P(R)

is exterior to K, as shown in Figure 1b.

As said previously, the difficulty of this static exterior approach lies in finding out
and writing down a non-trivial necessary condition in the form of Eq. (2) which can
be used in practice and lead to significant results. Also, the logical implications
which have just been explained through Eqs (2) and (3) are sometimes difficult to
follow when the calculations involved become too intricate. For these reasons, with
the same goal of constructing an exterior approach of K, we will look for a necessary
condition, in the form of Eq. (2), that can be obtained systematically.

2 A kinematic necessary condition

The rationale starts from the definition of K
o S. A. with Q

©) gele 3={§<)_c>eG<>_c> VM e

Since o in Eq. (6) is statically admissible with Q, it follows from the virtual work
equation (Chapter IV, § 1.2) that the virtual (rate of) work by Q in any virtual

velocity field U kinematically admissible for the problem is equal to the opposite2 of
the virtual (rate of) work by the stress field o
vU K. A.

@) Q.Q(Q)zjgg:édg+b (o.[UT).nd=.

Since o complies with the strength criterion, each integral in the right-hand side of
Eq. (7) admits an upper bound built up from the upper bounds 7 ()_c,cz()_c)) and
7T (x,n(x),[U(x)]) of the quantities to be integrated:

8) 7 (x.d(x) = Sup{ o:d(x)| o € G(x) |

) 7 (x,0(x),IU)T) = Sup{ (¢ [0 n(x)| &' € G() .

Thus, summing up the above equations it comes out that the virtual work by a
potentially safe load Q in any kinematically admissible virtual velocity field U

admits an upper bound which is derived from the strength condition of the
constituent material only:

2 Remember the minus sign in the definition of the virtual rate of work by the internal forces (Chapter
111, Eq. (44)).

—73 —
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vU K. A.

(10) QR =10.40)< [,7 (x.d@)d2+[ 7 (x.n().[U@T)AL.

For any kinematically admissible virtual velocity field U, Eq. (10) provides a
necessary condition in the form of Eq. (4). Symbolically we can write

vU K. A.

T FORS o g0y <[ m(xdw)de+] 7 (. 00@D)ds

and an exterior approach of K will be obtained (Figure 2) in the form of Eq. (5):
(12) VUK A, Q.90)>[ 7 (x,dx))d2+[ 7 (x,nx),[0®])dZ = QekK.

Q.q>[ wda+| mdx

Figure 2. Kinematic exterior approach of K

The evident cornerstone of this method is the introduction of the /7 functions with

the kinematically admissible virtual velocity fields as test functions for the
compatibility between Equilibrium and Resistance. In order to assess the relevance
and the efficiency of the exterior approach so obtained it is necessary to go deeper
into the mathematical properties of the 7 functions while looking at their

mechanical significance for a better understanding.

3 The 7 functions

3.1 Support function of G(x)

Two 7r functions have been introduced through Egs (8) and (9). It is easy to see that

there is only one function involved since, due to the symmetry of o', we have
(13) (@ [U@T) . n(x) = (U] ®n(x))

~ o (VO () + 1) ST W)
hence
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(14) 7 (500, [0 =5 7 (3 [0 © (o) + 1) SIT).
We will now focus our attention on 77 (x, é (x)).

From the mathematical point of view, the definition (8) of the function 77 ()_c,é (x)) is

that of the support function of the convex G(x) in the theory of convex analysis: the
properties of that function are classical within that context [3]. Since here is not the
place to develop such a theory we shall restrict ourselves to the results which are
relevant to the theory of Yield Design.

3.2 Maximum resisting (rate of) work

To make the presentation more lively we will make use of the geometrical
representations of G(x) in R® (the linear space of o(x)) which we shall consider as

",

an Euclidean space with the doubly contracted product “:” as the scalar product of
the geometrical representation of o(x) with the geometrical representation of c=§ (x).

As it was already discussed in Chapter III (§ 3.2) the quantity (—g:é) is classically
named the volume density of the virtual work by the internal forces (the stresses) in
the virtual velocity field U .To name the quantity g:ci we refer to Eq. (III, 44) which

shows that in the case of equilibrium (no virtual work by the quantities of
acceleration) the corresponding virtual work equilibrates the virtual work by the
external forces. Therefore we will call this quantity the volume density of the virtual

resisting work by the stresses in the virtual velocity field U .

Hence comes out the interpretation of the function 7 (x, é (x)): it is the volume
density of the maximum resisting work by a stress tensor complying with the
condition of resistance in the virtual velocity field U .

This leads to the geometrical illustration of the calculation of 77 ()_c,ci (x)) (Figure 3).

Given c=;’()_c), looking for the maximum value of o :c=;’()_c) under the constraint

o' e G(x) amounts to looking for the point(s) on the boundary of G(x) where the

outward normal is collinear to é (x). Let o* be one such point (Figure 3a), then
(15) 7T (x,d(x))=o*d(x).

Since G(x) is convex, Eq. (15) is single valued even in the case of multiple points on
the boundary of G(x) where the outward normal is collinear with é (x) (this occurs

when G(x) is not strictly convex).
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Figure 3. Maximum resisting (rate of) work

Regarding o * two circumstances may be encountered.

e If G(x) is bounded in all directions in R*

o* exists and is finite for any given value of 0=? (x)

ﬂ(z_c,é()_c)) = g*:é()_c) is finite.

e If G(x) is not bounded in the directions of the convex cone /(x)

For any given value of c=? (x) lying within the convex cone orthogonal to

1(x) (@ in Figure 3), o* exists and is finite, thence

7Z'(J_c,é()_c)) = g*:é()_c) is finite.

For those values of é (x) which do not belong to that cone, looking for

o * shows that it is impossible to find a point at a finite distance where
the outward normal is collinear with é (x): it follows that the value of
o’ :c=2 (x) under the constraint o’ € G(x) does not admit any upper bound

([6] in Figure 3). Therefore 77 ()_c,é (x)) is infinite:
(16) 7 (x,d(x)) =+o0.

3.3 Mathematical properties of the 7 function

From its definition the 7z function has the following properties.
o T ()_c,é (x)) is non-negative due to the fact that o(x) =0 € G(x)
(17) Vd(x), 77 (x,d(x))>0.

e T ()_c,é (x)) is positively homogeneous with degree 1
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(18) Vd(x),Va>0, T (x,ad(x))=am(x,dx)).
This result is due to the fact that both é (x) and a é (x) correspond either to the
same ¢ * in Eq. (15) or to Eq. (16).

o T ()_c,é()_c)) is a convex function of c=;’ (x)
Al A2 Al A2 A1 A2

(19) vd,vd Va0, #(x,2d +(1-Ad )<Am(x,d)+1-H7(x.d).
This comes from the fact that, if (g*)l, (g”‘)2 and o* are associated in Eq. (15)
with é I , c=;' " and ci = (ié’ l +(1-24) é 2) , the definition of the 7z functions yields

Al Al Al A2 A2 2

7T(x,d)=(c%":d 20*d and 7(x,d )=(c*)':d >c*d . The proof also

Al ~2
holds when 77 (x,d ) or 77 (x,d ) is infinite.

3.4 Dual definition of G(x)

The geometrical illustration given in Figure 3 shows that, for all i (x) in the convex
cone orthogonal to /(x), Eq. (20) is the equation of the tangent plane to G(x) with

outward normal c=:7 (x)
(20) o:d(x)- 7 (x,d(x))=0.

The planes defined by this equation are all the planes which are tangent to G(x) at a
finite distance. Since G(x) is convex, it follows from the definitions (15) and (16) of

ﬁ(y_c,i()_c)) for any é()_c) eR°, that
(21) o(x) € G(x) & Vd(x) eR’, o(x):d(x) - 7T (x,d(x)) <0.

It thus appears, as noted in [4], that all information included in G(x) through the
strength criterion f(x,o(x)) is encompassed in the volume density of the maximum

resisting work 77 ( x, c=;’ (x)).

Conversely, assume that a function 77 ()_c,é()_c)) which satisfies the conditions (17)
and (18) is given for any c=2 (x) eR®, then Eq. (22) generates a convex domain G(x) in

R¢, which contains the origin:

(22) o(x):d(x) -7 (x,d(x)) <0,Vd(x) e R® & o(x) € G(x).

If the given function 7 ()_c,é()_c)) is convex, then T ()_c,é()_c)) is the maximum

resisting work for G(x).

This is the dual definition of the convex G(x). Note that from the data of /7 ()_c,cz (%))

a strength criterion can easily be derived in the form
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@) fg)=swp] o@):dx) -7 (x.d@) <0|d(x) e R tr(d) =1.

3.5 77 functions for interfaces

As it was pointed out in Chapter IV (§ 3.3) the constituent materials of the system
include the interfaces between the different subsystems 2, €2,,...€2, which constitute
0. For this particular material the strength condition is on the stress vector I'(n)
acting at point M on the interface: it is given through a convex domain G(x). The
dual quantity of T'(n) in the expression of the virtual resisting work by the internal

forces is the virtual velocity jump in the interface when crossing it in the direction
indicated by n(x):

(24) V() =[10,01=U, ®)-U(x).

sy
1

In this equation, the subscript “i” indicates that the jump which is considered takes
place in the interface itself, notwithstanding any other virtual velocity jump which
might occur in € or in 2, at the same point M .

V=M01=0; U,y 2 I(m=g.n

@

Figure 4. Virtual velocity jump when crossing an interface

The 77 function corresponding to V is defined by:

(25) 7 (x,V(x)=sup{T". V()| ' e G) }.

4 7 functions for usual isotropic strength criteria

4.1 3-D isotropic materials

e The Tresca criterion

f(g):sup{al. —0;, -0, i,j:1,2,3}

Z(d)=+0 if trd 20
d

dy|+|d,|) if trd =0

dl‘+

+

()=
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7T (n,[UT) =+ if [U.n#0
(27)

7 (n[01) =2 |10 if (071 =0

e The von Mises criterion

f(g)=\/é((01 ~0,)’ +(0,~0,)" + (o, _61)2)_k

7T (d) =+ if trd 0
28 B _
%) ﬂ(i):k,fztr(g)z if trd =0
{ﬁ(n,[[Q]])m if [UT.n#0
(29) . i i
72 (n,IUT) = k|01 | if [UT.n=0

e Coulomb’s criterion

f(g)zsup{o;(l+sin¢)—O'j(l—sin¢)—2Ccos¢| i,j=1,2,3}

Z(d)=+n if tr£<(‘ci,‘+ d,|+|d,|)sin ¢
(30) N S P I P TT
T(d)y=——trd if trdz(‘dl‘+ d, +‘d3‘)s1n¢
=" tang = =
7 (n,[0T) =+ if [UT).n <|[U1]]sin g
(31)

710D = 10T if 0022|107 fsing

e The Drucker-Prager criterion

3sing C —ltro-)

1 2 _ 2 —))—
f(g)—\/g(wl—az) +(0,-0,) +(0,-0))’) FGrsintg) ang 32

T (d)=+0 if trd < \/ 2907303y —(trdy?)
- = \3+sin" ¢ = =
(32)
. C 5o A 2sin’ ¢ 52 A
D)= e trzz\/3+sin2¢(3tr(g) (trdy’)
72 (n,101) =+ if [U]).n <|[U])[sin¢
(33)

ﬂ(n,[[Q]])=ﬁ[[Q]]-@ if [U1.n>| [0 |sin ¢
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o Tresca’s criterion with tension cut-off

f(g):sup{o; —0,-0y,0,—T

i,j=12.3}
7T (d)=+w if trd <0

ﬂ(é)=%(o?l

+‘c§2‘+‘ﬁ3‘—tr£)+Ttrc=;’ if tréZO
7 (n,[UN) =+0 if [U]).n <0

(35) o o

7 (101 =22 ([01|-1UT-0)+ T [U1-n if [U].n>0

Note that this includes the tension cut-off criterion

(36) f(@)=sup{o,~T|i,j=12,3]
with
7 (d) =+ if trd #|d |+|d,|+|d,
(37) t e
7T (d)=Tted if trd =|d | +|d,| +|d,
72 (n,[0T) = +o if [U].n#|[0]]]
(38)

7 (0,01 =T [T if [UT.n=|1U7)|

e Coulomb’s criterion with tension cut-off

flo)= sup{al.(1+sin¢)—aj(l—sin¢)—2Ccos¢, o -T

i,j=123}

7 (d)=+oo if trc=2<(‘a?l +|d,

+‘c§3‘)sin¢

¢

m@d)=c(|d|+|d, 5

+

d, —tré)tan(%+ )

(39)

+ (trd —(|d,

l-sing =
if trd > (|d,|+|d,|+|d,

dy|+|d,

+

+

)sin¢)

+

+

)sin ¢
72 (n,[[0T) =+ if [UT.n<|[UTsin¢

7 (1, [01)=C ([01[-[07.0 ytan (5-+2)
(40) .

l—sing
if [U].n.2|[U])[sing

+

([UT.1~|1U1 [sin¢)
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o Comments

Making k=0,/2 in Egs (27) and (29), which amounts to taking the resistance of the

material under simple shear as a reference, it comes out that the expressions of the
7t functions for the velocity jumps are identical for the Tresca criterion and the von
Mises criterion. Also, when plane strain virtual strain rates are considered Eqs (26)
and (28) yield the same result. Kinematic exterior approaches with plane strain
kinematically admissible virtual velocity fields will thus be identical with these two
criteria. The same relationship is valid between the Coulomb criterion and the
Drucker-Prager criterion: with the expression adopted here (Chapter IV, Eq. (28)) for
this latter criterion the correspondence is straightforward. It also holds between the
Tresca criterion with tension cut-off and the von Mises criterion with tension cut-off,
the Coulomb criterion with tension cut-off and the Drucker-Prager criterion with
tension cut-off.

It was noted in Chapter IV (section 4.1) directly from the expressions of f(o) that, as

expected, the Tresca and Coulomb criteria with tension cut-off reduce to the original
Tresca and Coulomb criteria when 7' — 0 . This appears also on the expressions of
the 7 functions. When 7'— 0 , finite values for the corresponding 7 functions in

Egs (34) and (35) are only obtained when tré and [UTJ.n are set to zero and these

values are identical to those obtained from Eqs (26) and (27). The same reasoning
holds for the Coulomb criterion.

4.2 Isotropic interfaces

A

The virtual velocity jump is split into its normal component ¥V, =V.n and its

n

component tangent to the interface ﬁ, .

e The smooth interface

f(D)=sup{o,z}

T (V)=+0 if V.n<0
(41) . .
T(V)=0if V.n=0
o The Tresca interface
f(T)=sup{o, -k}
T (V)=+0 if V.n<0
(42) , sl o
TW)=k|V| if P.n>0
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e The Coulomb interface

f(I)=r+otang

T(V)=+0 if V.n<|7,

tan ¢,
(43)

Z(V)=0if V.n>|V |tang

o Fully rough interface
D=0

T (V)=+0 ifﬁ.@<‘2‘
(44) . .
Z(W)=0 it V.n=|7|

o The interface with perfect bonding

No limit is imposed to (o,7).

(45) T(V)=40 YV #0.
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KINEMATIC EXTERIOR APPROACH

The kinematic exterior approach of the theory of Yield Design states that, for any
kinematically admissible virtual velocity field, if the virtual work by a given load exceeds the
maximum resisting work, then this load is certainly unsafe. Using such virtual velocity fields,
it is possible to draw a convex exterior estimate of the domain K . The efficiency of the method
relies on the choice of the kinematically admissible virtual velocity fields which should be
“relevant” with respect to the condition of resistance of the constituent material in order that
the maximum resisting work be finite. The maximum resisting work, a functional of the
kinematically admissible virtual velocity fields, is the support function of the convex domain
of potentially safe loads for which it provides the dual definition.

1 Equation of the kinematic exterior approach

The implementation of the kinematic necessary condition presented in Chapter V to
obtain an estimate “from outside” of the domain K proceeds from the construction
of kinematically admissible virtual velocity fields. These vector fields are piecewise
continuous and continuously differentiable and satisfy the boundary conditions on
the velocity for the multi-parameter loading mode. From Eq. (10) in Chapter V, any

such virtual velocity field U contributes to the exterior approach of the domain K
by excluding an entire half-space in the loading space of the system:

(1) VU KA, Kc{ 0.9~ 7 (x,d(x))d2- IXﬂ()_c,a(a_@,[[t_?o_c)]])dx()}.

In this equation the sum of the integrals of the 77 functions in 2 and on X, appears

as the maximum resisting (rate of) work in the considered virtual velocity field for
the whole system, which will be denoted by P, (U)

2) B @)= 7 (x,d@)d2+[ 7 (x,n(0,[U®T)dE.
Eq. (1) takes the final form

mr

(3) vU K. A., KC{Q.Q(Q)—T (Q)SO}

which is the fundamental equation of the kinematic exterior approach.
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This equation is meaningful whenever the inequality Q. Q(Q)—’Pmr(l_} )<0 is non-
trivial, i.e. not identically fulfilled.

It is clear that from the construction of several kinematically admissible virtual

velocity fields a convex surface is obtained in the loading space R" which is an
estimate “from outside” of the boundary of K and which provides “upper bounds”

for the extreme loads (Figure 1). For a given value of c_](l_?), the corresponding

estimate is all the more valuable that the value of Tmr((_} ) is lower.

Figure 1. Kinematic exterior approach of K

In the case of one positive loading parameter the exterior approach provides upper
bound estimates for the extreme load Q" of the system (Figure 2) and results in a

minimization process on P, (U):

. A P, (U)
4) VYU K. A.suchthatg(U)>0, Og*< —.
q(U)
8 Q‘% 7 0

Figure 2. Kinematic exterior approach in the case of one positive loading parameter

In the same way, in the case of a radial loading mode when all loading parameters
vary proportionally to one positive parameter A standing for a “safety coefficient” of

a given load Qd (cf. Chapter 1V, § 2.3), the kinematic exterior approach provides an

upper bound for the extreme value A1* of this coefficient
7. ©)

(5) vU K. A. suchthat 0°.q(U)>0, A*<
= - 0" .qU)
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Again, as in Chapter IV (§ 3.1), special attention should be paid to the case when
“genuine” variable loads are acting together with permanent loads. For the reason
already given, after the definition of any “safety coefficient” has been clearly stated,
systematically referring to the fundamental equation of the kinematic exterior
approach (3) leads to the correct result straightforwardly.

2 Relevant virtual velocity fields

2.1 Definition

In order to save time when implementing Eq. (3) it is worth observing that, since
Q.g((_j ) is linear and Tmr(Q ) positively homogeneous with degree 1 with respect to

A

U, it is no use considering collinear kinematically admissible virtual velocity fields

(aU, a>0), only one of them is sufficient.
As stated earlier, for the method to be efficient the inequality (Q. Q(Q )—’Pm(Q )<0)
must be non-trivial.

e A first condition is obvious:
(6) 0.qU0)#0 .

It means that the kinematically admissible virtual velocity fields should be
chosen in such a way as to have the external forces work actually.

e The second condition relates to P, (U):
(7) 7)mr (Q) <+oo.

It means that, as test functions, the kinematically admissible virtual velocity
fields must explore the compatibility between equilibrium and resistance in
the directions where the resistance of the material develops a finite maximum
resisting work.

Kinematically admissible virtual velocity fields which comply with these two
conditions will be called relevant virtual velocity fields.

Recalling the definition of Tmr((_] ) it follows that, since the 77 functions are non-
negative, Eq. (7) implies that each integral in Eq. (2) is finite

8) [ 7 (x.dx)d@2<+o,

9) [, 7 (x,n(),[0@N)dZ <+

and, finally, that each 77 function takes a finite value everywhere in £ and on %,

respectively
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(10) 7T (x,d(x)) <+ in £,
(11) 70 (x,2(2),[UX)]]) <+ on X, .

Egs (10) and (11) mean that the virtual velocity field U must be chosen in such a way
that c=;’ (x) and ([U)]®n(x)+n(x)®[U(x)])) be normal to the boundary of G(x) ata
finite distance.

This kind of normality rule must not be confounded with a constitutive law,
whatever its formal similarity with the flow rule of plastic materials obeying the
principle of maximum plastic work [1]. As it has been underscored before it is the
mathematical rule derived from the strength criterion in the dual definition of G(x):

the relevance condition is just due to the fact that G(x) is not bounded in some

directions.
Unfortunately this confusion is quite frequent and begets misunderstandings
regarding the status of Yield Design kinematic analyses.

2.2 Relevance conditions for usual isotropic strength criteria
e Tresca’s and von Mises’ criteria

The relevance conditions are identical for these two criteria. This comes from the fact
that they are not bounded within the same convex cone /(x) which is reduced to the

directions of isotropic stress tensors o =o'l. From Eqs (26-29) in Chapter V we derive

the conditions on ci and on [U] with respect to X,
trd =0

(12) N
[U1l.n=0.

There should be no volume change in relevant virtual velocity fields. The second line
in Eq. (12) means that the virtual velocity jump must be tangent to the jump surface.

e Coulomb’s criterion
The relevance conditions follow from Eqgs (30, 31) in Chapter V:
tré > (‘a?]‘+ c:fz

[U7.n>|[U] [sing.

+‘c}3‘)sin¢
(13)

They show that relevant virtual velocity fields should cause a positive volume
change, the minimum dilatancy of which is given by the first line in Eq. (13). The

consequence for [[U] with respect to 2, is that the virtual velocity jump cannot be
tangent to the jump surface but must make an angle at least equal to ¢ with X, as

shown in Figure 3.
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Figure 3. Relevant virtual velocity jump in the case of Coulomb’s criterion

e Tresca’s and von Mises criteria with tension cut-off

The relevance conditions are the same for these two criteria: non negative virtual
volume change.

{H&>O
(14) -
[U].n=0.

e Coulomb’s criterion with tension cut-off

The relevant virtual velocity fields are the same as for the original Coulomb’s
criterion:

A

+\d,

[U7.n>|[U] [sing.

tréz(c;’l +c§3

)sin ¢

(15)

e Smooth interface and Tresca’s interface

The condition of relevance proceeds from Eqs (41, 42) in Chapter V:

(16) V.n>0.
e Coulomb’s interface
From Eq. (43) in Chapter V we get:
(17) V.n>|V |tang

The velocity jump V in the interface must make an angle at least equal to ¢ with the
interface 2 (Figure 4).

V.nz|V,|tang

Figure 4. Relevant virtual velocity jump in a Coulomb’s interface
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e Fully rough interface

The condition of relevance comes from Eq. (V, 44):

~

(18) V.n=|V

which states that relevant virtual velocity jumps should be collinear to the outward
normal to the interface.

4

o Interface with perfect bounding

From Eq. (V, 45) the condition of relevance is just:

(19) V=0.

2.3 Implementation of the relevance condition

When the kinematic exterior approach is performed analytically, the relevance
condition is taken into account in the construction of the kinematically admissible
virtual velocity fields.

For instance, if the relevance condition is given by Eq. (12), plane strain virtual
velocity fields satisfying the zero divergence condition for two-dimensional
problems can be derived from a scalar potential or obtained through the analytical
integration of the Geiringer equations (cf. [2]) on a mesh of orthogonal characteristic
lines. The same method, based on the counterpart of the Geiringer equations [3], is
also used when the relevance condition is Eq. (13). The kinematically admissible
virtual velocity fields obtained through these methods are relevant stricto sensu. The
integration along the characteristic lines can also be carried out numerically.

For three-dimensional problems, similar methods are used in the case of axial
symmetry, while highly sophisticated analytical approaches have been recently
proposed for the construction of planar but non-plane strain virtual velocity fields
(4, 5].

With the development of finite element methods the relevance condition may be
taken into account through penalty! or dualisation methods (e.g. [6, 7]).

Taking the same examples as before, let us consider first the case when Eq. (12) is the
relevance condition for instance with the von Mises strength criterion. The
dualisation method consists in writing Eqs (V, 28, 29) which give the explicit values

of T (cz yand 7ZZ(n,[U]), in the equivalent forms

7Z'(c=;’)=supp€R { k. Ztr(é)2 —ptré}

(20)
72(n,[0T) = 59p, { K107 |- pIUT.1 |

and letting the maximisation process on the field p to be performed numerically

together with the minimisation of P (U) in the fundamental equation (3).

1 Relaxing the relevance mathematical constraint and adding the product of the constraint by its (high)
“price” to the expression of the 77 function.
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In the case of Eq. (13) with the Coulomb strength criterion, the method is quite
similar with the following expressions to be introduced in Eq. (2) for P, (U):

) =swp { t qutrc_?—p(tré—(\a?lh d,| +|d, )sinqﬁ)}
= pe an = =
@)
7(n.[0T) = sup {—C [[t_iﬂ.n—p([[t_?]].a—\nt_?]]\sin¢)}
’ tan ¢

3 One domain, two approaches

3.1 Dual approach of the convex K

From its definition (2) and the properties of the the 7 functions, the functional
P, (U) is obviously non-negative, positively homogeneous with degree 1 and convex
with respect to the kinematically admissible virtual velocity fields U . Thence, in the
same way as 77 ()_c,é()_c)) in Eq. (V, 22), P, (U) defines the convex domain A in R”
for which it is the support function through Eq. (22):

(22) OeK < VUK A, 0.90)-7, (U)<0.

It follows that Eq. (3) can simply be written:

(23) KcK.

Since Tmr((_?) originates from the support function of G(x), it is quite natural to

expect that P, (U) is the support function of K, and that Eq. (23) is an identity.

The answer is positive. The mathematical proof was given by Frémond and Friaa
[8], clarifying the mathematical features of the problem and pointing out the specific
role played by the position of the zero stress state (o(x)=0) inside or on the

boundary of G(x).

This result proves that Eq. (22) is in fact the dual definition of X :
(24) QeK < VUK. A, 0.90)-P,(U)<0,
which may also be written

(25) K= 0 {0.40)-2,@)<0}.

Although it does not modify the practical application of the kinematic exterior
approach as sketched in Figure 1, this result states that the minimizing process on

’Pmr(Q ) for any given value of c_](Q ) converges to the exact determination of K.
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3.2 Static interior approach combined with the kinematic exterior one

As a consequence of the preceding result it may happen that, by performing the static
interior approach and the kinematic exterior one independently from each other, the
following circumstances are encountered.

o Through the static interior approach
Aload Q(o) is proven to be potentially safe

{g S.A. with O(o)

(26)
o(x) € G(x), VM € 2

o Through the kinematic exterior approach
A half-space in R" is proven to be exterior or tangent to K
(27) U KA = Kc{0.490)-7,0)<0}

o And
O(o) is such that its virtual work equilibrates the maximum resisting work in

the virtual velocity field U in Eq. (27):

(28) 0(0).qU)-P,,(U)=0.

Consequently we derive that (Figure 5)

Q@) qU)
P

Figure 5. Combining the static interior approach and the kinematic exterior one

e ((o) is situated on the boundary of K': it is an extreme load.

e The plane with equation Q(g).g(g ) —Tmr(l_} )=0 is tangent to K at point Q(o).

o) g0y _

Figure 6. Regular or singular point on the boundary of K

—9) —
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Thus g((_} )is an outward normal to K at point O(g), which may be a regular or a
singular point (Figure 6).
Moreover, despite the fact that the statically admissible field o in Eq. (26) and the

kinematically admissible virtual velocity field U in Eq. (27) have been constructed

independently, they come out as being associated to each other. Actually, reversing
the rationale developed in Chapter V (Section 2), applying the virtual work equation

to Eq. (28) and writing P, (U) in its explicit form (2) we get:

(29[, z:dd2+[, (10D nd> [ 7 (x,d(x))d2=[, 72 (2,00, [0@])d> =0.
From the definitic;n of the 77 functions this equality is :;atisfied only if

(30) o(x).d(x) =7 (x,d) in 2,

(31) o(x).[U@)]-n(x) = 7 (x,7(2),[UX)]) on %, .

It follows that at any point in 2 (resp. 2,) where é (x) (resp. [U(x)]]) is not equal to

zero we have

(32) o(x)=a*(x)
where o *(x) is one stress state associated with é (x) (resp. o (1) in Eq. (V, 15).

In the case when G(x) is strictly convex V M e (2, this “association theorem” implies
that all stress fields o satisfying Eq. (26) when Q is an extreme load will coincide

wherever é (x)#0 or [[Q (x)]1 # 0 in any kinematically admissible virtual velocity field

verifying Eq. (27). The result includes the case of non-collinear kinematically
admissible virtual velocity fields satisfying Eq. (27), with Q being either a regular or

a singular point on the boundary of K (e.g. [9]).

If the circumstances enunciated at the beginning of this paragraph are encountered
with a stress field o satisfying Eq. (26) and a virtual velocity field U satisfying

Eq.(27), these associated fields are said to build up a complete solution to the Yield
Design problem. An example will be given in Chapter XI (§ 4.2).

3.3 General comments

The primal approach of the theory of Yield Design has settled the problem and
introduced the concept of potentially safe loads from the necessary condition for
“stability” that Equilibrium and Resistance must be mathematically compatible. It
has logically led to the static interior approach of the convex domain K which calls
for the construction of statically admissible stress fields complying with the condition
of resistance of the constituent material. The implementation of this method suffers
two main drawbacks for practical applications:
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e The fields to be constructed are symmetric tensor fields (6 piecewise
continuous and continuously differentiable scalar fields) that must verify the 3
partial differential equations of equilibrium (Chapter III, § 2.4) and the
boundary condition on the external forces, within the multi-parameter loading
mode;

o The stress field must be constructed in the entire volume of the system.

This explains why, most often, when implementing the static interior approach only
makes use of simple such stress fields, unless sophisticated mathematical methods,
such as the method of characteristics for plane or axisymmetric problems [10-26], or
efficient numerical procedures can be used [27-38]. The ever-present requirement of
the complete construction of the stress field in its entire extension should always be
carefully checked for the validity of the lower bounds so obtained?.

In consideration of these difficulties, the dual approach of the theory of Yield Design
is a real step forward.

e The kinematic exterior approach only requires the construction of
kinematically admissible virtual velocity fields (only 3 piecewise continuous
and continuously differentiable scalar fields) which must verify the boundary
conditions on the velocity within the multi-parameter loading mode.

e The fundamental equation of the kinematic exterior approach can be written
systematically since the expression of the maximum resisting work is available
at the same time as the strength criterion.

e Moreover, the concept of relevant virtual velocity field provides guidelines for
designing efficient kinematically admissible virtual velocity fields. As shown
in Figure 1, a few well chosen kinematically admissible virtual velocity fields
may be sufficient for providing a good convex exterior estimate of the domain
K.

e Finally, it is worth noting that this estimate is affirmative as regards
instability, which makes it most valuable for back calculations.

At first glance, the two approaches of the Yield Design theory could appear as a mere
mathematical transposition of the common practice of ancient builders according to
which (using the present concepts)

e If a stress field in equilibrium with the loads and complying with the
resistance of the constituent material can be found, the system will be certainly
stable

e If a velocity field can be found where the work by the external forces exceeds
the work by the resisting forces, the system will be certainly unstable.

We have already seen that the first statement is not true and must be corrected by
substituting “potentially” to “certainly”.

But the second statement is not true either. The difficulty lies in the definition of the
work by the resisting forces in a velocity field which is implicitly assumed to be a real
one, since these forces are only known through the limits they are assigned. It follows
that complementary assumptions are introduced in order to conciliate the use of

2 As a matter of fact it is very seldom satisfied.
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“real” velocity fields with the condition of resistance. Examples have been given (e.g.
[39]) showing that the two statements are not consistent with each other and can lead
to contradictory results. Let us recall once more that the kinematic exterior approach
is only valid in the form it has been presented here with kinematically admissible
virtual velocity fields and with the maximum resisting work derived from the
dualisation of the strength condition.

Some final comments may now be added to what has been written in Chapter IV
(§3.2) regarding the convexity assumption for the strength condition of the
constituent material. As a matter of fact, assuming for instance that this domain is
star-shaped with respect to the origin, the rationale developed in Section 2 of
Chapter V can be completely reproduced:

e the same kinematical necessary condition will be established,

e 7 functions defined and computed

¢ and the same kinematic approach can be performed.
The important point then is that the 7 functions involved are but the dual
definition of the convex hull of the strength condition. Therefore this kinematic
approach refers to the dual definition of the domain of potentially safe loads with
this convex hull as a strength condition, which encompasses the convex hull of the
actual star-shaped domain of potentially safe loads.
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ULTIMATE LIMIT STATE DESIGN
From the theory of Yield Design

With the explicit introduction of Resistance parameters to define the strength conditions of
the constituent materials, the theory of Yield Design is completed as the fundamental basis of
Ultimate Limit State Design. The equation of the kinematic exterior approach provides an
unambiguous scalar expression for the symbolic inequality of ULSD where the “effects” are
clearly identified as the virtual work by the design loads on the one side and as the maximum
resisting work by the design resistances on the other. It makes it easy to handle the partial
factors on the loads, either “unfavourable” or “favourable” to equilibrium, and on the
resistances, and also to define a partial factor for model uncertainties.

1 Basic principles of Ultimate Limit State Design

The basic principles of Ultimate Limit State Design (ULSD) have been announced in
Chapter I (§ 2.2) in the terms used by Krebs Ovesen [1]:

“The design criterion is simply to design for equilibrium [under the design loads] in the
design limit state of failure. The design criterion could be expressed in the following way:

1) R, =2S8,”.

This means that the design load effect S; should be inferior to the effect of the design
resistances R, .

The simplicity of this statement relies on two requirements:

e A clear distinction between the loads or active forces on one side and the

resistances on the other side is made in such a way that
e Their “effects” can be defined in a scalar form independently from each other.

These conditions being fullfilled, design values of the quantities involved are
introduced which are derived from the “actual” or conventional data through the
application of partial factors.

For the resistances, each partial factor (for material property) is a divisor, >1, applied
to the value of each conventional strength characteristic.

For the active forces (permanent and variable actions), the partial factor is a
multiplier for each independent load, >1 for a load which is unfavourable to
equilibrium and <1 for a favourable one.

—101 —



Chapter VII - Ultimate Limit State Design from the theory of Yield Design

In the case of statically determined systems the symbolic inequality in Eq. (1) is easily
transformed into a mathematical expression by taking the strength criterion of the
constituent material as a scalar measure of the “effects”. For each design load
combination the strength criterion must be checked at any point in the system in
order to enforce that its value does not exceed the limit assigned by the design values
of the resistance. Obviously this procedure cannot be used in the general case. Apart
from this major difficulty, it also appears that, depending on the mathematical form
of the strength criterion, making the distinction between unfavourable and
tavourable loads can prove quite tricky!

2 Revisiting the Yield Design theory in the context of ULSD

2.1 Resistance parameters

The similarity between the principles of ULSD and the fundamental basis of the
Yield Design theory, “Compatiblity between Equilibrium and Resistance”, has
already been underscored in Chapter I. Now, with reference to the definition of the
potentially safe loads given in Chapter 1V, it is possible to be more precise.

Regarding the loads, the multi-parameter loading mode in the Yield Design theory is
perfectly suited to ULSD: all the independent external loads which appear in the
different design load combinations, including the permanent loads, are assigned a
loading parameter. Each parameter O, is a function of the corresponding partial

factor. Symbolically these partial factors on the actions will be denoted I, .

As for the resistances, the strength domains of the constituent materials of the system
are defined through resistance parameters [2] (e.g. ¢, C, 0,,...). These parameters

will now be denoted symbolically by R, which is a function of the partial factors for
material property denoted 7I”,; the strength domain of the material at point M is
G(x,R).

2.2 Potentially safe loads

The concept of potentially safe loads remains unchanged but, in order to make the
dependence on the strength parameters more apparent, its definition is now written:

o S. A. with Q(0)

) g ek® = Hgt@)ec]‘(a_@@) VM eQ’

In the same way R also appears in the definition of the volume density of maximum
resisting work at M

© 7 (x,R.d(x)= Sup{ ¢':d(x)| o' € G(x.B) |
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and the maximum resisting work in a virtual velocity field is

(4) P U.R)=[ 7 (x,Rd))d2+[ 77 (x,Rn(),[UX)AE.

The fundamental equation of the kinematic exterior approach becomes! (Figure 1):

(5) VU K A, KR)<{0.qU0)-F, (U.R)<0}.

Figure 1. Kinematic exterior approach of K(R)

3 The Yield Design theory applied to ULSD

3.1 Static approach of ULSD

With this modified definition of the potentially safe loads which takes into account
the specificaties of the ULSD problem, the statement of the design criterion of ULSD
in Section 1 can be written

For each design load combination, the design criterion is expressed by the following equation
(6) OL ) e K(R(Ly)) -

The left-hand member of this equation means that each load O, of the design load
combination is considered with its design values obtained with both partial factors
corresponding to the “unfavourable” and “favourable” cases (77, and 7 é )-

The right-hand member is the convex domain of the potentially safe loads for the
design values of the resistance parameters with the partial factor /”, consistent with
the considered design load combination, i.e. taking into account the fact that the
partial factors for material properties may depend on the considered design load
combination.

This is illustrated in Figure 2 where it appears that, since each load is to be
considered with its two partial factors, the left-hand side in Eq. (6) is represented by a

1 To be compared with Eq. (5) in Chapter V.
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hyper-cube in R" which must be included in the convex domain K(R(I;)). It is
worth noting that the convexity of K(R(I;))justifies the fact that only the partial
factors for “favourable” and “unfavourable” loads need being introduced.

0,
OL) e 2= T
o ;
S KRUY)
/
// )] /// QJ
|
\ -

~—— -

Figure 2. Static approach of ULSD

3.2 Kinematic approach of ULSD

Eq. (6) does not meet the goal of giving a scalar quantification to Eq. (1) that could be
easily implemented in practice. Since Eq. (5), the modified form of the fundamental
equation of the kinematic approach, is a scalar inequality where the left-hand side
member only deals with the design loads while the right-hand side member only
concerns the design resistances, it offers a possibility for such an identification.

More precisely, given a design load combination, let U be a kinematically admissible
virtual velocity field.

e The right-hand side member of Eq. (5) is obtained directly from Eq. (4) with
the design values of the resistance parameters consistent with the considered
design load combination.

e The left-hand side member is the expression of the virtual work by this load
combination in the virtual velocity field. The distinction between
“unfavourable” loads and “favourable” ones is self-apparent from the sign of
the contribution of each load to this virtual work
. a load QO is “unfavourable to equilibrium” if Q ¢, >02 it is then

assigned the partial factor 77} ;
. it is “favourable to equilibrium” if O, ¢, <0 and it is assigned the partial
factor I, .

It follows that, from the practical point of view, the implementation of Eq. (5) can be
easily performed through a computer code.

Going back to the terminology introduced in Eq. (1), we may say now that, in the

kinematically virtual velocity field U, the left-hand side member of Eq. (5) represents

the design load effect and the right-hand side member is the design resistance
effect.

2 No summation on repeated indices here.

—104 —



Chapter VII - Ultimate Limit State Design from the theory of Yield Design

Recalling now that the inequality in Eq. (5) must be checked over all kinematically
admissible virtual velocity fields, the explicit scalar expression of Eq. (1) will be
written:

(7) S, <R, & VU K. A, QI ).qU) <P, (U,R(L,)).

In this equation the equivalence sign is a consequence of the dual definition of the
potentially safe loads given in Chapter VI (§ 3.1).

3.3 Partial factor for model uncertainties

In practice, in the same way as for Eq. (2), it is quite exceptional that an exhaustive
exploration of all kinematically admissible virtual velocity fields be performed. Only
a class of such virtual velocity fields is usually considered in order to maintain a
good balance between the intellectual and computational investments compared
with the relevance of the data and the method. The results obtained through such a
limited procedure are taken into account in the Ultimate Limit State Design of the
considered system with the adjunction of a multiplying partial factor 7°,, >1 applied

to the virtual work by the loads in Eq. (7). This factor depends on the class C,, of

kinematically admissible virtual velocity fields which are implemented. Then Eq. (7)
becomes

8) Si<Ry & VU K Ae Gy, Iy QL) .qU) <P, (U,R(L,)).

I, is called the partial factor for model uncertainties; it may also encompass other
“uncertain” aspects of the adopted modelling.

3.4 As a conclusion

The kinematic exterior approach of the theory of Yield Design is the fundamental
basis which yields the scalar quantification of the symbolic formulation of ULSD to
be implemented easily in practical circumstances. As a cornerstone, it appeals to the
kinematically admissible virtual velocity fields as test functions to define the effect of
the design loads and the effect of the design resistances.

The comparison between the virtual work by the design loads and the maximum
resisting work by the design resistances should be carried out on the whole set of
kinematically admissible velocity fields. In each such velocity field the distinction
between the loads which are “unfavourable to equilibrium” and those which are
“favourable” comes out automatically from the sign of their virtual work.

It must be emphasized that it is essential for the consistency of the method that the
correct mathematical definition of the maximum resisting work, derived only from
the strength condition of the constituent material through the mathematical
dualisation process, be used in this approach [3, 4].
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OPTIMALITY AND PROBABILITY APPROACHES
Of Yield Design

In the Yield Design theory, the loads applied to a system and the resistances of its constituent
materials play symmetric roles in the equations to be satisfied for potential stability. Given a
set of prescribed loads, the potential stability of the system defines the potentially safe
dimensionings. Optimal dimensioning requires minimising a given objective function on the
convex domain of potentially safe dimensionings and leads to linear or convex programming
problems. When the prescribed loads and the assumed resistances are given a stochastic
character, the question of potential stability receives a probabilistic answer. The interior
approach and, essentially, the kinematic exterior approach provide lower and upper bound
estimates for the probability of stability and for the probability of collapse.

1 Optimal dimensioning and probabilistic approach

The concept of Resistance parameters was explicitly introduced in Chapter VII in
order to point out the direct relationship between ULSD and the theory of Yield
Design as its theoretical basis. As a major outcome it provides an unambiguous
significance for the fundamental inequality of ULSD which can be quantified taking
into account the partial factors on the loads and the resistances, and the partial factor
for model uncertainties.

Within this framework one may say that Yield Design is used to analyse the stability
of a system which is completely defined in a deterministic way, since the
uncertainties on the loads and on the resistances are supposed to be accounted for
through the corresponding partial factors. As regards optimality in the dimensioning
of the considered system, it may obviously be looked for by performing the Yield
Design stability analysis in an iterative way while varying the values of the resistance
parameters in a trial-and-error process.

Since optimality (e.g. [1]) and probability approaches have been largely studied in the
past - usually referring to “plastic design” - the objective here is to sketch out the
main fundamental results of the theory of Yield Design when optimality and
probability approaches are concerned:

e Optimal dimensioning of a system in a given geometry, from the resistance of
the constituent elements point of view!, under a given set of loads;

1 From now on, the word “dimensioning” will only be used from the resistance of the constituent
elements point of view in a given geometric design.
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e Probabilistic approach in the case of stochastic resistance- and/or loading
parameters, leading to a consistent definition of the probability of stability of a
system within the Yield Design framework.

2 Domain of potential stability

2.1 Resistance parameters

It is now necessary to be more precise regarding the definition of the resistance
parameters introduced in Chapter VII (§ 2.1). We assume that the volume Q2 of the
system under consideration can be divided into m distinct zones (2,, with no

overlapping, such that, in each zone 2, the resistance of the constituent material,

which may be inhomogeneous, is proportional to the resistance parameter R, >0

1 =000 V.. Q2
@) 02,nNQ =0,V j+ke(l,.m)

and the strength condition is written

) Vxe 2, a(x)eG,(x,R)=R, G, ().

Each G,(x) exhibits the same mathematical properties as G(x) in Chapter IV (§ 1.3),

namely: 0 € G,(x) and convexity?.
The “vector” R=(R,,...R,) is an element of (R,)".
As a consequence of Eq. (2) we have
o) 7 (x.R.d(x)=R, 7T, (x,.d(x))
7T (x,R;,n(x),[UX]) =R, 7T, (x,n(x),[UX)])
where the functions 77, refer to the strength domain G, (x).
In consistence with Egs (2) and (4) in Chapter VII we write
(4) VM e 2, o(x) e G(x,R) & VQ,,VM € Q,, o(x) € G,(x,R))

and

6)  PUBR=XR[ 7 (x.d@)d2+YR [ 7 (x.0().[0@])LE,,

with the discontinuities of the virtual velocity field at the interface between two
adjacent zones (2, and Q, being treated as in Chapter V (§ 3.5).

2 There is obviously no summation on repeated indices in Eq. (2). The presentation encompasses the

case when the strength domain in a given zone {2 ' is the intersection of two or more convex domains

¢ ( . . . . 0.
G ; (x,R j) each of them being characterised by its own resistance parameter R ; asinEq. (2).
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Introducing r(U) = (#,...r,) defined by
(6) n@=[, 7, (x.d@)d2,+ [ 7, (x.0().10@D)4,

we get for Eq. (5) the simplified form
7) P..U.R)=R.r(U).

2.2 Potentially safe dimensionings

As stated in Chapter VII (§ 2.2), potential stability of the system within the Yield
Design framework amounts to writing;:

o S. A. with 0(o)

(8) 0(0)eK(R) < ﬂg{é(z)eg(,_c,g) VM e Q2

Conversely, a load Q being given, any dimensioning of the system defined by R

such that Eq. (8) is satisfied is a potentially safe dimensioning? of the system for this

load Q.

This definition generates a domain D(Q) in (R.)"

9) QcK(R)cR" < ReD(Q)c (R.)".

Obviously the domain D(Q) is not bounded when R, — +:

(10) R eD(Q)= ReD(Q), VR>R'

with the definition

(11) R>R < Vj=1,.m, R >R+

From the convexity of the G,(x) it follows that D(Q) is also convex in (R,)":

let R' € D(Q) and R’ € D(Q) be two potentially safe dimensionings and let gl and

gz be two stress fields satisfying Eq. (8) with R' and R’ respectively. Consider the
stress field gzlgl+(l—l)gz,ﬁ,e[0, 1]. It is statically admissible with O, and we

have in any (2,

12) o(x) AR, g (1-HR W
AR, +(1-2)R} AR +(1-A)R: R, AR +(1-A)R. R’

which may be written

3 The adverb “potentially” retains the same meaning as for the loads in the general theory of Yield
Design.

4 Conversely, K(]_QC) c K(R), VR> ]_3€ :
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a(x) oW g (_)
(13) ZR;+(1—/1)R12_ R1 ( :U) j ,IUE[O 1]
o' (x) o’ (x)

where both = and
R

J

;— are members of G,(x).
j
o(x)

AR +(1-)R;
which proves that Qe K(4 R +(1-2)R?) and, therefore, that D(Q) is convex

(Figure 1).

Hence, since G,(x) is convex, is also a member of G,(x), Vj=1,..m,

The dimensionings at the boundary of D(Q) are the extreme dimensionings® for the

system under the load O while the internal ones are conservative from the Yield

Design point of view.

R

|

e
e 2

0

R,
Figure 1. Domain D(Q) of potentially safe dimensionings

2.3 Interior approach
Egs (8) and (9) provide the interior approach of D(Q) straightforwardly:
o S. A. with Q
(14) ReD(Q) < Jo
o(x)eG(x,R) VM € 2
R|
e
NET—
\
\\ _________
0

R,

Figure 2. Interior approach of D(Q)

5 With the same meaning as for the extreme loads.
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Taking advantage of Eq. (10) and the convexity of D(Q) the interior approach

obtained from k potentially safe dimensionings R’ is the convex hull of the convex

cones R> R, with the definition (11), as shown in Figure 2.

The interior approach is obviously conservative and calls for minimisation processes
on R’ in order to improve the estimate of D(Q) so obtained.

2.4 Kinematic exterior approach

With Eq. (7), the fundamental equation of the kinematic exterior approach of K(R)
takes the form

(15) VU KA, K(R)={0.9(0)-R.rU)<0|
which, conversely, yields the kinematic exterior approach of D(Q)
(16) VU K A, DQ)<{0.qU)-R.r(0)<0}

as presented in Figure 3. It is worth noting that in this kinematic exterior approach is
obviously non conservative. Improving the estimate of D(Q) is obtained through a

maximisation process performed on Q.g(l_}) with E(Q) being fixed. When an

extreme dimensioning is reached, ;_f(Q ) is an inward normal to D(Q).

R,

Figure 3. Kinematic exterior approach of D(Q)

Under the same mathematical conditions as for K(R) given by Frémond and Friaa
[2] it can be established that Eq. (16) is the dual definition of D(Q):

(17) ReD(Q) < VU K. A, 0.9U)-R.r(U)<0
which may also be written

(18) D@ = 0 {2.4@)-R.rU)<0].
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2.5 Potential stability under a set of loads

Most often the system under consideration must be dimensioned in order to sustain a

prescribed set of loads (Ql,gz,...gk). The corresponding domain of potentially safe
dimensionings is denoted D(QI,QZ,... Qk). Obviously it is just the intersection of the

individual D(g ), { =1...k, (Figure 4)

(19) D(Q.0",..0") =D@")nD(Q")..nD(Q").

®

<D

=i

Figure 4. Domain of potentially safe dimensionings in the case of two loads

Hence, the intersection of interior approaches of D(g), {=1..k obtained as in
Figure 2 yields an interior approach for D(Q1 , 22,...Qk) .

The kinematic exterior approach of D(Ql,g_f...g) follows from Eq. (16) which must

be satisfied for all the loads of the considered set:
(20) vU K. A, DQ.0,..0)c { 0" .q@)~R.r(U)<0 } (=1..k

or, in other words
(21) VU K. A, D(Ql,Qz,.-.Qk)C{ sup Q‘.q(@—ﬂ.z@)SO}.
- - (=1..k—

It is worth noting that, due to the convexity of K(R), any dimensioning that is
potentially safe for (g, Qz,...gk) is potentially safe for all the loads within the convex
hull of (Ql, 22,...Qk). This property is essential for practical applications, since it

proves (again) that only the maximum “favourable” and “unfavourable” external
loads need being regarded (cf. Chapter VII, Figure 2).

2.6 Domain of potential stability of a system
From the definition of D(Q) it is apparent that K(R) and D(Q) are just two sides of

the same mathematical concept which expresses the potential stability of the
considered system under a given load with a given set of resistance parameters, as
illustrated by the two approaches in the preceding paragraphs,. This calls for the
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introduction of the space { Q}x{ R}=R"x(R,)", as in [3-5], with the domain of
stability of the system being denoted K :

” ) o S. A with O
(22) (0.R) e K <R"x(R,) @32{2@6(;()_@3) VM e

equivalent to the dual definition®
(23) QR eK R xR,)" & VU K. A, 0.9U0)-R.r(U)<0 .

From these definitions it is clear that /K proceeds from the geometric data of the
system, the loading mode (Chapter IV, § 1.2) and the parametric description of the
strength conditions of the constituent material through Eqgs (1) and (2). Symbolically
XK may be represented as a pair of kitchen scales checking that the “resistance
effect” exceeds the “load effect” following the ULSD terminology (Figure 5).

0,

Figure 5. Symbolic interpretation of K

From the mathematical properties of the G,(x) it comes out easily that K is a cone
with apex O in R" x(R,)"

(24) O.ReXK=(aQ,aR)eXK,Vaz0

and also that K is convex

25 (Q.RYeXK, (O .R)eK = A(Q.R)+(1-)(Q".R)e XK, Vie[0,1].

The proof of Eq. (25) is similar to Eqs (12) and (13) with the stress fields gl and g2
satisftying Eq. (8) with (QI,BI) and (22,32) respectively’.

The interior approach of K is the direct consequence of Eq. (22). The kinematic
exterior approach is derived from Eq. (23) and results in the dual definition:

(26) K= {240)-RrO)=0]

UK. A.

The definition of K encompasses all the results established for K(R) and D(Q) as

shown in Figure 6

¢ From now on the conditions established by Frémond and Friaa [1] are supposed to be fulfilled.

1 2
7 As a matter of fact, the proof in § 2.2 is just a particular case of the present one with Q=0 =Q".
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e For a given value R’ of R, K(R") is the projection onto {Q}:R” of the
intersection of K with R =R’

e For a given value Q' of Q, D(Q") is the projection onto { R }=(R,)" of the

intersection of K with 0=0".

Figure 6. Geometric representation of K, K (R*) and D(Qd)

in the cases (n=2, m=1) and (n=1, m=2)

3 Optimal dimensioning

3.1 Introductory remarks

Many research and practical papers have been devoted to the optimal dimensioning
of systems, especially in the case of structures such as those presented in Chapter IX.
They are either related to elastic design codes or based upon considerations similar to
the Yield Design arguments presented in the preceding Section (e.g. [5]). These ones
are usually referred to as Plastic optimal design due to the fact that they are principally
concerned with structures made of metal beams or plates and that ductility is part of
the necessary conditions for the relevance of potentially safe loads as it was pointed
out in Chapter II (Section 3) and Chapter IV (§ 3.4).

The main objective of this Section is to provide some guidelines for reading the
abundant literature on the topic, bearing in mind that it will not cover the case of
structures for which the dimensioning depends on scalar fields, such as plates or
slabs with varying thickness.

3.2 Optimal dimensioning based upon potential stability
Section 2 has brought out the definition of D(Q) and D(Ql,gz,... Qk) together with

their interior and kinematic exterior approaches. Not surprisingly, it turned out that
D(Q) and D(Ql,gz,...gk) are not bounded in (R,)". This implies that any decision

based upon the knowledge of the potentially safe dimensionings requires the
introduction of a criterion in the form of some “economic” or “objective” function of
R, in order to determine the dimensioning or pre-dimensioning of the considered
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system that will be retained. Minimum weight dimensioning?® (or design) is one such
criterion, often encountered as a particular and simplified case of Minimum cost.

As a first step it is commonly assumed that the economic function is linear and
increases with R:

(27) HR)=C.R, Ce(R)".

Looking for the optimal dimensioning among the potentially safe ones amounts to
finding the extreme dimensioning where C is an inward normal to the boundary of

D(Q) or D(QI,QZ...Qk) as shown in Figure 7. Note that the optimality for
(Ql, 22...Qk) means optimality for any load within the convex hull of (Ql, 22...Qk) .

L

Figure 7. Optimal dimensioning in the case of a linear objective function

From the mathematical point of view it is a convex programing problem for which
various solving techniques are available (e.g. [6, 7]).

In some cases, such as when dealing with frames or trusses, the boundary of the
convex D(Q) or D(Ql, Qz...gk) happens to be made of segments of lines and the
problem is reduced to a simpler linear programming one (e.g. [8-14]).

When comparing Figure 7 with Figure 3 one cannot fail to note a formal similarity
which can be summarized in the following form: for a given linear objective function,

the optimal dimensioning is obtained when the gradient of the objective function is
collinear with the gradient of the maximum resisting work with respect to R .

Despite its non-conservative character, the kinematic exterior approach is most
commonly used to estimate D(Q) or D(Ql, QZ,...Qk). Then, it comes out from the
above statement that, for optimality purposes, it is only necessary to consider the
relevant virtual kinematically admissible velocity fields Q for which z_f(Q ) is
collinear with C.

These considerations are the transcription in this particular case of classical convex
programming results which received practical applications in the numerical methods
that were developed for optimal dimensioning (optimal plastic design). Beside the

8 Minimum mass would be more correct.
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case of linear objective functions they remain valid for convex objective functions®
and can even be applied if the objective function is just weakly concave as in the
following paragraph (Figure 8).

R,

Figure 8. Optimal dimensioning in the case of a convex
or a weakly concave objective function

3.3 Additional remarks

As a matter of fact, as observed by various authors, the objective function is seldom
linear with respect to R. For instance, when metal frames or structures are

concerned, only commercial beam sections are available within shape-series such as
U-, L-, or T-shaped sections, etc. Although the sections within one series are not
exactly geometrically similar, their masses follow a (concave) law of the form [15]

(28) HR)= Y CR"

Jj=l..m

or, according to [16]

(29) HR)= Y CR.

Jj=l..m

In such cases, if the mass of the structure is taken as the proper objective function?,
one strategy when looking for the optimal dimensioning can be to linearize @(R)
about a feasible value of R in a trial-and-error process. Also, since the range of
practically available sections within one shape-series is not a continuum, it only
allows discrete values of R to be taken into account when looking for the optimal

dimensioning; this may be done again in a trial-and-error process or through some
penalty method [17-19].

9 VA€ (0,1), AR +(1-HR) S AHR)+(1-A)H(R)

10 Note that the complexity of the structure (joints, etc.) is also part of the cost.
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4 Probabilistic approach of Yield Design

4.1 Introductory remarks

For efficiency sake in their everyday practical implementations, structural design
codes are shaped into a deterministic pattern where the variability of the loads
applied to the system and the variability of the resistance characteristics of the
constituent materials are accounted for through the corresponding “partial” factors.

The Yield Design framework also offers the possibility to introduce a probabilistic
approach as an alternative way to deal

e with the statistic observations about the occurrence of the prescribed load
levels and load combinations on the one side

e and, on the other side, with the stochastic distributions of the material
resistance characteristics in the range within their assumed maximum and
minimum values.

As for Section 3, the objectives of the present Section are just to provide some
guidelines when making a way in the relevant literature (e.g. [20-22]). Therefore
mathematical “technicalities” will be avoided - not meaning that they should be
disregarded - but one should keep in mind that a probabilistic approach assumes, as
a cornerstone, that the events taken into consideration are properly defined and that
they can actually receive a relevant stochastic treatment.

4.2 Settlement of the probabilistic Yield Design problem

The Yield Design problem is still defined on the given geometry of the system,
within the multi-parameter loading mode framework and with the Resistance
parameters defined as in § 2.1. But the question to be answered will be modified
from the original one (Chapter IV, § 1.4) due to the fact that the loading parameters
and/or the Resistance parameters are stochastic variables defined in the following
ways.

Stochastic loading parameters

The loading vector Q is given in the loading space {Q} =R" through a probability

law and we denote by x,, the corresponding probability measure.
This means that if A is a part of { 0 } =R" the probability for Q to fallin A is x,(A)
(30) VA CR’, prob{ Qe A | = u,(A)

with the properties (Figure 9)

{ VA CR", ,(A)20
(31) -

Hp(R") =1.
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0 0

Figure 9. Stochastic modelling of the loading parameters

The measure y, may be defined by a probability density function f(Q) such that
Eq. (31) be satisfied; in such a case

1 Q=70.0,..0,)

(32) |
p (W)=, dp, = [, 1(©)d0d0,..d0,

It could also happen that only a set of discrete values Ql, Qz,...gp be feasible for Q ,in

which case x4, would be reduced to the corresponding Dirac measures:

(33) Hy :alé'Q] +0525Q2 +.a’8,, a,ol,..a’ >0, a'+a’ +..a” =1.

If the components of the loading vector are stochastically independent!!, each of
them with its own probability law My , We have:

(34) Ho = Ho, Ho,---Ho, -
Stochastic Resistance parameters

The resistance “vector” R is givenin { R } =(R,)" through a probability law with s,

as a probability measure to account for the physical scattering of the values of the
resistance parameters between their assumed maximum and minimum values

(35) VB (R,)"”, prob{ ReB} = 1,(B)

with

@6) {VBC(RJ , Le(B)>0
Hp(R)" =1.

The resistance parameters are usually stochastically independent!2.

11 This case is seldom encountered in practice: for instance, maximum values of the loading
parameters do not usually occur simultaneously.
12 Note that the framework for the resistance parameters defined in § 2.1 does not apply to the

resistance parameters C and ¢ in Coulomb’s criterion for which this assertion would not hold.
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4.3 Probability of stability of a system

Since the data of the Yield Design problem are given a stochastic character the
question to be answered now receives a probabilistic formulation:

What is the probability of (potential) stability of the system under the given stochastic loading
with the given stochastic resistance parameters?

Stochastic loads with deterministic resistances
Let us consider first the case when only the load Q is stochastic while the resistance

parameter is deterministic with the value R‘. From the very definition of the
(potential) stability of the system it comes out that the stochastic event the probability
of which must be assessed is that Q fall in K (R"). Hence the probability of stability3

of the system is just

(37) P41y, R") = 115 [K(R")]
and the probability of collapse is the complement to 1
(38) P(#9,R*) =1=P(115, R") =1= 11, [ K(R")].

It follows from Eq. (30) that any interior approach of K(R") yields a lower bound
for P;(yQ,Bd).

Conversely, any exterior approach provides an upper bound for P (x,, R%) and a

lower bound for fz(,ug,l_ed) :
(39) VU K. A, B(#5,R") < 1y { 0.9(0)~R* .r(U) <0 |
(40) VU K. A. P(#1g,R) = 145 { 0.9(0)-R* .r(0) > 0 |

and, recalling the dual definition of K (R,

(41) Pswg,l_ed)zugﬂm {Q-Q(Q)—Bd-f(l_?)ﬁo}}
(42) Pc(ﬂg,f_e")%{u {Q-Q(Q)—Ed-z(QbO}}-

Since the kinematic exterior approach is the most commonly used when trying to
estimate the probability of stability (or of collapse) of a system it is very important to
understand the consequences of these two equations. For instance, Eq. (42) implies
that if several kinematically admissible virtual velocity fields U 1, U " are
implemented in the kinematic exterior approach, the best value to be retained as the
lower bound for PC(yQ,Bd) is not the maximum of the corresponding values of

13 From now on the adjective “potential” will be dropped for simplified wording.
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Hy { 0. g(l_} =R .+(U)>0 } but results from the second hand of Eq. (42) which yields

a higher value than each of them

) PQuzul, v {0a@")-RrU")>0}]

0, 0%, KA,

This remark is all the more important that usually the checking of the dimensioning
of a system is (fortunately) concerned only with very low values of PC(yQ,Ed) and

therefore an error in the estimate of this probability may result in dramatic
consequences.

Deterministic loads with stochastic resistances

In the same way as above we consider the case of a deterministic set of prescribed
loads (g, Qz,...g) with a stochastic dimensioning defined as in § 4.2. From the
definition given in § 2.5 we can state that the probability of stability of the system is
the probability that the dimensioning R fall in D(Ql, g,...gk) :

(44) P(Q.0"...0" 1) = 1, [D(Q',0",...0")]

and

(45) P(Q.0"...0 1) =1-R(Q'.Q",..0" i) =1- 1, [ (O, O",...0"].

As in the preceding paragraph, any interior approach of D(Ql,Qz,...Qk) results in a
lower bound for PS(QI, Qz,...Qk,yE) and the kinematic exterior approach follows

from Eq. (21) to give a lower bound for PC(QI,QZ,...Q/‘,,UE)

(46) VU K. A, P(Q".0%,..0" 1) > yR{ sup 0'.q(0) - R.r({U)>0 }
and
(47) Iz(g,g,.ng,u@=u{u {ngpkg.g(t_?)—@.za_?)>0H

with the same comments as for Eq. (42).
Stochastic loads with stochastic resistances

From these two particular cases it is now easy to understand that, when both the
loading vector and the resistance vector are stochastic variables, the probability of
stability of the system is defined and obtained by referring to the domain of potential

stability K cR"x(R,)" (§ 2.6). The probability of stability of the system is the
probability that (Q,R) fall in XK . With Hy  the joint probability measure for (Q,R)

in R"x(R,)"

(48) fz (/JQ,B) = ;UQ,B (K) .
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Since it has been implicitly assumed in § 4.2 that Q0 and R are stochastically
independent variables, their joint probability measure is the product s, , = 14, x 14,

and Eq. (48) can be written explicitly
Jia o (KR dpty

(49) Ps(zug,g) = /UQ,B(K) =
.. #:(D(Q))

and, in the case of probability density functions f(Q) and g(R)

fw g(R)dR,...dR, jm) £(©)dg,...dQ,

(50) Py )= H ,R(K):

0.0) = Ho.x [, 7©4do..dg, ID(Q)g(B)de...dRm.
Lower bounds for the probability of stability and for the probability of collapse are
obtained, as in the particular cases examined previously, through the interior
approach and the kinematic exterior approach respectively. The corresponding
equations are similar to those written above - for instance we get Eq.(51) for the
kinematic exterior approach - although their practical implementation may prove to
be somewhat cumbersome

(51) a(ug,z_e)z/lg,{u {Q-Q(Q)—E-Z(QPO}}

4.4 Additional comments

The literature about probabilistic Yield Design approaches has been essentially
devoted to the case of stochastic resistance parameters, not taking into account
stochastic loading parameters at the same time. As it was mentioned earlier, practical
applications aim at checking the reliability of the considered system and look for

high levels for the probability of stability (PS(QI, QZ...Q" ,iz)=1) and, conversely, very
low levels for the probability of collapse (PC(Q1 , Qz...gk,,ug) =0).

Various research papers (e.g. [23-25]), often based upon the use of Monte Carlo
methods, have drawn the attention onto the fact that the results obtained at very low
probability levels depend strongly on the initial choices for the probability laws of
the resistance parameters and of the load combinations. They are highly sensitive to
the “Tail behaviour” of these laws when the minimum values of the resistance
parameters or the extreme values of the loads are concerned (“rare events”). From
this point of view, the Gumbel probability density functions [26], the Weibull ones
[27, 28] and, more generally, the extreme value probability laws have often been
(heuristically, cf. [29]) considered as good candidates for such stochastic modelling.

Consequently, for practical applications, in this case as in other similar ones, one
should not take the values obtained for the very low probability levels as absolute
results but only as ranking indicators when dimensioning a system.
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As stated by Bouleau [29], “Any attempt to allow a specific numerical value to the
probability of a rare event is suspect, unless the physical laws governing the corresponding
phenomenon are explicitly and exhaustively known...This does not mean that the use of
probabilities or probabilistic concepts should be rejected from construction codes since such an
approach can lead to a better expression of certain design rules.”14
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YIELD DESIGN OF STRUCTURES

The Chapter is devoted to the implementation of the Yield Design theory in the case of
structures made of slender elements, addressed within the curvilinear one-dimensional
continuum framework. The kinematics is defined by velocity distributor fields which describe
the rigid body motion of the microstructure attached at any point of the director curve while
the external and internal forces are represented by the corresponding wrench fields. The
constituent elements are held together by joints and connected to the external world by
supports. The implementation of the interior approach proceeds directly from the strength
criteria of the elements, the joints and the supports. The kinematic exterior approach is based
on the construction of kinematically admissible virtual motions defined by velocity distributor

fields.

1 The curvilinear one-dimensional continuum

In a similar way as in Chapter III we recall now the curvilinear one-dimensional
continuum model. Following the classic pattern, we first define the external and
internal forces and write down the equilibrium equations, and then we introduce the
virtual velocity fields and state the virtual work theorem/principle. An alternative
presentation based upon the virtual work principle as a starting point may be found
in [1].

1.1 Geometric description of the model

The curvilinear one-dimensional continuum is a mechanical model built to represent
slender elements subjected to concentrated or distributed forces and moments.
Taking advantage of the geometric specificity introduced by the slenderness of the
considered elements, the model refers, for the geometric description of a typical
system S, to a director curve (C).

A system S is described geometrically on an arc 4B of the director curve (C). As a

continuum, it is constituted of “particles”. Since the model aims at squeezing a three-
dimensional slender element onto a one-dimensional description, a particle P is no
more a kind of “diluted material point” with the volume d¢2, only characterised by
its position, as it used to be in the classical three-dimensional continuum [1]. It is now
described as a “diluted material point” with length ds and with a transverse
microstructure. This microstructure may be represented, in the considered reference
configuration, by a plane surface element orthogonal to the director curve at the
point P (Figure 1).
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A4s

-

(€)
@
A

Figure 1. The particle at the point P

1.2 Kinematics
The velocity field

The particle at the point P, with the length ds along f(s) the tangent vector to (C), is
characterised by its position s on (C) and by the orientation of the transverse

microstructure. The evolution of the system at a given instant of time ¢ is described,
from the geometrical point of view, by the velocity of the generic point P of (C)

denoted by U(s) and the angular velocity of its micro-structure denoted by £2(s)
given for all the particles on 4B.

The movement of the particle P in the one-dimensional model is the rigid body
motion defined by these two vectors attached to the particle P. The general
expression of the corresponding velocity field in R’ is

(1) VM R, U(M)=U(s)+2(s) nPM,
where the symbol “ A” denotes the external product of two vectors.

To describe such a rigid body velocity field the concept of velocity distributor has
been introduced (e.g. [1]). Eq. (1) is the explicit definition of the velocity field
generated by the velocity distributor {U(s)} which describes the movement of the

particle

(2) {U)}={ P, U(s), 2(s)]

with the characteristic property

€) VPO EeR’, {U(s)} = { P, U(s), 2(s)} ={ O, U(s) + 2(s) A PO, (s)}.

In order to comply with the concept of a continuous medium, in the same way as for
the classical three-dimensional continuum, the fields U(s) and £2(s) are piecewise
continuous and continuously differentiable on AB.

Any rigid body motion of the system S (resp. subsystem S') is characterised by the

rigid body of the current particle P being constant on 4B (resp. A'B'): in such a
case, the system (resp. subsystem) is not deformed. Deformation is the result of the
variation of the rigid body motion of the particles along the director curve.
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The strain rate of the one-dimensional continuum at the point P is the derivative,
with respect to s, of the rigid body motion attached to the particle P, i.e. the

derivative of the velocity distributor {U(s)} with respect to .

The expression of this derivative is obtained from the comparison of the rigid body
velocity fields attached to two adjacent particles P and P+dP. From Eq. (1) we get
through the characteristic property (3), the point M being fixed,

@) VM R, S UM) =S U(s) = 26) At(s) +-Q(s) A M
and then the strain rate of the one-dimensional continuum at the point P is written
) d {IU(S)} = {]D)(s)} = { P, iU(s) —Q(s)At(s), d _Q(s)}.

ds ds— Tds

It means that the rigid body motion of the particle P+dP with respect to the particle
P is defined by the translation with vector

©) (S-U)- Q) AL(s))ds
and the rotation
7) % Q(s)ds .

From Eq. (6) we can easily identify the rate of stretch of the director curve at the
point P from the component of the translation vector along #(s)

dU
8 D(s)=—".1(s).
(8) () =-=-1(5)
To interpret the component orthogonal to the director curve
©) S UE)-DEL) - Q) AL)

more easily we observe that if the microstructure is represented by a plane surface
element orthogonal to the director curve at the point P in the reference

: : : . . d .
configuration, the rotation rate of the director curve is equal to Z(S)/\El—] (s) while

the rotation rate of the microstructure is £2(s). Let 2(s)=£2(s).t(s) denote the

tangential component of £2(s) , then

(10) z(s)A%Q(s)—(!_?(s)—!%(S)z(s))

is the rate of angular distortion of the microstructure with respect to the director
curve. In the particular case when the condition

(1) Z(S)A%Q(S)—(Q(S)—!%(S)z(S))=0
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equivalent to

(12) L U)- D) - Q) AL(5) =0

holds as an internal constraint on the model it implies that the microstructure
remains orthogonal to the director curve (C) in the evolution of the system. Eq. (11)
is known as the Navier-Bernoulli condition. With this condition the velocity field of
the particles is defined by the vector field U(s) and the scalar field (2 (s) which gives
the torsion rate of the director curve while the rate of bending is

(13) Qs)- 2,(5)1(s) :;(S)A%g@ .

The Navier-Bernoulli condition is often introduced as a part of a constitutive law. It
will appear in § 2.3 as a mathematical condition for the relevance of kinematically
admissible virtual motions for specific strength criteria.

1.3 Dynamics

External forces
The external forces applied to a system 4B are modelled by:

e Aline density f(s) corresponding to the distributed forces acting on 4B, so
that the infinitesimal distributed force is f(s)ds for the length element ds .

e A line density m(s) corresponding to the distributed moments acting on 45

so that the infinitesimal distributed moment is m(s)ds for the length element
ds (in practice it is often equal to zero).
e At the endpoints 4 and B, which stand for the boundary of the system:
a concentrated force R, and a concentrated moment H , at the point 4;
a concentrated force R, and a concentrated moment H , at the point B.
e Concentrated forces F, and concentrated moments M, applied at points P, of

AB will also be considered.

Internal forces

It is assumed that the particles of the system 4B exert no action at a distance upon
one another and that, at the point P, the particle of the system immediately
downstream exerts on the particle immediately upstream, via the microstructure,
contact forces which are reduced to a concentrated force X(s) and a concentrated

moment /(s).

These two vectors at the point P (Figure 2) define the wrench of internal forces
(14) [ X ()] =[P, X(s), L(5)]

with the characteristic property

(15) VPQeR’, [X(9)]=[P, X(s), L(5)]=[ O, X(s), L[(5)+ QP A X(s) |
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Figure 2. Wrench of internal forces at the point P

It is common practice to decompose the reduced elements X(s) and [(s) at P into
components along #(s) and in the plane of the orthogonal microstructure. We set

(16) X(9)=N(s)t(s)+V(s)
(17) L(s) =T(s)1(s)+ M(s)

where V(s) and M (s) lie in the plane orthogonal to (C). The terminology refers
physically to the orthogonal microstructure, thus recalling the slender solid at the
origin of the model (Figure 3):

e N(s) is the normal force at P, which is tangent to the director curve

e V(s) is the shearing force at P, it is orthogonal to the director curve

e T(s) is the twisting moment at P, tangent to the director curve

o M(s) is the bending moment at P, orthogonal to the director curve.

Vis)

M(s)

»

N(s) t(s)

T(s)t(s))

Figure 3. Normal force, shearing force, twisting moment and bending moment at P

Equilibrium equations

Taking advantage of the geometric simplicity of the model the differential
equilibrium equations are classically obtained by writing down the fundamental law
of Statics for the infinitesimal element at the point P (Figure 4). In the absence of a
concentrated force or moment we get
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VP e 4B,
(18) 4 r=0
LG | (54 X (5) + m(s) =0

and the boundary conditions at the endpoints

X(s)=-R,, I(s)=-H,
X(sp)=Ry, L(s;)=H,.

3

(19)

-I'(s)
_gt'(l_.,-) .ﬁs)dt"'

_A .
Afs + ds)
I'(s +ds)

Figure 4. Differential Equilibrium equations

In the case of a concentrated force or moment at a point P

(20) [[)_C(Si N=-F,, [L(s)I=-M,
These equations can be simplified by introducing the wrenches of the external forces:

e For the distributed forces and moments, the line density wrench

(21) [ 1()]=[ P, f(5), m(s) ]
e For the concentrated forces and moments
(22) [F(s) |=[P.F.. M, ]

e For the endpoint forces and moments

[R,]=[4.R,..H,]
(23) {[RB]=[B,£B,EB]

The derivative of [ X(s)] comes easily from the characteristic property (15)

(24) %[X@)]{P, %)_((sx %z:(sm(s)v_((s)}.
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Hence, Eq. (18) takes the form of a single differential equation:

VPe AB,

#) %[ X(s)]+[ 1(s)]=0.

The boundary conditions become

(26)

{[X(SA)]?[RA]
[XGp]=[R, ]

and the jump condition at the point P, is written

27) [[X(s)]T+[ F(s,)]=0.

Integrating the Equilibrium Equation

Egs (25) and (27) integrate immediately with the boundary conditions (26). They
determine the wrench of internal forces at the point P, either by downstream
integration from P to the endpoint B or by upstream integration from P to the
endpoint 4. The equations are equivalent to each other, due to the global

equilibrium of the system AB.

[X@)]=[Ry 1+ [ [[()]ds+ D [F(s)]

vPB* = =

(28) T
[X@]=-[R,]-[,[1)]ds— 3 [F(s)]

<8 <s

The internal force wrench at the point P is equal to the wrench of all external forces
applied to the element downstream of P; it is also the opposite of the wrench of all
external forces applied to the element upstream of P,

1.4 Theorem/Principle of virtual work
Virtual motions
The virtual motions of the system 4B are defined in the same manner as the actual
kinematics in § 1.2 with the virtual velocity distributor field {[U(s)} = { P, U(s), Q(s)} ,
piecewise continuous and continuously differentiable on 4B .
Virtual work by the external forces
The virtual (rate of) work by the external forces is written
(29) P=R,U(s,)+H, - £(s,)+ Ry.Ulsy) + Hy - Lsy)
+ 2 (E,.UGs)+M,.0s)

Sy <S“ <SE

[ ((9).U(s)+m(s).2(s))ds.
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The second hand of this equation is the sum of the scalar products of the applied
forces by the virtual velocities and the scalar products of the applied moments by the
virtual rotation rates of the microstructure. This is just the sum of the scalar products
of the corresponding wrenches of forces by the virtual velocity distributors at the
considered points so that Eq. (29) can be written in the more compact form

(30) 20} =[R, {06} +[ R, ]{0(s,)
+ 2 [Fe) 1{Oeof+ [ [ 19 ]{0s)} ds.

The Virtual work equation

Taking advantage of the equilibrium equations (25)-(27), the second line of Eq. (30)
can be integrated and we get the virtual work equation (31) where the two last terms
of the first hand stand for the virtual (rate of) work by the internal forces taking into
account the discontinuities of the virtual motion at points P, which should not

coincide with any point P where the wrench of internal forces is discontinuous:

(31) Te({[[j}—LB[X(S)].%{@(S)}dS— Y [X(sj)].[[{@(sj)}]]=o.

54<8,;<8p

It states that, in the case of equilibrium, the sum of the virtual work by the external

forces P, with the virtual work by the internal forces R([ X ],{@}) is equal to zero.

Explicitly:

42 R4 0}+B(X]{0) =0

with

(33) PAXL{0H== 2 X6)LUGHI- Y, Ls)[20,)1

SA<Sj <SB Sy <Sj<SB

], X6 CE0() - 26 At ds
_ ABE(s)_%Q(S)dS.

From Eq. (16) we may transform the second line of this equation as the sum of the
virtual work by the normal force —LB N(s)D(s)ds and the virtual work by the

shearing force
(34) [ VO-CEU6) - D) At(s))ds
It comes out from this expression that if the Navier-Bernoulli condition (12) is

imposed to the virtual velocity field the shearing force does not contribute to the
virtual work by the internal forces.
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2 Implementation of the Yield Design theory

2.1 Settlement of the problem
Geometrical data

The settlement of the Yield Design problem within the framework of the one-
dimensional continuum follows the same path as in Chapter IV. The geometric data

have already been defined in § 1.1 for a one-dimensional element 4,B,. In practice,

the systems to be considered are made from assemblages of slender elements
(frames, trusses...). These can be modelled as two- or three-dimensional structures
built up from one-dimensional members held together by assembly joints
(Figure 5). The geometric definition of the structure includes these joints. It also
includes the supports of the structure.

As a consequence, the equilibrium equations of the structure consist of the
equilibrium equation of each member, and of the equilibrium equation of each joint
or support which states that the wrench of all forces applied to it must be equal to
Zero.

Figure 5. Solferino footbridge (Paris) showing structural elements (© Jean Salengon)

Loading mode

The loads are applied to the members of the structure in the form of distributed or
concentrated wrenches, and also to the joints and supports in the form of
concentrated wrenches.

The loading mode of the structure is a multi-parameter one, following the definition
given in Chapter IV (§ 1.2).

Resistance of the constituent material
The counterpart of the Cauchy stress tensor in the general theory is now the wrench

of internal forces [ X(s)].

Regarding the one-dimensional members themselves, the resistance is defined at any
point P of an element 4B, by a domain of resistance G(s) for [ X(s)] in R°, which

is often specified through a strength criterion:
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(35) [ X(S)] eG(s)cR® & f([ X(s) ]) <0.

As a rule, G(s) is convex and includes the wrench [ X(s)]=0. The explicit forms of
f([X($)]) in terms of the components (N,V,T,/M) of the reduced elements of
[ X(s)] are called interaction formulae. In practice, they rarely involve the whole set
of the six scalar components of (N,V,T,2M), due to the specificities of each problem

under exam (cf. § 2.2).

The resistance of the assembly joints and structural supports deserves special
comments.

Consider a joint 4 where the oriented elements 4B, are connected (Figure 6). For

each element, a convex strength condition is imposed by the joint, which concerns
the wrench of forces exerted by the element on the joint and includes the zero wrench
of forces, namely

(36) | X(s,)]eG, < £,( X(s,) =0,

Thus, in the same way as for the interfaces in Chapter IV (§ 3.3), the wrench of
internal forces has to comply with Eq. (36) and with the strength condition (35) of the
element itself at the point 4.

B, B,

Figure 6. Strength conditions at an assembly joint

It is important to note that, at a given joint 4, the type of the strength condition (36)
imposed by the joint (§ 3.2) may differ from one element 4B, to the other.

The same procedure applies to a structural support but, since it is commonplace for
structural supports to coincide geometrically with assembly joints in the model, it is
important to have a clear view of the mechanical operation of the structure at the
relevant joint and support in order to avoid any confusion (cf. § 3.3). As an example,
in the case of Figure 7, the strength condition should be split into the strength
condition at the assembly joint in the form of Eq. (36) and the strength condition of
the structural support itself

(37) [X(SA)]EGA & fA([ X(SA)])SO

As a matter of fact, structural supports are just particular cases of assembly joints,
with specific strength criteria, which connect the structure to the external world with
kinematic boundary data set to zero.
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Figure 7. A rigid assembly joint on a fixed hinged support

2.2 Interior approach
Statically admissible internal force wrench fields

In a similar way as in Chapter IV an internal force field is said to be statically
admissible (S. A.) for the problem with a given value of the load @ if it is a wrench

tield defined on the entire geometry of the system, piecewise continuous and
continuously differentiable, which satisfies the equilibrium equations (25)-(27) in
each one-dimensional element and the equilibrium equations of the assembly joints
and structural supports!, for this value of the load.

Interior approach of K

From the general theory (Chapter IV, section 2) we get the definition and the interior
approach of the domain of potentially safe loads for the structure by substituting
statically admissible internal force wrench fields for statically admissible stress fields
in the corresponding equations

[X]S. A with ([ X])
(38) O([XDeK &I X]1[X(9)]eG(s) VAB,VPe 4B,
[X(SA, )] € GA,. V4,
Potentially safe loads

From the convexity of G(s) and G, the domain K is convex as in the general theory.

It also includes the zero load (Figure 8).

Ql\
Ao =
L o o o . Q_f'

Figure 8. Interior estimate of K provided by the convex hull of potentially safe loads

1 As already stated in § 2.1, the wrench of all forces applied to the joint or support must be equal to
zero: this condition should not be mixed up with the strength condition.
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As it has been noted previously, the explicit forms of the strength criteria which are
used in practice seldom refer to the whole set of the six scalar components of
(N,V,T,M). As a consequence the missing components of [X(s)] are unlimited. In

other words, G(s) is not bounded in the corresponding directions of the R® space of
the internal force wrenches. For instance, in the case of a plane structure loaded in its
own plane Oxy, the Yield Design analysis is often carried out with f ([ X(s)] ) being

restricted to f(N,M_), where M _ is the component of M along the z axis?, or even
to f(M,) only. After such a simplified analysis has been performed, another one is

usually made on the basis of the design so-obtained in order to check the
compatibility with the complete strength criteria (e.g. taking the shearing force into
account). Such a double-step procedure aims at taking the best advantage of the
geometric simplicity of the one-dimensional continuum model.

2.3 Exterior approach

Kinematically admissible virtual motions

A virtual motion of the structure is defined by a virtual velocity distributor field
{[fI(s)} = { P, U(s), Q(s)} as in § 1.4. The domain of definition of this field consists of
the constituent one-dimensional members A4.B, of the structure, the joints connecting
these members, and the supports of the structure.

In order to be kinematically admissible for the problem such a virtual motion must
be piecewise continuous and continuously differentiable in the structure.

Virtual work equation for the structure
Let [ X ] be a statically admissible internal force wrench field in the structure and

{IEI} a kinematically admissible virtual motion of the structure.

The virtual work by the external forces in equilibrium with [X] in the virtual
motion {IEI} is developed by the corresponding wrenches of external forces applied

to the constituent members, the assembly joints and to the structural supports.
According to the multi-parameter loading mode, it takes the form

(39) 2(X]{0h =0 x]-a({T}).

The virtual work by the internal forces in the structures is developed in each oriented
constituent member 4B, with the same expression as in Eq. (31), and in the joints
and supports.

Recalling the notation {]ﬁ)(s)} = % {[f](s)} , we have:

2 This is the case when Oxy is a plane of symmetry for the physical system modelled by the structure.

— 140 —



Chapter IX - Yield Design of structures

(40) P X ],{Ifj}) -y -[A,»B,- [ X(s) ].{Jﬁ)(s)} ds-Y, [ X(s) ].[[{@(Sj)}]]

i

—Z[X<SA,>]. [[{MAJ}]]—Z[X@B,.)]. I{0(8)}
=D [ X5 {06 )

where the second line stands for the joints and supports, with the notations
an [{0(4)}1={0¢s,)} - { D)
OB ={08)] {05},

and the third line stands for the structural supports.

Maximum resisting work

The maximum resisting work to be used in the kinematic exterior approach, as stated
in the general theory, consists here

e of the contribution of each one-dimensional member itself, obtained as the
upper bound of the right-hand side of the first line in Eq. (40) due to the
strength condition (35),

e of the contribution at the joints and the supports, derived from the strength
condition (36) as the upper bound of the second line,

e and of the contribution at the supports derived from the strength condition
(37) as the upper bound of the third line.

We get

e for the line density of maximum resisting work in the first contribution
(42) (D)} = sup{[ X' | {Ds)}[[X']e G(s)}
and for each virtual velocity jump
(43) A0 ) =sup {[ 3 11{ 0 1| [ X' T G5}
e For the second contribution
7, (O =sup{[ X LH{OIT[ X' 1€ 6, |
7, (OB =sup ([ X L0 X' ] 6, |-

e For the third contribution

(45) 72, (0 pp =sup{[ X |- {Ts | [ X T €6, |
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Finally the maximum resisting work for the structure is written

(46) Z.({0h=2[,, 7(Behds+ X ({0 )}
DA IEEAUREAN)
272,06,

Fundamental equation and relevant virtual motions

The fundamental equation of the kinematic exterior approach is the counterpart of
Eq. (3) in Chapter VI

A (A~ (_~
47) {0} KA. Kc{Q.g(iU})—Tmr(iU})so}.
The efficiency of this equation for the determination of an exterior approach of
domain K requires Tmr({[@}) being finite: {@} must be a relevant kinematically

admissible virtual motion of the structure (Chapter VI, § 2.1) complying with the
conditions imposed by the unbounded directions of the strength criteria of the
members, the joints and the supports.

3 Typical strength criteria

3.1 Interaction formulae
Wires

From the Yield Design viewpoint, wires are modelled as exhibiting no resistance
except to tension.

The strength criterion is written

18 < . 0<N(s)<N,(s)
) [RO106) =01y |75 = | M) | =o0.
Hence
7 ({B(s)}) =sup{ 0.N,() D(s) |
(49)

(L 0()) = sup{ 0, Ny()LU()-1(5) |-
Normal bending (cf. § 2.2)

In the case of a plane structure loaded in its own plane Oxy a first Yield Design
approach is often performed with strength criteria which depend on M, only

(50) [ X(s) ] eG(s) @ m (s)<M_(s)<m'(s)
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where m"(s) and m (s) are the algebraic values of the maximum resisting bending

moment of the element in positive and negative bending respectively. This means
that the components (N(s),V (s),7(s), M(s)—M_e.) of [ X(s) |, are not bounded.

Hence
(D)) = +e0
it 90(5)- 05) nt5) 20 0r 20 o 20
(51) ds ds
D)} =sup{m 2(s), m* 7(5)]
if SL0(5)-2(5) A () =0 and 26) _ 55y
and
Z({0()} 1) =+
) if[U(s)T#0 or [2(s)Tne, %0

{0} =sup{ m™ O(s), m6" (s)}
if [U(s)]|=0 and [ 2(s)]| = O(s)e. .

Practically, for such problems, this implies that kinematically admissible plane
virtual motions in Oxy must satisfy the Navier-Bernoulli condition with zero virtual

rate of stretch to be relevant.
Bending moment and axial load

The same case as above is now considered, taking into account the normal force in
the strength criterion. The interaction formulae vary according to the shape and to
the nature of the cross section of the original three-dimensional beam which is
modelled as a one-dimensional medium.

Figure 9. Ideal I-shaped section with vanishing web
As a first example, for a homogeneous ideal I-shaped section with vanishing web

(Figure 9), the following interaction formula may be adopted

N(s)
NO

—-1<0.

(53) [X(s)]eG(s) = ‘ M.(s)
m

+ ‘
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Hence, for the maximum resisting work

7Z'({]D)(S)}) = o0

if (0= 20) nt) Atl9) 20 0r L8 e 20

z

(54) i
(D)) =sup{ Ny | DGs)]| m| 7(5)||
if (-0 -20) nt) Atl9) =0 and 2550
and
Z([{0(s)} ) = +00
55 T[T TALs) #0 or [2s) e, #0

A0} D =sup{ N, |10 1], m| dcs)] |
if [U(s)I=[U(s)] (s) and [ 2(s) [ = O(s)e. .

As a consequence, kinematically admissible plane virtual motions in Oxy in order to
be relevant, must satisfy the Navier-Bernoulli condition without any condition on the
virtual rate of stretch.

As a second example we consider a rectangular cross section for which the following
interaction formula is obtained when the constituent material is homogeneous and
exhibits the same resistance in tension and compression

(56) [X(s) ] e Gls) = M.(5) +(N(S))2 ~1<0.
m N,

The relevance conditions are the same as in Eqs (54)-(55) and the maximum resisting
work is written

o) - LR
(57) .
ﬂ({HD(S)})zNO‘b‘ i ;V’;’:j{ >1
n(ﬂ{u}(s)}ﬂ):4(”“8);‘:(120[[“)2 i Nzo%mg
(58) )
7z([[{®(s)}]])=No[[U]] if % >1,
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3.2 Assembly joints
Rigid joint (Figure 10)

Figure 10. Rigid joint

When a member is connected to a rigid joint, no limitation is imposed to [X(s 4 )]

through Eq. (36). Hence, with the definition (41) for II{[[AJ(AT)}]], we have for the

maximum resisting work
(59) 72, (A = +o0.

Ball and socket joint

Figure 11. Ball and socket joint

This three-dimensional joint (Figure 11) requires the component /°(s,) of [X(s‘i‘ )]
to be equal to zero and does not impose any limitation on A(s, )
(60) | X(s,)|eG, = I(s,)=0,

from which we derive
70, (IO = +o0 i [U(4)T#0

(61) : i
72, (L{OA)[I) =0 if [U(4)]=0.

The relevant virtual motions allow any virtual rotation jump between the member
and the joint and no virtual velocity jump.

In addition to Eq. (60) a limitation may be set on *X'(s,), with the corresponding

changes on the relevance conditions and the expression of the maximum resisting
work.
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Pinned joint or axial joint (Figure 12)

Figure 12. Pinned joint (London Eye. © Jean Salengon)

For a pinned joint parallel to e, the strength criterion is less restrictive than Eq. (60)
since it only concerns the component of /°(s, ) along e,

(62) | X(s,) |G, < I(s,).e.=0;

therefore
72, (O[T = +o0 it [U(4)T#0 or [£2(4)[Ae. #0

© 72, (L0 =0 if [U(4)1=0and [ 2(4)]1=6(4)e..

The relevant virtual motions allow any virtual rotation jump parallel to the axis of
the joint and no virtual velocity jump.

In the same way as for the previous joint, in addition to Eq. (62) a limitation may also
be seton X(s, ).

Other types of joints

More sophisticated strength criteria for the joints can be treated in the same way as
above, such as a non-symmetric pinned joint where

(64) | X(s,)]eG, &7 <I(s,)..<0
and therefore

72, ({04 = +o0 if [U(4)1#0 or [2(4) T Ae. #0
© 72, (O[T =sup{ 7~ 0(4),0} if [U(4)]1=0 and [ 2(4)]=0(4)e..

It is also recalled that the strength criterion at a given joint may differ from one
connected member to the other.
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3.3 Structural supports

The strength conditions for the supports concern the endpoints where the structure is
connected to the external world. Following the procedure exposed in § 2.1 and
sketched in Figure 7 a structural support is only concerned with two elements: the
external world on the one side, which will be conventionally considered as the
upstream side, and the corresponding endpoint of the structure on the other,
considered as the downstream side?.

Fixed bilateral structural supports

Fixed rigid (or built-in), ball and socket, or axial supports (Figure 13) are governed by
the same strength conditions on [ X(s,)] and the same expressions for the maximum

resisting work densities on {@(s y )} as their counterpart assembly joints (Eqs (60) to

(65)).
Jﬁ i[

Figure 13. Fixed built-in and axial structural supports

Mowvable bilateral supports

A movable bilateral support such as the axial support in Figure 14 differs from the
corresponding fixed one by setting bounds to the horizontal component of [ X(s,)].

The strength condition is written
I'(s,).e. =0
66 Xs)leg, <9 _
(66) (X656, {LS)_((SA)_% .

with L' and L the algebraic values of the limits set to the horizontal component of

[ X(s A)] )
The maximum resisting work density is
72,({0(s D) = +o0
if U(s,)ne, #00r Qs,)ne. %0
72,(Os)h =sup{ L U,(5,),L'U,(s,) |
if U(s,)=U(s,)e, and Qs,)=0(s,)e..

(67)

3 The opposite convention may obviously be adopted.
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Figure 14. Movable pinned support and fixed unilateral support

Unilateral structural supports

Within the framework of the Yield Design theory, unilateral supports are just
particular cases of movable structural supports with a unilateral mathematical

constraint on [ X(s,) |.

For instance, Figure 14 presents a fixed unilateral support such that
(68) [X(SA)EGQA@l(sA).gySOandE(sA)=O.

Hence

(69)

4 Final comments

The Yield Design approach within the one-dimensional continuum framework is
currently applied to the analysis of frames and trusses. Many theoretical works (e.g.
[2-15]) have been devoted to such applications from the numerical point of view in
relation with linear programming and convex programming, applying the duality
and Kuhn-Tucker theorems. The principal goal was to increase the efficiency of the
algorithms for the minimisation process in the kinematic exterior approach and in
the dualised implementation of a genuine static interior approach [16].

The approach is convenient for the Yield Design analysis of beams and arches with
the introduction of the appropriate interaction formulae according to the constituent
material (homogeneous or non-homogeneous; steel, reinforced or pre-stressed
concrete, etc.) and depending on the cross section shape (I-shaped section, solid-
webbed girder, box girder, etc.)

The one-dimensional curvilinear model is also the basis for crude and simplified
Yield Design analyses of masonry vaults or arches as sketched in Figure 15. The
problem is two-dimensional. Along the director curve drawn through the voussoirs,
the strength criterion of the constituent stone material must be satisfied, often in the
form of a limitation on the compressive normal force:

(70) -N, < N(s)<0,
with the corresponding maximum resisting work

(71) T ({@(s)}) - sup{ — N, D(s),0 } .
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The strength criterion of the joints between the voussoirs, applies only to the points
of the director curve where the joints are located and takes the form of a Coulomb
friction condition on the components of X (s) together with the bending moment M

being restricted to zero.

Let e,(s) be the unit vector normal to the joint and e, (s) the tangent to the joint in

the plane of the director curve, the strength criterion of the joint is the counterpart of
Eq. (IV, 31)

(72) S[XE ] <0 = | X(s).¢,(5)[+X(s).e,(s) tan g, <O

and the maximum resisting work to be implemented in the kinematic exterior
approach at the specific points where the joints are located is the counterpart of Eq.
(V, 40)
) AU =+ if [U()]-e.(5)<|[U(s)]-e,(5)|tang,

({0 =0 if [U(s)]-ex(5)2|[U(s)]-€,(5) |tan g,

Quite often, the director curve turns out to be orthogonal to the joints, e, (s)=£(s), so
that Eq. (72) is concerned with the normal force N(s) and the shearing force V' (s).

Figure 15. A masonry vault

Detailed reviews of the methods for the stability analysis of masonry vaults will be
found for instance in the comprehensive surveys by Heyman and Benvenuto and in
historical references (cf. [17-31]).
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YIELD DESIGN of PLATES
The model

Yield Design analysis of thin plane structural elements (plates, thin slabs...) subjected to
bending is performed on a two-dimensional mechanical model built upon a director sheet with
the adjunction of a transverse microstructure. The kinematics is defined by wvelocity
distributor fields which describe the rigid body motion of the microstructure attached at any
point of the sheet. The external forces are described by wrench fields of distributed forces and
moments. The internal forces are represented by the symmetric two-dimensional tensor of
membrane forces, with the corresponding in-plane Equilibrium equations, and the two-
dimensional shear force vector field and internal moment tensor field, with the out-of-plane
Equilibrium equations.

1 Modelling plates as two-dimensional continua

1.1 Geometric description of the model

The two-dimensional modelling of plates (and thin slabs) proceeds from the
specificity of the geometric characteristics of these structural elements which are
plane and slender. The model is described as a two-dimensional continuum built on
a plane director sheet (D) in the R’ Euclidean geometric space [1].

A system S is described geometrically on a surface S of the director sheet (D) and it
is modelled as a set of particles. In a similar way as in Chapter IX, since the model
stands as the result of the smashing onto the director sheet (D) of the three-
dimensional plate or slab, a particle P is now described as a “diluted material point”
with surface dS and the adjunction of a transverse microstructure. In a general
approach, this microstructure stands for the volume element orthogonal to (D) at the

point P: it is represented, in the reference configuration, by a segment of a line
orthogonal to (D) at the point P (Figure 1).

(D)

Figure 1. The particle at point P with its associated microstructure
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From the comparison of these introductory words with § 1.1 in Chapter IX it can be
anticipated that some aspects of this two-dimensional model will be similar to the
one-dimensional model studied before, with the important difference that ordinary
differential equations along the director curve will now be replaced by partial
differential equations in the director sheet. This will require the introduction of
tensor quantities and, from this latter point of view, similarities with the classical
three-dimensional continuum model will also be encountered but with some new
technicalities which may seem somewhat cumbersome at a first glance.

1.2 Kinematics
The velocity field

Let the position of the geometrical point P in the director sheet (D) be denoted
OP=s=x,¢,i=1,2 where (O,¢,e,) is the right-handed basis of an orthogonal
Cartesian coordinate system in (D) with e, the unit vector orthogonal to (D). The
particle at the point P is geometrically characterised by its position s in (D) and by
the orientation of the transverse microstructure.

From the geometric point of view, the evolution of the system at a given instant of
time ¢ is described by the movement of the particles: it is defined by the velocity of
the generic point P in (D) denoted U(s) and the angular velocity of the associated

microstructure denoted £2(s), given for all the particlesin .

The movement of the particle P in the two-dimensional model is the rigid body
motion defined in R’ by the two vectors U(s) and £2(s) attached to the particle,

with the general expression of the corresponding velocity field in R’
(1) VM eR’, U(M)=U(s)+£2(s) APM.
It is generated by the velocity distributor {U(s)} as defined in Chapter IX (§ 1.2)

2 U@} ={ P, Us), 2s)}.

Continuity of the medium implies that the fields U(s) and 2(s) are piecewise
continuous and continuously differentiable in S.

The system is deformed when the rigid body motion of the particles varies over S'.
Comparing the velocity fields attached to two adjacent particles P and P+ds in S

we get

€) VM eR’, dU(M) =0U(s).ds — £2(s) Ads +(0€2(s).ds) A PM

where the point M is fixed, and 0U(s) and 0¢2(s) denote the gradients of the
corresponding fields with respect to (x,,x,) in (D). These Euclidean tensors are

elements of R’ ® R?, which means that they transform a vector in (D) into a vector
in R*.
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In consideration of the specific role played by the third dimension in the model it is
convenient to split the fields U(s) and £(s) as follows

{ U(s) =u(s)+w(s)e, u(s) (D), w(s)eR

@ Q(s)=a(s)+€2(s)e; a(s)e(D), (s)eR.

Hence the gradients
5 {a=U<g) =0u(s)+e,®am(s)  Qu(s)cR*OR’
002(s) = Dax(s) +e, ®002,(s)  da(s) eR* @R,
In order to make the presentation simpler we shall restrict the two-dimensional
modelling of plates to what is necessary and sufficient for the classical Yield Design

analysis of plates subjected to bending. Thence, although the in-plane component
u(s) of U(s) will be retained essentially for pedagogical reasons, the transverse

component (2(s)e; of 2(s) will be set to zero identically. This means that the strain
rate exhibits no torsional component!.

It follows that Eq. (3) takes the reduced form
(6) VM eR’, dU(M) = (3u(s) +e; ®m(s)).ds — (s) Ads +(da(s).ds) A PM

showing that the rigid body motion of the particle P+ds with respect to the particle
P is defined by the translation with vector

(7) (Ou(s) +e; ®(s)).ds — a(s) Ads
and the rotation

8) dax(s).ds .

The term Ju(s).ds in Eq.(7) is just the two-dimensional counterpart of the term

gradU.dM in Eq. (IlI, 5). The symmetric part of du(s) is the strain rate tensor of a

classical two-dimensional continuum defined on (D).

As for the complement, e, ® ow(s).ds —a(s) Ads, we observe that since both terms are

oriented along e, Eq. (7) may also be written
©) Ou(s).ds +e; ®(Ow(s) —e; A as)).ds.

This equation recalls Eq. (IX, 9). Its second term is related to the rate of angular
distortion of the microstructure with respect to the director sheet: the rotation rate of
the normal to the director sheet at the point P is —e; A0w(s) while the rotation rate of
the microstructure is just @(s) . These two rotation rates are independent from each
other as they proceed from w(s) and a(s) respectively.

1 A general presentation retaining the transverse component £2, , although heavier, can be carried out
up to the implementation of the Yield Design theory; then, assuming infinite resistance to torsion

results in the £2; component of the relevant virtual motions to be identically equal to zero.
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Note that, in the particular case when the condition
(10) on(s)—e; naxs) =0,

which is known as the Kirchhoff-Love condition, is imposed to the model as an
internal constraint it implies that the microstructure remains orthogonal to the
director sheet (D) in the evolution of the system?.

Finally, for the general model considered here, we write the gradient of the rigid
body velocity field

(11) VM R, BU(M) = du(s) + e, ® (2w(s) —e; A a(s)) +0(s) A PM.
It defines the gradient of the velocity distributor (2) as the tensorial distributor
(12) o{U(s)} ={ P, du(s)+e, ® (dwls) —e; A (s)), De(s)}.

2 Dynamics

2.1 External forces

External forces are applied to a system ' on the surface S and at the boundary
denoted oS

Surface forces

D)

Figure 2. Distributed forces acting on the system

Surface forces are modelled by

e A surface density f(s) corresponding to the distributed external forces acting
on S (Figure 2).

e This surface density can be split into its normal and tangential (in-plane)
components with respect to (D). The infinitesimal distributed force is f(s)dS

{J_’(g)=J_’D(§)+J§(§)€3

(13)
/)= fils)e + fr(s)e,.

e Occasionally, an external moment surface density #%,(s), parallel to (D) will
be considered.

2 Note the similarity with the Navier-Bernoulli condition, Eqgs (IX. 11, 12).
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e Line densities of in-plane and out-of-plane external forces ¢, (s) and ¢,(s)e;,

or external moments 7~ (s) parallel to (D), will also be introduced?.
e Concentrated external forces or concentrated external moments parallel to (D)

will only be treated as limit cases of high surface densities on concentrated
areas.

Boundary forces
Boundary forces are modelled by (Figure 3)

e A line density of force on 0S: on the element d/ with outward normal n(s)
such that the distributed force is

(14) T(s)dl+R(s)esdl
where T'(s)d(¢ denotes the in-plane component.

e A line density of moment on 0S, with no component along e,% on the
element d¢ the distributed moment lies in (D) and is equal to

(15) H(s)dC.

Figure 3. Boundary forces acting on the system

Note that, in order for the system to be in equilibrium, it is necessary that the external
forces and moments comply with the global equilibrium equations in terms of
resultant force and moment. It may be observed that all the distributed or
concentrated external moments applied to the system are supposed to have no
component along e, , consistently with the kinematic hypothesis.

2.2 Internal forces

It is assumed that the particles of the system $' exert no action at a distance upon
one another. At the point P, adjacent particles interact along an arc of a line d( with
normal n(s) which defines the (+) and (-) sides as in Chapter III (§ 2.3). The contact
forces exerted by the particle on the (+) side on the particle on the (-) side are
proportional to d¢ and modelled as follows.

3 Such forces may result from the connections of the system with other structural elements.
4 No torsion of the modelled plate is assumed.
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e A force proportional to d/, with components N(s,n)d( in the plane of (D)
and V(s,n)d( along e,

(16) N(s,n)dl +V(s,n)e,dL.
¢ A moment proportional to d/ with no component along e,

(17) I(s,m)dC.

2.3 Equilibrium equations
Establishing the equilibrium equations for this model in the classical presentation

refers to the same arguments as for the three-dimensional continuum model:

e The global equilibrium of a small triangle to prove the linear dependence on
the orientation of the corresponding facet;

e The global equilibrium of a small parallelogram to establish the partial
differential equations for the internal forces fields.

In-plane Equilibrium equations

Exactly as for the three-dimensional continuum, the global equilibrium of the forces
applied to a small triangle in the plane of the director sheet (D) proves that N(s,n) is
a linear function of n through a tensor N(s)

(18) N(s,n) = N(s).n.

Then the small parallelogram argument proves the symmetry of the second rank
membrane force tensor N(s) and yields the in-plane equilibrium equations

N(s)=N,;(s)e, ®e, i,j=1,2
) N;;(s) =N, (s)

divN(s)+ f (s)=0.
These in-plane equilibrium equations are completed by the boundary condition
2 N(s).n=1(s).

In the case of a line density ¢ (s)of in-plane external forces applied to the system

along (L), the membrane force field is discontinuous when crossing (L) following
its normal » and the corresponding jump equation is written

(21) [N].n(s)+¢,(s)=0.

Egs (19)-(21) provide the whole set of equations for the in-plane equilibrium of the
model, which are independent of the out-of-plane problem to be examined now.
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Out-of-plane Equilibrium equations

Shear forces

Global equilibriums of the forces applied to a small triangle along e, proves that the
scalar ¥ (s,n) is a linear function of n through a vector V(s) e R

{K(§)=V,~(§)€,~ i=1.2

(22)
Vis,n)=V(s).n.

The component V,(s) (resp. V,(s)) of V(s) is the magnitude of the line density of

shear force V|(s)e; on the facet with normal ¢, (resp. e,) at point P. The vector V(s)

is called the shear force vector although it is clear from Eq. (22) that it represents a
linear operator and not a force (Figure 4).

1

Vis,ndle,

Fi(s)dx, e

Figure 4. The small triangle argument applied to the shear forces

The global equilibrium of the forces applied to the small parallelogram along e,
(Figure 5) yields the partial derivative equation (23) for the shear force field

(23) divV(s)+ f;(s)=0.

X3
T —e; V dx,

e; f;(s)dx, dx,
Pl A

]
—e, V, dx, ‘
-2 L

;/ e, (V + iIl dx;) dx,
éx,

Figure 5. Global equilibrium of the small parallelogram along é;

2

% vy,
cX,

e;(V, +

5 The contribution of the vertical component of the distributed forces is of second order.
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The boundary condition for the shear force field follows from Eqs (14), (16) and (22).
At the point P of dS with outward normal n(s)

(24) V(s).n=R(s).

If a line density of vertical force ¢,(s)e; is applied along a line (L) in S, the shear

force field is discontinuous and the jump equation when crossing this line following
the normal # is:

(25) [V (s)]-n(s)+¢,(s) =0.
Internal moments

In the same way as before, the global equilibrium of the moments applied to the
small triangle proves that /°(s,n) is a linear function of »n through the second rank

tensor /(s) eR*®R* (Figure 6)

{g(g):sz(g)gj ®€l l:]:Lz

(26)
I'(s,n)=1(s).n.

The components 77,(s) and 77,(s) (resp. [,(s) and 7I,,(s)) of [(s) are the

components along ¢, and e, of I"(s), the line density of internal moment on the
facet with normal ¢, (resp. I7,(s), e,) (Figure 6).

~
&
\Je"

P dx,

dx, I, dx

" Flldxz/|<\]—11dx:-
-

flz d\‘l

< 1
—L,(9)dx, ¥
I'(s.m)df

Figure 6. The small triangle argument applied to the moments. Components of /(s)

For the small parallelogram, the global equilibrium equation with respect to the
moments is written (Figure 7)

(27) %+%§1+1/2§1_1/1§2+th0
2 1
or, explicitly,
o + ory +V,+h =0
ox,  Ox,
(28) ol,, oI
—H+—2_V +h =0.
Ox, 0ox,
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-,V dx,
eV, + v dr,)dx,
P axz xz
A
—e, V, dx, PR
A"
-1, dx,

\
—L5dy, § or,

‘\
P L+ dx,)dx,
y 4" o,
or, d

v
4+ 2 dyde, @05 a0
I+ : 1

)

Figure 7. Global equilibrium of the small parallelogram

We observe that Eq. (28) can also be written in the expected form of a conservation
law

(29) div I (s)—e; AV(s)+h,(s)=0.

With the introduction of the second rank tensor M(s)=e; A I (s) defined by

(30) VneR?, M(s).n=e;n(L(s).n)=e; AL (s,n),
this equation takes the form®

(31) divM(s)+V(s)+m,(s)=0

with

(32) mp(s) =& Ahp(s).

The tensor M (s) is the tensor of internal moments.

A\

Figure 8. Components of the tensor of internal moments
The components of M determined from Eq. (30) are shown in Figure 8

(33) {Mn =—1) M,=-I,

le :F11 Mzz :F12-

6 More justification for the introduction of tensor M will appear in Section 4, when the two-

dimensional model is derived from the original three-dimensional slender solid within the three-
dimensional continuum mechanics framework
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From the dimensional analysis viewpoint, they appear as forces, making the
“moment” terminology somewhat misleading.

It is worth noting that no symmetry result can be established at this stage for the
tensor M . Thence the explicit forms of Eq. (31) in Cartesian and polar coordinates

are respectively

oM
—824” +—=4V. +(m,), =0
(34) )
oM . oM
Z4+—2 4V +(my), =0
ax 8)/’ Yy y
aMrr _'_laMrH +Mrr_M¢90 +I/r +(mD)r:0
(35) or r 00 r
oM,, +16M99 Mgt My, +V,+(my), =0.
or r 00 r

Together with the field equation (31) the internal moment field must comply with the
boundary conditions which are derived from Eqs (17) and (30). At the point P of oS
with outward normal »

36) { M(s).n=es A H(s)

I'(s).n=H(s).

Discontinuity of the internal moment tensor field occurs when a line density of
external moment /7, (s) is applied to the system along a line (L) in §. The jump

equations for the fields M and I” are obtained from Egs (29) and (31)

{ [M ()T n(s)+e; AL, (s)=0

(37)
[L(].n(s)+ L p(s) =0.

3 Theorem/Principle of virtual work
3.1 Virtual motions

The virtual motions of the system $' are defined in the same manner as the real
kinematics described in § 1.2 through a velocity distributor

(38) (U@} ={P. U, 2s)}
with the condition [% (5)=0.

The fields U(s) and £(s) are piecewise continuous and continuously differentiable

in S. They are split into their in-plane and out-of-plane components according to
Eq. (4) with similar notations.
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3.2 The virtual work equation

With the description given above for the external forces - surface densities of
tangential and normal forces, line densities of forces and in-plane moments in § and
on 0S - the virtual (rate of) work by the external forces in any virtual motion of the
system takes the form

A

(39 RAUN=R@ o) = ,(9).i()dS + [ ¢, (5).i(s)dL+[ T(s).i(s)d
+[ A W()dS+ [ g(9) M) dL+[ R(s)iins)d
+[ hp(9).(9)dS+[ I p(s).0(s)dL+| H(s).a(s)dl,
which can be split in the form
(40) 20 h=Ra@)+Rhd)
where P (i) stands for the first line of the right-hand member of Eq. (39).

Taking the in-plane equilibrium equations into account, P (i) transforms in the same
way as for the three-dimensional continuum (cf. Chapter 111, § 3.2)

(41) R = f,(9)-i(s)dS +] 4, (s).d(s)dL+[ T(s).ii(s)dl
= [ N(9):01i(s)dS + [ n(s). N(s).[(s)dL
= ~P(i). *

which is just the theorem of virtual work for the membrane (or in-plane) two-
dimensional model.

The second line of Eq. (39) transforms similarly:
(42) [, () W()dS+[ d(s)(s)dL+] R(s)(s)dl =
= [ V(). 0i()dS + | V(9).I)Tn(s)dL.

For the third line, we first recall the two following mathematical identities

(43) div(‘ L.@)="T: 0+ d.divD
and
o ) ) o
(44) js div( £.Q)dS+J.LQ.[[£]].gdL+Lé[[6_0]].£.gdL—Iasg.g.gdﬁ,

an application of the divergence formula (cf. [2]).

Combining these two equations we get

(45) Iasé).g.r_zdf— _o.divLds :L ‘[ 00dS +JLQ[[@]].1=”.QdL+IL@.[[1=”]].QdL
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and, taking Eqs (29), (36) and (37) into account,
(46) [ hp(s).0()dS+[ [ p(s).ds)dL+] H(s).a(s)dl =
= [ 'L(s): 90()dS—[ V(s). (e A@(5))dS+ | [ (9] L(s).n(s)dL.

Joining Eqs (42) and (46) together we get the expression of the virtual work by the
internal forces in the out-of-plane two-dimensional model

(47) B{nd}=-] ‘L(s):2a(s)dS~[ T L(s)-n(s)dL

[ V(9).(29) e, A &) dS - | V(s).[()] n(s)dL.

(48) PAwa}=[ fi(s)Ms)dS+ [ g()i(s)dL+] R(s)i(s)dl
+[ hp(9).d()dS+ [ I p(s).0s)dL+| H(s).a(s)dl,

the theorem of virtual work for the out-of-plane two-dimensional model is written

VW, ® piecewise continuous and continuously differentiable in §
) B0} + B b} -0,

In Eq. (49), the virtual work by the internal forces 2 { W,&} may also be expressed

using the internal moment tensor M . For this purpose, it is convenient to introduce

(50) V(s) =e5 A a(s)
which yields:
(51) R0} =—[ ‘M(s): 90(s)dS—[ [H()]. M(s)-n(s)dL

- [, V().(@is) - 9))dS = [ V() D] n()dL.
As a conclusion, the virtual work equation
(52) 2(Uh+n(0h =0

is expressed by Eqgs (41) and (49)-(51). Joining Eqs (41) and (47) or (51) together we
get the complete expression for the virtual work by the internal forces fP‘({ U }) in

those virtual motions that exhibit no rotation rate about e,
(53) P, W, 9) = =] N(s):00(s)dS ~ [ n(s).N(s).[a(s)dL
~ [ 'M(s): 29¥(s)dS — | T M(9).n(s)dL

— [ V(5).(@i(s) - ¥())dS - L V(s).Im)In(s)dL.
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It is worth noting from Eq. (53) that in the particular case when the Kirchhoff-Love
condition (10) is imposed to the virtual velocity field there is no contribution by the
shear force vector to the virtual work by the internal forces (similar to the shear force
not contributing to the virtual work by the internal forces under the Navier-Bernoulli
condition in Chapter IX, § 1.4). At the same time, the Kirchhoff-Love condition

implies that dv(s) = Q(g) which is a symmetric second rank tensor. It follows that in
Eq. (53) only the symmetric part of tensor M(s) contributes to the virtual work by
the internal forces.

3.3 Tensorial wrench of internal forces

The gradient of the virtual velocity distributor {@} is the counterpart of the
tensorial distributor defined in Eq. (12) for { U }. It is written

(54) o{U(e)} ={ P, dii(s) + e, ®is) — e, ®(e; A dXs)), 2ANs)}.-

Concerning the internal forces, we first define the wrench of the densities of internal
forces on the line element d¢ with normal » at the point P

(55) [P, N(s,n)+e, V(s,n), [(s,n)],
which depends linearly on r through the tensorial wrench
(56) [X(s)]=[P. N(s)+e, ®F(s), L(s) |
=[P, N(s)+e, ®V(s), —e; AM(s) |
(57) [X(9)]n=[ P. N(s).n+(e; ®V()).n, [(s).n]
=[P, N(s,n)+e,V (s,n), [(s,n)].
The doubly contracted product t[ X(s) ] :6{ @(g)} is the duality product of these two

quantities. Taking Eqs (50), (54), (56) and the symmetry of N(s) into account, it is

written

59 [X(9)]:0{ U(s) | = N(s):81i(s) + V (5). 80—V (5). 5(s) + [ (5):0Xs)
= N(5):00(s) +V(5).0W—V(s).9(s) +' M (s5):0%(s).

Hence the expression for P ({ }
(59) 20 h=-[ [X©]:0{ 0 |ds - |, [T X ] n(s)dL.

Eq. (59) is similar to its counterpart for micropolar three-dimensional media (cf. [2]).

With the wrenches of external forces defined in the same way as in Chapter IX (§ 1.3)
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[ 1) ]=[P. £(9), hp(9) ]
(60) [F©) =] P.g,()+8()es Lo(s) |
[R(s) |=[ P.T(s)+R(s)es, H(s) ],

the virtual work by the external forces Te({ U }) is written

61)  2{Uh=][1]{0s)}ds+] [F) ] {Us}dL+ [ [Re)]{D»)}dL.

The in-plane and out-of-plane Equilibrium equations take the form of a single
conservation law

) { V.P €s,

div[ X(9)]+[ 1) ]=0
with the corresponding jump equation when crossing (L)
(63) [[ X()]1-n(s)+[ F(s) ]=0
and the boundary condition along oS
(64) [ X()]-n()=[R(s) ]

4 Plate model derived from the three-dimensional continuum

A particular case of the model is obtained through a “micro-macro” process starting
from the three-dimensional continuum modelling of the original slender structural
element, subjected to volume density forces and surface density boundary forces,
which is smashed flat onto the director sheet (D) (cf. [3]).

4.1 Internal forces

S
X1 //
ir] /
P| g
= /
A /

Figure 9. Smashing flat the three-dimensional facet onto the director sheet

More precisely, to perform this “micro-macro” process we consider in S the generic
point P of the particle P(s) and the facet d{ with normal » within the two-
dimensional plate model framework and we define the internal forces acting on this
facet, namely N(s,n)d(+V(s,n)e;dl and I'(s,n)d(, as the reduced elements, with
respect to P, of the stresses acting on the three-dimensional facet with normal n
defined, in the original solid, by d(¢ and the transversal thickness 4’4 (Figure 9).
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Introducing the two-dimensional part of the tensor o(s,x,) defined by

(65)

gD(§vx3):o-;j(§ax3)€i®€je i,j=12,

we obtain the expressions of N(s,n)d(+V (s,n)e,d( and I"(s,n)d(

(N(s).n+e,V(s).m)dl =dt [ o (s.0).ndv, +dC [ ¢ 04, (5. 0,) n, d,

[(s).nd0=d( [ xye, n(o(s.0).0)dy, =de [ x ¢ Ao (5.0,).0) dx,.

It follows from Eq. (66) that

(67)

and

(68)

N = o, (sx)dx,

4
V(s)= L, 05 (8,x3) ¢; dx;

M(s) =, AL(S) =[x, 0, (5.3,)dx;

The tensorial wrench of internal forces comes out as

(69)

A
(X&) ]=[ [P, o, (53)+ 04, (5,3)e; ®e,, X0 AT (5, |, .

4.2 Equilibrium equations and External forces

Integrating the three-dimensional continuum equilibrium equations recalled in
Chapter III with respect to x, brings out the equilibrium equations for the two-

dimensional continuum, together with the expressions of the external forces.

(70)

We first note that since o(s,x;) and, consequently, o, (s,x;) are symmetric it
follows from Eq. (67) that N(s) is symmetric.
It also implies through Eq. (68) that M(s) is symmetric.
Integrating the three-dimensional continuum equilibrium equations for the x,
and x, coordinates with respect to x; results in Eq. (19)

divN(s)+/ (5)=0
with

A
S y©) =€ (01(5. ) =055, 4)) +e [ pls ) F(s.5,) dr,
A
+e,(0,5(s, )= 0y5(s5,4)) +e, J.A, P8, x;) F (s, %) dx; .
Integrating the third equilibrium equation brings out Eq. (23)
divV(s)+ f;(s)=0,

where the external force surface density for the two-dimensional model is
obtained from the data on the external forces for the three-dimensional
problem
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(71) £(5)= (035 (5, A) = (s, AN+ [ pls, 53) Fi (s, .

e The equilibrium equation (31) is obtained from the components of Eq. (72)
along ¢, and e,

(72) —f: X, (diva(s,x,) + p(s, x;) F(s,x,))dx; =0,

we get
(73) div M (s)+V(s)+m(s) =0
with the external moment surface density for the two-dimensional model

derived from the data on the external forces for the three-dimensional
problem:

(74) mp,(s)=—x,(A) (0-13 (s, A) e, +0y5(s, A) §2) +x;(A4) (0-13 (s,4) e +0,5(s, 4) €2)
[y plsx) (Fy(s0,) € Fy(s.3,) ;) d,

e The boundary equations are obtained in the same way. Referring to Eqs (14)
and (15)

T(s)dl+ R(s)eydl =dt [ o(s.x,).ndsx,
(75) -
H(s)dl =de [ x e, A (@, (5.3,).n)dx,

4.3 Virtual work approach

It thus appears that this “micro-macro” modelling process results in a particular form
of the general model where, incidentally, the tensor of internal moments is proven to
be symmetric.

Also Egs (70), (71) and (74) give the explicit expressions of the surface densities of
external forces and moments in the two-dimensional model: as it could be
anticipated, f(s)dS =/, (9)dS+ fi(s)e; dS and /,(s)dS =—e; Am,(s)dS are just the
reduced elements of the wrench of all the external forces applied to a vertical
cylinder parallel to 4’4 and with section dS in the original three-dimensional
structural element (Figure 10). This means that [ [(s) | defined in Eq. (60) is just the

wrench of all the volume and surface densities of external forces.

/
- r
A3 i/
A
>
P dS /

/

(D)
A= /

Figure 10. Cylindrical volume element in the three-dimensional solid
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The same conclusion applies to the line densities of external forces along dS with
respect to [ R(s) | .

The rationale of this modelling process may be more easily perceived through the
virtual work theory.

Given the velocity distributor field {@(g)} ={ P, ii(s)+W(s)e;, A(s)}, with d(s), W(s)

and @(s) continuous and continuously differentiable, consider the virtual velocity
field defined in the three-dimensional solid in the following way.

At any point M the virtual velocity is written
(76) U(s.x,) =i(s) +(s) s + As) Ay e
from which we derive the three-dimensional velocity gradient (with V=¢; A®)
(77) grad U (s, x,) = 0i(s) + &, ® Ow(s) + (s) A (e, @, ) +x, 00(s) A,
= 0u(s) +e; ® ow(s) —V(s) ®e; —x; OV(s).

It follows that the virtual work by the internal forces takes the explicit form:
(78) RO =~ , ols.x):gradU(s,x,)dS d,
with
(79) |, olsx):gradU(s,x)dSdx, = o (s,x,):00(s)dS dx,
o o x»j—j(g) +0(s,x) S—i(g))ds d,

- (0'31(§, X )V (8) + 03, (8, X5V, (§)) dS dx,

SxA'A

- xsgD(§,x3)15=\7(§)dex3-

SxA'A

Taking Eqgs (67) and (68) into account, Eq. (79) becomes:
80) [, o(sx):gradUs.x;)dS d, = [ N(s):0i(s)dS
+[ V(). (2(s) ~ () dS + [ M(5):2%(5)dS.
In other words we have
(81) RO) =R w5 =R(T).

As for the virtual work by the external forces, it must be observed that the virtual
velocity field defined by Eq.(76) is, at each point P, i.e. for each value of s, a rigid
body motion. Thence, the virtual work by the external forces P (U) is the integral

over S and along oS of the product of the reduced elements of the external forces
wrench at P by the reduced elements of the velocity distributor at the same point.
From Eqs (70)-(71), (74)-(75) we get Eq. (82) which is identical to Egs (39) and (61) in
the case of no external force line densities over S':
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(82) PO =, f,(©)-a()dS+ [ fi(s)W(s)dS+] f1,(s)-ds)dS

+ [ T(s)-a(s) e+ [ REs) W) dl+ [ H(s). 5)dL,

es— T T T

This proves that the two-dimensional model and the original three-dimensional one
are equivalent from the virtual work theory viewpoint in the velocity fields defined
by Eq. (76). Considering piecewise continuous and continuously differentiable u(s),

w(s) and @(s) fields leads to the same conclusion.

4.4 Final comments

The micro-macro process which has been presented here above may appear as a
double-edged sword:

e On the one side it shows that there is no inconsistency between the three-
dimensional continuum model and the modelling of plates as two-
dimensional continua.

e But it may also lead to the idea that this two-dimensional modelling is
dependent on the three-dimensional continuum and is just some kind of
simplified by-product of it.

It is essential to retain that the general two-dimensional model presented in the
preceding Sections is mechanically consistent in itself and is valid independently of
the possibility of performing the “micro-macro” modelling process and also
independently of any assumption about the mechanical behaviour of the constituent
material.

Within the two-dimensional framework, data on the mechanical properties of the
constituent material, such as its strength criterion or its constitutive law concerning

[X(s)] and 0{U(s)} will either proceed from experimental results at the global
(macro) level or from the “micro-macro” analysis through Eqs (67), (68) and (80).

This will be the case in the following Chapter for the strength criteria of (metal)
plates or (reinforced concrete) slabs.
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YIELD DESIGN of PLATES
Subjected to pure bending

The Yield Design analysis of plates subjected to bending is performed within the framework of
the out-of-plane equilibrium equations and virtual work equation. In the case when the
strength criterion only refers to the internal moment tensor the relevant virtual motions
comply with the Kirchhoff-Love condition: they are defined by the continuous and piecewise
continuously differentiable virtual transversal velocity field of the director sheet. A
particularly important class of relevant virtual motions is obtained through the concept of
hinge lines introduced by Johansen.

1 The Yield Design problem

1.1 General outline

“Plastic analysis” for metal plates [e.g. 1-4], “Yield line theory” for thin reinforced
concrete slabs [e.g. 5-7], have been commonly used for the dimensioning of such
structural elements subjected to pure bending due to the action of distributed or
concentrated normal forces. The corresponding methods can here be presented
jointly within the general framework of the Yield Design theory applied to the two-
dimensional continuum plate modelling introduced in Chapter X.

It may be recalled that the in-plane and the out-of-plane Equilibrium equations of
this two-dimensional continuum are independent of each other. Usually, at least in
the pre-dimensioning stage, the strength criterion of the two-dimensional constituent
material of the model only concerns the components V' (s) and M(s) of the tensorial

wrench of internal forces, without any reference to the tensor of membrane forces
N(s). As already explained in Chapter IX (Section 2.2) this means that the membrane

forces suffer no limitation: therefore the two-dimensional Yield Design analysis of
plates subjected to pure bending will be performed within the only framework of the
out-of-plane Equilibrium equations with the corresponding restricted expression of
the equation of virtual work.

1.2 Settlement of the problem
Geometrical data

The Yield Design problem is defined on a system S with surface S and boundary
oS in the plane director sheet (D). This geometric description encompasses the
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supports which link the system to the external world defined as motionless. These
supports are situated along 0S and they are characterised mechanically by their
strength condition which may be bilateral or unilateral, simple, rigid... as sketched in
Figure 1 in the case of a built-in support.

Gupport 7

— 1

Figure 1. A plate with a built-in support
Loading mode

The external forces applied to the system consist of distributed loads and distributed
moments; concentrated loads will be considered in § 4.1 as a limit case. The loading
mode of the system is a multi-parameter one as described in Chapter IV (1.2).

Resistance of the constituent material

In the same way as for the curvilinear one-dimensional media studied in Chapter IX,
the counterpart of the Cauchy stress tensor in the general theory is now the wrench

of internal forces [X(g) ] The resistance of the constituent material is thus defined
through a domain &'(s) which, in the case of pure bending, usually only refers to the
component M(s) of the tensorial wrench [X(g) ] , thus assuming no limitation to the

shear force vector:
1) [X(9)]eG(s) & f(s,M(5))<0 < M(s)eG(s).

When the “micro-macro” modelling process presented in Chapter X (Section 4) is
physically feasible, the strength criterion of the two-dimensional constituent material
is derived from the strength domain of the three-dimensional continuum through an
auxiliary Yield Design problem where the components of M(s) play the role of

loading parameters, recalling that in this process, consistently with the result
established in Section X.4, M(s)is symmetric with components given by Eq. (X. 66).

This is the case for instance for transversally homogeneous plates made of a material
obeying the von Mises criterion or the Tresca criterion: the corresponding two-
dimensional criteria for M(s) comes out in the same form as the plane stress criteria

of the three-dimensional medium (cf. § 3.1).

In other cases such as for thin reinforced concrete slabs, the strength criterion
proceeds directly from (possibly heuristic) theoretical or experimental analyses at the
macroscopic level (cf. §. 3.2).

As a matter of fact, although the symmetry of the tensor M(s) has not been

established in the general case, it turns out that the implementation of the Yield
Design theory to this model has been performed within the symmetry assumption.
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Therefore symmetry of the tensor of internal moments will be assumed from now
on: M(s)="M(s).

For the supports with the notations of § 2.1 in Chapter X, considering the pure
bending problem, the strength condition only sets limits onto R(s), the out-of-plane

component of the line density of external forces, and H(s), the in-plane distributed
moment line density.

According to Eq. (64) in Chapter X, this results in a condition for [ X(s) | in the form

(2) [ X(9)]-n() € G,(s) < [f(s.V (s,m), [ (5,n))<0

which only concerns V(s,n) and /°(s,n) where n denotes the outward normal to the
boundary of the system at the considered point.

2 Implementation of the Yield Design theory

2.1 Interior approach
The implementation of the interior approach strictly follows the same pattern as in
the general theory (Chapter IV, Section 2). Statically admissible fields V(s) and M (s)

must be constructed in S which comply with the strength criteria of the constituent
material and supports of the system.

Not surprisingly, performing the interior approach in order to obtain lower bounds
for the extreme loads often requires some good academic skill, which explains why
this method is not currently used in daily practice. The importance of such solutions
is evident regarding the assessment of the Yield Design dimensioning of plates. A
survey of the most important contributions in this field may be found in [8-11]: let us
mention [12-17].

2.2 Exterior approach
Kinematically admissible virtual motions

Virtual motions of the considered two-dimensional model have been defined in
Chapter X (§ 3.1) by means of piecewise continuous and continuously differentiable
tields ua(s), w(s) and @(s) on § in the form of a virtual velocity distributor field

() (U@} ={ P, U(s), 2)} ={ P, ii(s) +is)es, iXs)} -

Maximum resisting work for the system

Recalling the symmetry of M(s) and that V(s)=e; Ad(s), the resisting work by the

internal forces in the system in a virtual motion (3) comes out from Eq. (X, 53) in §
and along the discontinuity lines L; and L,, with the addition of the contribution of

the supports along 0S':
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4 ~R(i, W, 9) = [ N(s):0i(s)dS + [ n(s). N(s).[a(s)]1dL
+H V(9 @) =) dS + [ V(). Di)lla(s)dL
+[ M(s): a¥(s)dS+[ [T M(s).n(s)dL.

The “external world” being assumed to be motionless, the jumps in the integrals
related to the supports are [i(s)]] = —(s) and [¥(s)]= e, Al@(s)] = ¢, Ad(s) along
oS.

The maximum resisting work in a given virtual motion of the system is obtained as
the sum of the maximums of the integrals in Eq. (4) under the constraint of the
strength criteria (1) and (2), which introduces the corresponding 7z functions:

7T (0d(s))=+oo if Oi(s)#0

77 (3i(5)) = 0 if di(s)=0

7T (n(s),[[a(s)1) = +oo if [4i(s)[#0
7 (n(s),[a(s)) =0 if [a(s)[=0

®)

7T (9(s) = V(s)) = +oo if O(s)—V(s)#0
7T ((s) = 9(s)) =0 if W(s)—P(s)=0
7T (n(s),[W(s)T]) = +oo if [i(s)]#0

7T (n(s),[i(s)) =0 if [W(s)]=0

77 (9%(s)) =Sup{ M: 80(s) | M' € G(s) |
7) B T
72 (n(5),1%(5) 1) = Sup{ [ (s) . M. 1(s)| M’ € G(s) |

®) 7T (WL [@T) = Sup{ V'[W] + " [&]]

Relevant virtual motions

V', [ eG(s)} -

The description of the relevant virtual motions of the system for the kinematic Yield
Design exterior approach, as defined in Chapter VI (Section 2), follows from Eqs (5)-
(8). In S the relevance conditions are:

{iﬁ@zo, La(s)]=0

) o0 AN . _
ow(s)—v(s)=0, [w(s)]]=0.

In plain words this means that for a kinematically admissible virtual motion to be
relevant for the strength condition (1) no virtual motion should occur in the plane of
the director sheet and the Kirchhoff-Love condition must be identically satisfied [18].
It is clear that these mathematical conditions, just derived from the corresponding
expressions of the 77 functions for the efficiency of the exterior approach, do not
pertain to any constitutive equation as internal constraints.
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Consequently, the relevant virtual motions of the system are defined in § by the
continuous and piecewise continuously differentiable scalar field vi(s) only.

It follows that in the relevant virtual motions the integrals of 7 (8=13(§)) and
7T (n(s),[¥(s)]) in the expression of the maximum resisting work of the system will

take the second line of Eq. (9) into account.

o Regarding 77 (9V(s)) we get
(10) 7 (85(s)) =Sup{ M': 9s) | M’ € G(s) |

where 9°W(s) is the virtual rate of curvature tensor of the director sheet

(11) 0Mi(s) = (s)
and we write
(12) 70 (29()) =7 (2(5)) = Sup{ M: (s) | M' € G(s) }.

e Regarding 7 (n,[vI) =7 (n,[ oW]])

Define #(s), the unit tangential vector to L, =L, at the point P, in such a way that
(¢(s), n(s), e;) be a right-handed triad. Since Eq. (9) states that v(s) is continuous we
have, from Hadamard’s compatibility condition along L, = L, (cf. [19])

(13) [s)1=0 = [aW(s)].1(s) =0
that is

(14) [ 9(s) 1= &(s) T = O(s) n(s)
and consequently, since V(s) =e; A @(s),

(15) [éx(s)T1=0(s)(s) .

This means that the Kirchhoff-Love condition implies that the discontinuity of the
virtual rotation rate is tangent to the discontinuity line (Figure 2).

Figure 2. Relevant discontinuity of the virtual rotation rate
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Hence 77 (n,[[V]]) =7 (n,[[ ow]]) becomes

(16) 7 (n().[¥s)1) =77 (1(5), 6(s)) = Sup{ () M": (n(s) @ n(s))| M’ € G(s) }.
e Regarding the supports

the conditions of relevance will be studied in more details in § 3.3 depending on the
explicit form of the strength criterion but they all include the condition:

(17) [4(s)[=0.

Finally the maximum resisting work in a relevant virtual motion of the system is
given by:

18) B (0)=[ 7 (1s)dS+[ 7 (n().0())dL+ [ 72,17 [ 2N dL.

3 Strength criteria and 7 functions

In view of the abundant literature devoted to the determination and formulation of
the strength criteria for plates subjected to bending, this Section will concentrate on
the presentation of the most commonly used criteria with the corresponding 7
functions to be implemented in the Yield Design approach. The reader may refer to
such exhaustive textbooks as [8, 9] or [20] for extensive lists of references.

3.1 Metal plates

The Tresca and von Mises strength criteria for metal plates subjected to pure bending
are derived from the three-dimensional strength criteria of the constituent material
through the “micro-macro” modelling process described in Chapter X (Section 4).

In the case when the constituent material is homogeneous following the transverse
direction e,, the director sheet is positioned as the medium plane of the plate. The
three-dimensional stress state is a plane stress one. It is discontinuous when crossing
the medium plane: above and below this plane the stress fields are constant opposite
limit state fields with respect to the strength criterion (Figure 3).

The result for the two-dimensional strength criteria concerning M(s) comes through

Eq. (68) of Chapter X and has exactly the same form as the plane stress strength
criteria of the three-dimensional constituent material.

The corresponding criteria are sometimes referred to as Tresca Plates and von Mises
Plates.

From the Yield Design viewpoint these plates are isotropic and their strength criteria
are symmetric functions of the principal internal moments M, and M, 1.

1 Equivalently, they are functions of the invariants of the internal moment tensor but the
corresponding formulation is rarely used in practice.
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(D)

Figure 3. Director sheet for a homogeneous metal plate

Tresca Plates

The strength criterion is written

> b

(19) M eG(s) < f(s.M)=Sup{| M, M, —=M,|}—my(s)<0

M,

with m,(s)=0,(s) h*/4, where o,(s) is the resistance of the three-dimensional

material under simple tension and # is the thickness of the plate (Figure 4).

The corresponding 77 functions are derived from Eq. (19) through Eqs (12) and (16)

7[(‘57/;2) = mo(*ﬁ)sup{ | ;21 > )22 H ;21 +/%2| }
(20) . .

72 (s,1,0) = my(s)| 0

MZJ\
1y (3)
my(s) M,
Figure 4. Tresca’s strength criterion for plates subjected to pure bending

Von Mises Plates

The strength criterion is written (Figure 5):

(21) MeG(s) & f(s,M)=M?+M,>-MM, —%moz(g) <0,

with m,(s) = o,(s) h*/2\3 = k(s) h*/2, where o©,(s) is the resistance under simple
tension and k(s) is the resistance under simple shear of the three-dimensional
constituent material (cf. Chapter IV, § 4.1).
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Figure 5. von Mises’ strength criterion for plates subjected to pure bending

In the same way as above we get the corresponding 77 functions:

(5. ) =mySW "+, + I da
(22) - .
7T (5,1,0) = my(s)| 0.

3.2 Reinforced concrete slabs
Mechanical description

Figure 6 is a schematic representation of a concrete slab reinforced in two mutually
orthogonal directions (x) and (y). In each direction, the reinforcement consists of
two layers (upper and lower) of iron bars which are responsible for the resistance of
the reinforced concrete as a composite constituent material under simple tension in
the corresponding direction.

For the Yield Design analysis of such slabs subjected to pure bending, it is necessary
to determine the strength criterion f ((g),]\=/l (s)) for the reinforced concrete slab

element as a constituent material. The most usual form was introduced by Johansen
[4, 5] from experimental data and through a heuristic and theoretical approach,
mostly from a virtual kinematics viewpoint.

Xia
— upper layers

=% (V)

i a &
(D) (¥

lower layers
Y57 2 )

Figure 6. Reinforced concrete slab

— 182 —



Chapter XI - Yield Design of plates subjected to pure bending

Maximum resisting bending moments

Let us first consider at point P a relevant virtual jump of the rotation rate, in the

form of Eq. (15), [(s)]=6(s)i(s), with ¢(s) along one of the reinforcement
directions, namely (x) for example (Figure 7).

o

w.__ W

(D)/ Al . _ZL n(s)
(x) /

i(s)

6(s)1(s)

Figure 7. Rotation rate jump along a reinforcement direction

The maximum resisting bending moment that can be developed in this virtual
motion is governed and determined by the resistance to traction generated by the
reinforcement layers in the (y) direction:

lower layer for é(g) >0

upper layer for é(g) <0.

Denoting by m "(s) and m, (s) respectively the algebraic values of these two

maximum resisting bending moments, we obtain the maximum resisting work for
the element dL =dL_ in the considered relevant virtual motion:

(23) {é@)my*(g)dh if 0(s)=0

O(s)m,”(s)dL, if O(s)<0.
In the same way, for #(s) along the (y) reinforcement direction, the algebraic values
m.(s) and m_(s) are defined and determined from the reinforcement layers in the
(x) reinforcement direction and the maximum resisting work for the element
dL =dL, is written:

O(s)m " (s)dL if O(s)=0
1) A(_) . (8)dL, A(_)

O(s)m, (s)dL, if 6(s)<0.

We now consider the general case when ¢(s) is no longer along one of the
reinforcement directions (Figure 8).
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With (#(s), n(s), e;) a right-handed triad, we introduce the unit vectors e, and e,

along the (x) and (y) directions such that n(s) has positive components and may be
written

(25) n(s)=e, cosa(s)+e,sina(s), 0<a(s) <2

while dZ, and dL, are the projections of dL onto the (x) and (y) directions

(26) dL, =dLsina(s), dL, =dLcosa(s).
& A
a(s)
A dL}. / ~
P aL~
ar )
0(s)1(s) n(s)
1(s)
(x)

Figure 8. Rotation rate jump in the general case

The maximum resisting bending moment that can be developed in this relevant
virtual motion is now governed and determined by the maximum resistance to
traction in the direction n(s) which can be provided by both reinforcement

directions, in the lower layers if é(g)ZO or in the upper layer if é(g)SO. This
amounts to summing the projections onto n(s) of the resistances developed in the
(x) and (y) directions, taking into account the corresponding effective sections, dL,

and dL_respectively.
Thus, the maximum resisting work for the element dL in the general case is?
o 62?@) (m," (s)cos” a(s)+m," (s)sin’ a(s))dL if 6?@ >0
0(s)(m,”(s)cos” a(s)+m, (s)sin’ a(s))dL if 6(s)<0.
Combining Eqgs (16) and (27) we have, with simplified notations

28) 7 (n,0)= Sup{ é]\i:@@ﬁ)‘ MeG } = Om" cos” a+m,"sin" @) if 020

O(m, cos’ a+m, sin’ @) if 6<0

where G denotes the strength criterion to be determined for the composite
constituent material.

2 Note that the reasoning performed here is identical to the calculation of the normal stress on a facet
with normal n when the principal stresses are given, within the framework of two-dimensional
continuum mechanics.
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Formally, it is possible to introduce the symmetric second rank tensors m" and m"
defined by

(29)

so that Eq. (28) takes the reduced form
) . Om*:(n®n) if >0
(30) 7T (1,0)=Sup{ OM":(n®n)|M'eG =1 .~ i
_ _ Om :(n®n) if 6<0.

Strength criterion

Eq. (30) is equivalent to

SUP{M'1(2®H)‘lEG}=Q+3(E®E)

(31)
Inf{l:(g@lg)‘]\i’eG}=Z_:(g®g)

or, in other words, with n satisfying Eq. (25),
(32) (M eGlc{Vn m:@m<M:(a@n<m":(1®n)}.

Owing to the symmetry of the internal moment tensor M, Eq. (32) can be

represented in the three-dimensional space with coordinates M ,M yy,\/EMxy where
it describes the intersection of two circular cones with rectangular vertices at the
points m" and m" respectively and with axes parallel to the bisector of the M and

M, axesinthe (M ,M ) plane (Figure9).

+ %('_’@H)

+
(m, ,m.")

—~(n®n)

Figure 9. Johansen strength criterion
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The Johansen strength criterion for such reinforced concrete slabs takes Eq. (32) as
the definition of the strength criterion:

(33) M(s)eG(s) < {Vns.t.(25), m ():(n®n) < M(s):(®n) <m"(5):(n®n) |

which means that the limit of resistance at a point P is reached when, at least for one
particular direction #(s) and the associated normal n(s) (cf. Figure 8), the bending

moment M, (s) reaches its maximum positive value or its minimum negative value.

This criterion is orthotropic with the (x) and () directions as principal axes of
orthotropy. Explicitly,

(m;— _Mxx)l/Z(m;— _Myy)l/Z > ‘ Mxy

(34) eG &

I<

(M =m)* (M, =m)"* =M, |.

It is isotropic if ﬁ+ (s) and m (s) are isotropic tensors i.e. if m“(s)=m, (s)=m"(s)
and m_(s)=m, (s)=m (s). We get then for the strength criterion

(35) M(s)eG(s) < {Vn, m () <M(s):(n®n)<m"(s) |

and

(m+ _Mm)l/z (m+ _Myy )1/2 > ‘ Mxy

(36) £EG = —\1/2 —\1/2
(M =m )M, —m)" 2| M,

An extensive analysis with full description of the corresponding 77 functions appears
in [9].
7T functions for the orthotropic Johansen criterion

Let us consider the case when the virtual principal rates of curvature j, and y, are
of the same sign, either positive or negative.

e 7 >0,7% >0 which implies 7, >0,7, >0

We first note that the outward normal cone to the strength domain at the vertex m" is
defined by the condition

(37) y<try< [2y:%

which is satisfied (only) when %, >0, 7, >0 . It follows that the 7 function for any
virtual rate of curvature tensor such that 7, >0, 7, >0 is written

(38) D =mFtm 7,
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o 1<0,7,<0
In the same way we have, from the 27 vertex,
(39) 7T ( ;=2) =m, Z.tmy,.

Regarding anticlastic virtual rate of curvature tensors (i.e. principal curvatures of
opposite signs), we may mention the case when the twist component 7, is equal to
zero; %, and 7, are the principal virtual rates of curvature and the 7 function is
written

ﬁ(i):mer/%m_i_m}:ZAW if ZAXX 20, Z’\yy SO, /{/xy =0

(40) - A A
ﬂ(i):mx ;(xx+my ZW if ZMSO, ZyyZ()’ Zx}:()

For the virtual rotation jumps the 77 functions proceed from Eq. (30):

(41) 7T (s,n

5 Om’(s):(n®n) if 6>0
0 om(9):(®n) i G<0.

TT functions for the isotropic Johansen criterion

With the isotropic Johansen criterion (35) the 77 functions simplify
(s, p)=m"(s)try if 3,20, 7,20
(42) 7Z'(§,;_2) = m_(g)tr;_Z if 7,0, 7,<0
(s, )=m Oz +m (D0 if 12 <0, 12 7,
and

| Om(s) if 620
(43) 7T (s,n,0)=1 \
Om (s) if <0

independent of n, which is similar to Egs. (20) and (22).

As a matter of fact, Eq. (43) is the general expression of the 7z function for a virtual
rotation rate jump for any isotropic strength criterion.

Eqgs (41) and (43) are the essential tools of the Johansen “Yield-line theory”, an
application of the kinematic exterior approach. In the English translation of original
Johansen’s original works the rotation rate jump lines of the piecewise continuous
and continuously differentiable motions are known as “Yield-lines”; they are now
most currently called hinge lines [9], (cf. § 4.1).

As a final comment, we may add that a different but quasi-equivalent presentation of
the Johansen criterion is given in [9], together with a report of experiments
performed for its direct validation [21]. Indirect validation comes from various tests
(e.g. [6,22]) on transversally loaded plates (Cf. Chapter I, Figure 8). From the
theoretical viewpoint, justifications of the Johansen criterion as part of a constitutive
law, based upon the behaviour of concrete and steel have been proposed [11, 23-25].
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3.3 Some typical support strength conditions

Built-in support

This support (Figure 1) is the counterpart of the rigid support in the case of the one-
dimensional curvilinear continuum (Chapter IX): no limitation is imposed on V' (s, n)

and 77(s,n) by the strength condition. It follows that
(44) 7T (W], [@]) =+ if [W]l#0or [@]] %0 .

Recalling that along a5 we have [Vi(s)|=—W(s) and [V(s)]|=e; All@(s)]|=—e; A @(s)
with the Kirchhoff-Love condition being identically satisfied in S, it comes out that,
along the concerned boundary, the relevant virtual motions must satisfy:

{fv(g):O

(45) . R
v(s) =ow(s)=0.

Simply supported bilateral support

Figure 10. Simply supported bilateral support

It is the counterpart of the pinned support or axial support (Figure 10). The strength
condition relates only to /7(s,n)

(46) [ X()]-n(s)eG.(s) < I(s,n)=0

from which

) {m(uv:v]],[[@:]]>=+o§ iffw&o
7T ([IWIL,I&T) =0 if w=0.

Relevant virtual motions accept arbitrary rotation @&(s) with no vertical movement.

Simply supported unilateral support
The strength domain is defined by

V(s,n)=0
(48) [X(®)]-n() € G,(s) & { E((i,’fz)) o

Hence, recalling that [w(s)]]=—-W(s),

{ 7T (DW],[@1) =+ if w<0

(49) R o
7([W]L.0eT) =0 if w>0.
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Figure 11. Simply supported unilateral support

Relevant virtual motions accept arbitrary rotation @(s) and uplift vi(s) >0 from the
support (Figure 11).

4 Final comments

Considering of the abundant literature which has been devoted to the topic, this
Section will just point out some specificities of the Yield Design analysis of plates and
thin slabs. The reader will refer to [9] for a deep survey of such subjects as

e the assessment of the physical and practical validity of the extreme loads
determined on the two-dimensional model with respect to the original three-
dimensional solid for metal plates and for reinforced concrete slabs;

e the various criteria proposed for orthotropic metal plates;

e as already mentioned, the various experiments performed for the validation of
the Johansen criterion.

Reference [8], often referred to in [9], is the most valuable collection of the solutions
that are available either for metal plates or for reinforced concrete slabs: “static”
solutions for the interior approach, “kinematic” solutions for the exterior approach
and even “complete” solutions.

4.1 Hinge line virtual motions

A notorious specificity of the Yield Design analysis of reinforced concrete slabs is the
way the exterior approach is currently performed making use of piecewise
continuously differentiable relevant virtual motions with hinge lines (the “yield
lines” of the original Johansen terminology) connecting adjacent parts of the plates
where the virtual motion is continuously differentiable. When two adjacent parts
experience only rigid body motions, the corresponding hinge line is a straight line
which bears the relative rotation between these two parts. The reader may refer to
[26] and [9] for full details about the method.

To a certain extent these virtual motions recall the rigid block virtual mechanisms
which are used in the Yield Design analysis of the three-dimensional continuum,
especially in the case of plane problems. A token of this similarity is given by the
rotation (rate) diagram introduced by Save with the “French” terminology “cineme”,
in English “rotation rate diagram” (cf. [9]), which is the counterpart of the hodograph
for rigid block virtual mechanisms.

A simple illustrative example is given in Figure 12 in the case of a triangular slab
with built-in supports along its boundary ABC. The considered virtual motion is
defined by three positive hinge lines PA, PB, PC and three negative hinge lines

AB, BC, CA. The three parts of the slab delimited by the hinge lines, namely
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[, [2],[3] have rigid body rotations with the rotation rates 6, ,, d, about the
negative hinge lines, while the relative rotation rates of each part with respect to the
others, in the form &, ;= 0,-6 ,, are collinear with the corresponding positive hinge
lines (Figure 12a).

The rotation rate diagram (Figure 12b) is the geometric representation of Eq. (50) in

the form of a Cremona-Maxwell diagram:

(50)

Figure 12. Simple example of a rotation rate diagram

In order for the considered virtual velocity field to be kinematically admissible the
diagram must be closed for non-zero values of the rotation rates, as it is presently the
case in Figure 12b. It is then possible to determine the algebraic magnitudes of the
rotation rates from the knowledge of one of them and to express the maximum
resisting rate of work in the considered virtual motion.

Hinge line virtual motions are thus relatively simple to operate, all the more so since
hinge line patterns to be used in the method are often inspired by the observation of
actual collapse mechanisms either in full scale or in reduced scale experiments
(Chapter I, Figure 8).

As noted in § 3.2, Eq. (43) for the /7 function in a virtual rotation rate jump is valid
whatever the isotropic strength criterion. Thence, any hinge line analysis performed
with the Johansen isotropic criterion can be transposed to Tresca or von Mises plates

simply by substituting m,(s) and —m,(s) for m"(s) and m (s); when the constituent
material is homogeneous the substitution turns out to be only necessary on the final
result.

More sophisticated virtual motions are also implemented which combine
concentrated deformation along hinge lines with distributed deformation ( 7(s)#0)

in §. In such cases, the rotation rate diagram comes out in a more elaborate form
than in Figure 12b.
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Similar to the hodograph in plane strain Yield Design analysis of the three-
dimensional continuum, the rotation rate diagram is both a most efficient tool to
check the kinematic admissibility of the considered relevant virtual motion and to
determine the virtual rotation rate jumps.

4.2 Circular plate subjected to a uniformly distributed load
Kinematic exterior approach

An important illustrative example is the case of a circular plate S with centre O and
radius R , supported along 0S and subjected to a uniformly distributed vertical load
—pe,;, (p>0). The constituent material of the plate is assumed to be homogeneous
and to obey Johansen isotropic strength criterion and the support along oS is rigid
(built-in support).

Figure 13. Circular plate subjected to uniformly distributed load

Using polar coordinates (r,0) with centre O, we consider the Kirchhoff-Love virtual
motions defined in the following way (Figure 13):

0<a<b<R, f">0

W(§)=—f for0<r<a

(51) . " her

w(g):—f(b—) fora<r<b
—a

w(s)=0 forb<r<R,

where f stands for the virtual deflection rate in the centre of the plate and which
depends on two geometrical parameters a,b.The corresponding velocity distributor
tield is continuous and piecewise continuously differentiable, exhibiting the positive

rotation rate jump 6, = A when crossing the circle (» =a) 3 as a consequence of
—-a
52 A =— ol = — /
(52) [o]l=—e; Allow]l = o
b-a
and, similarly, the negative rotation rate jump 6, =— A when crossing the circle
—-a

(r =b). Those two circles are the hinge lines in the virtual motion.

3 It is recalled that, according to Figure 7, the triad (Z,7,¢;) is right handed which implies here that ¢

is opposite to ¢,.
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From the general expression of }

2.~ 2.~ ~ A 2 A
O @e,+ (0 Mo @, re, ®e )+ 2+ LY
r

1ow,
o e T 00 2 00 o 7 agr) G O

we get here

7=0 for O<r<aandb<r<R

(54) 7
= e,®e, for a<r<b.
r(b—a)

>

The virtual rate of work by the external forces (the uniformly distributed load p) is
written

(55) D) =" p f (@ +ab+b)

and the maximum resisting work comes from the contributions of both hinge lines,
(r=a) and (r=»), and the distributed virtual deformation in the region a<r<b.
The contribution of the built-in support along oS is equal to zero since the
considered virtual motion is relevant for this support (W(R) =0, &(R) =0) . Referring
to Egs (42) and (43) we get

A

(56) P_(W) = 27zbi(m*a —m )+ 27 m’.
—-a
The kinematic exterior approach inequality results in
s .. b
(57) p<6(m —m )b3—a3'

The minimum of this equation with respect to a is obtained when a —0, which
means that the virtual collapse mechanism tends to be conical. It is important to note
that in this limit virtual collapse mechanism the contribution of the apex, namely

A

27zf

m'a , tends to zero.
b—a

Minimizing with respect to b yields b= R, which means that the negative hinge line
is situated within the plate at the boundary 0S. The upper bound for the external
load becomes

(58) prR* <6m(m™ —m").
This upper bound is also valid for a Tresca or von Mises plate in the form
(59) prR* <127m, .

It could be anticipated from dimensional analysis that the load carrying capacity of
the circular plate, pzR’>, would be independent of the radius of the plate. This

appears here on the upper bounds. Taking advantage of this result makes it possible,
in the kinematic exterior approach, to take “concentrated” exterior forces into
account, although they do not appear in the two-dimensional continuum plate
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model. Such a load, topped by the limitation imposed by Eq. (58), is considered as
the limit of an increasing uniformly distributed load on a decreasing circular area*.

Static approach

In the case of isotropic Johansen or Tresca plates, a static interior approach can also
be performed with the internal force fields V' (r,6) and M(r,0)

2
M(r,0)=m"(e, ®¢, +¢,®e,)—(m" —m ) e e,
(60) - K

z<r,9>=—3(m+—m')§gr.

6(m"—m")

which are statically admissible with the load p= e and comply with the

strength criteria in the plate and in the support. It follows that the upper bound in
Eq. (58), appears now also as a lower bound.

Complete solution

Referring to Chapter VI (Section 3), here is an example of a complete solution to the
Yield Design problem where, both a kinematic exterior approach and a static interior
one have been performed and yield the same value as an upper and a lower bound in
this one positive parameter loading mode.

As stated in Chapter VI (Section 3), a straightforward conclusion is that the exact
value of the extreme load has thus been obtained: pzR>=67(m"—m") is the load
carrying capacity of the plate.

MHH
r=Kk l){tm F=0
-1
é, m g

m_ m’

m-

Figure 14. Verification of the “association theorem”

Moreover, comparing the components of M(r,6) in Eq. (60) with the components of
x(r,0) in Eq. (54) for b=R and a — 0, confirms that the “association theorem” (VI,
§ 3.2) is verified.

4 A classical interpretation of a Dirac function!
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As shown in Figure 14, y(r,6) is collinear with the outward normal to the boundary
of the Johansen strength criterion along the segment
{M&g(r,@) =m", 0<r<R

(61)
M, (R,O)=m <M, (r,0)<M, (0,0)=m"

and the association theorem also holds for the negative rotation rate jump &, along

the hinge line » = R in the plate, and the positive rotation rate jump 6., at the apex

when a = 0.

4.3 “Conical” virtual collapse mechanism

&

—

-
-
it . SR

Figure 15. “Conical” virtual collapse mechanism

The “conical” virtual collapse mechanism (Figure 15) is the limit of the virtual motion
described by Eq. (51) when a — 0. It is quite frequently used, completely or partially,
as a component of more sophisticated relevant kinematically admissible virtual
motions, typical examples of which appear in Figure 16. It is important to note, as
stated already earlier, that the apex of the cone is a singular point which does not
contribute to the maximum resisting work in the mechanism. The only contributions

come from the hinge line at the boundary of the cone 27 fm™ and the distributed

deformation in the cone 27/ m" .

Figure 16. Johansen plates subjected to “concentrated loads”
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