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The authors are to be commended for their thorough set of
numerical calculations for the approximation of the failure
locus of a circular footing resting on a purely homogeneous
cohesive soil (Taiebat & Carter, 2010), and for revisiting the
expression for the inclination factor �i, used in the method-
ology proposed by Vesic (1973).

The purpose of this discussion is to show how their
results can be placed within the framework of yield design
theory, and corroborate it.

As correctly pointed out by the authors, the very concept
of a limit load in the case of a single loading parameter, or
of a yield surface in the case of multi-parameter loading,
can be proven only under restrictive theoretical conditions
within the framework of the theory of elasto-plasticity. Let
these conditions be recalled: under the assumptions of linear
elasticity (both physical and geometrical) and of no geome-
try changes during the elasto-plastic loading path, if the
perfectly plastic flow rule obeys the normality conditions,
then a yield surface exists such that, whatever the loading
path followed, the considered structure will stand any load
inside the yield surface, and collapse at the yield surface.
This yield surface can then be determined straightforwardly
through the two theorems of classical limit analysis.

Usually, assuming all other conditions to be satisfied, the
attention is focused on fulfilment of the latter condition,
namely that of the associated flow rule. If this condition is
not satisfied, counter-examples have been given showing that
applying the limit load theorems in what may seem their
intuitive wording leads to contradictory results (Salençon,
1973, 1974). Various authors (e.g. Radenkovic, 1961;
Palmer, 1966; Salençon, 1977) have endeavoured to produce
extended limit load theorems in the case of a non-associated
flow rule, with poor results as regards an extended lower-
bound theorem. As regards the upper-bound theorem, the
results have been clarified through the theory of yield design
(Salençon, 1990, 2002), which states that, based upon the
only condition of mathematical compatibility between the
equilibrium equations and the plastic criteria of the materi-
als, a convex boundary can be determined, which is the
locus of the ultimate loads of the system under considera-
tion. Using the associated flow rule as a mathematical tool,
this boundary can be approximated from outside. From its
very definition this ultimate boundary stands, whatever the
actual flow rule and the elastic constitutive law, as an upper
bound to any loading path, which cannot be passed through.
The main difference from the ideal case of the associated
flow rule lies in the assessment of the practical relevance of
this upper bound, depending on the loading paths and on the
actual flow rule.

In the case of the problem considered in the paper, such
upper bounds have been established in the works of Chatzi-
gogos et al. (2007) and Salençon et al. (2009), within a
wider context relevant to earthquake engineering, in which
the soil heterogeneity and the effect of seismic inertia forces

in the soil are also taken into consideration. Comparing the
results of the paper with these upper bounds proves quite
relevant, although it was not possible, from the published
charts, to perform an exhaustive comparison of the two sets
of results. From what could be achieved, it turns out that the
results published in the paper as limit loads on the consid-
ered loading paths fit inside the convex upper bound derived
from yield design theory, and are close to this convex upper
bound.

Both statements are significant. On the one hand the
numerical method used in the paper is checked as regards
the qualitative characterisation of the obtained results; on the
other hand the practical relevance of the rigorous upper
bounds obtained through yield design theory is corroborated,
which may give some confidence in the potential collapse
mechanisms used to determine them.

Authors’ reply
The authors are grateful to the discussers for drawing
attention to their independent and significant contribution to
this topic, and for their useful comments on the level of
agreement between our two solutions to this important
problem of estimating the ultimate capacity of a circular
footing under combined loading.

It was gratifying and reassuring to learn from the discus-
sion that the solutions obtained using the upper-bound
theorem of plasticity (or the yield design approach) by
Chatzigogos et al. (2007) and Salençon et al. (2009) are
close to those obtained using our displacement finite-element
approach. We note that the discussers have also included in
their work solutions for an inhomogeneous soil medium, in
which the strength increases linearly with depth, a case not
considered in our paper.

We also note in particular the deformation mechanisms
assumed in the convex upper-bound calculations presented
by Chatzigogos et al. (2007) and Salençon et al. (2009).
These mechanisms were assumed to produce mainly unilat-
eral and planar velocity fields. Our finite-element analysis
shows complete 3D velocity fields, even for cases of foot-
ings under large load eccentricities. For example, Fig. 21
shows the velocity fields close to the point of collapse for
four points on the V–M failure line, presented on the
vertical plane of symmetry and a horizontal section close to
the ground. It also shows the contact area of the footing at
failure. Fig. 21 reveals that when the eccentricity is zero, the
velocity field is totally axisymmetric, as expected. As the
eccentricity of load increases, the velocity fields tend to
include greater components of lateral movement, but none of
the mechanisms considered here becomes completely planar
or unilateral.

Despite the differences between the mechanisms consid-
ered in the upper-bound solutions of the discussers and those
observed in the finite-element analysis, the two techniques
provided solutions that are very close, especially for footings
under large eccentricities.

We reiterate our thanks to the discussers for bringing
these matters to our attention, and we again acknowledge
the power and elegance of yield design theory.
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Fig. 21. Velocity fields for four points on the V–M failure line
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