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The paper presents a new macroelement model for shallow foundations. The model is defined through a
non-linear constitutive law written in terms of some generalized force and displacement parameters.
The linear part of this constitutive law comes from the dynamic impedances of the foundation. The non-
linear part comprises of two mechanisms. One is due to the irreversible elastoplastic soil behavior. It is
described with a bounding surface hypoplastic model, adapted for the description of the cyclic soil
response. An original feature of the formulation is that the bounding surface is considered
independently of the surface of ultimate loads of the system. The second mechanism concerns the
detachment that can take place at the soil-footing interface (foundation uplift). It is totally reversible
and non-dissipative and can thus be described by a phenomenological non-linear elastic model.
The macroelement model is qualitatively validated by application to soil-structure interaction analyses
of simple real structures and by comparison with results from more sophisticated methods of analysis.
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1. Introduction
11. Definition of the “macroelement”

We are presenting in this paper a new formulation for the
modeling of shallow foundations of structures using the concept
of macroelement. The macroelement can be viewed as a practical
tool that allows for efficient dynamic analyses of structures with
consideration of non-linear soil-structure interaction effects
arising at the foundation level. As a generic example, we consider
the configuration in Fig. 1, in which a soil-foundation-
superstructure system is subjected to a dynamic excitation at
the bedrock denoted by i.. The problem viewed in its entirety
entails a number of non-linearities such as the irreversible
elastoplastic soil behavior and the unilateral soil-foundation
interface conditions leading to uplift of structures. These non-
linearities render the numerical treatment of the problem within
a classical finite-element framework delicate and particularly
expensive. Furthermore, the dynamic nature of the problem
makes it even more challenging. The model needs to be able to
accommodate for an accurate description of the wave propagation
and radiation phenomena (the second arise as waves emanate
from the foundation towards infinite extremities of the soil
medium) and it is clear that fully non-linear dynamic analyses in
the time domain for three-dimensional configurations remain
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beyond the reach of conventional computational capacities. In
such a setting, the concept of “macroelement” is introduced by
replacing the entire foundation-soil system by a single element
that is placed at the base of the superstructure and aims at
reproducing the non-linear soil-structure interaction effects
taking place at the foundation level. Consequently, this element
exhibits a non-linear “constitutive law”, which links some
generalized force parameters to the corresponding kinematic
ones. The generalized force and displacement parameters are
chosen in such a way so as to be coherent with those adopted for
the superstructure model.

1.2. Existing macroelement models for shallow foundations

The concept of “macroelement” was initially introduced in the
context of shallow foundations by Nova and Montrasio [1]. Based on
a number of experimental tests performed on a perfectly rigid strip
footing resting on a frictional soil and subjected to an eccentric and
inclined force, Nova and Montrasio formulated a global elastoplastic
model with isotropic hardening for the entire soil-foundation
system. The model was written in terms of resultant vertical and
horizontal forces and moment acting on the footing normalized by
the maximum supported vertical force and was used for the
prediction of the footing displacements for quasistatic monotonic
loading. The rugby-ball-shaped surface of ultimate loads of the
system was identified as the yield surface of the plasticity model.
This surface is schematically presented in Fig. 2.

The model of Nova and Montrasio was first modified by
Paolucci [2] for application to structures subjected to real dynamic
loading and further extended by Pedretti [3] for a more accurate
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Nomenclature

Latin

a characteristic dimension of strip or circular footing
A footing area (or area/length for strip footing)

B width of strip footing

¢o. V¢ soil cohesion at the surface of the ground, vertical

cohesion gradient

d depth of soil layer

Gy i, j=N, V, M imaginary part of dynamic impedances of
foundation (radiation damping)

Cs structural damping coefficient

D diameter of circular footing

fes(Q)  analytical expression of bounding surface in the space
of generalized forces

9 elastic shear modulus of the soil

h scalar quantity used for the definition of the plastic
modulus

ho numerical parameter used for the definition of the
scalar quantity h

H height (of a superstructure)

H (normalized) generalized plastic modulus

I(P) image point on the bounding surface of a point P

Je mass moment of inertia of the foundation

XAy, I, j =N, V,M normalized elements of the elastic stiffness
matrix

s i» 1j=N,V, M normalized static impedances of the foun-
dation

Ky, i, j =N, V, M dimensional elements of the elastic stiffness
matrix

H ij» Lj=N,V,M dimensional static impedances of the foun-
dation

Ks dimensional structural stiffness

L length of strip footing

ms, mg  mass of the superstructure, mass of the foundation

M moment applied on the footing

N vertical force applied on the footing

N bearing capacity coefficient

Nmax maximum centered vertical force supported by the
footing

n unit normal vector on the bounding surface

D1 parameter of the plasticity model—plastic response in
reloading

q surface surcharge

gi, i=N, V, M normalized cinematic parameters of macroele-
ments

G G5, ultimate pressure below strip and circular footing

q vector of normalized cinematic parameters of macro-

a elements

q-, q increments of elastic and plastic parts of the vector of

- cinematic parameters

asho elastic normalized rotation angle at the moment of
uplift initiation

Qi i =N, V, M normalized force parameters of macroelements

Q vector of normalized force parameters of macroele-
ments
Qumo normalized uplift initiation moment

Qv,max» Qu.max parameters used for the definition of the
bounding surface

Vv horizontal force on the footing

Via Lysmer’s analog velocity

Vs shear wave velocity

u,u, it displacement, velocity and acceleration field

W normalized work of external forces

w dimensional work of external forces

x, ¥,z  Cartesian coordinates

Greek

a, p uplift parameters: definition of moment of uplift
initiation

0 rotation angle

A measure of the distance between current stress point
and its image point

Amin minimum attained value for the quantity A during the
loading history

e, Ve parameters in the bearing capacity solutions pre-
sented in {34]

v Poisson’s ratio

p soil mass density

0,1 normal, tangential traction on an interface

description of the system behavior under cyclic loading. Crémer
[4] and Crémer et al. [5,6] presented an advanced macroelement
model with the coupling of two separate mechanisms: the first

TP

= MACROELEMENT

Fig. 1. Generic soil-foundation-structure system subjected to dynamic loading
and macroelement concept.

one refers to the material non-linearity of the system due to the
irreversible elastoplastic soil behavior and the second one
describes the uplift of the footing due to unilateral contact

Fig. 2. Rugby-ball-shaped surface of ultimate loads identified as the yield surface
of the plasticity model in the model of Nova and Montrasio [1] and its evolution
models.
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Table 1
Overview of existing macroelement models for shallow foundations

767

Description

Reference Year Configuration

Nova and Montrasio 1991 Strip footing resting on a
purely frictional soil

Paolucci 1997 Strip footing resting on a
purely frictional soil

Pedretti 1998 Strip footing resting on a
purely frictional soil

Gottardi et al. [12] 1999 Strip footing resting on a
purely frictional soil

Le Pape et al. 1999 Strip footing resting

Le Pape and Sieffert 2001 on a purely frictional
soil

Crémer et al. 2001, Strip footing resting on a

2002 purely cohesive soil

without resistance to
tension

Martin and Houlsby [13] 2001 Circular footing resting on
a purely cohesive soil

Houlsby and Calssidy [14] 2002 Circular footing resting on
a purely frictional soil

Di Prisco et al. [15] 2003 Strip footing resting on a
purely frictional soil

Cassidy et al. [16] 2004 Circular footing resting on
a frictional or cohesive soil

Houlsby et al. 2005 Strip or circular footing
resting on cohesive soil.
Frictional soil~footing
interface

Einav and Cassidy 2005 Strip footing resting on
cohesive soil. Frictional
soil-footing interface

Grange et al. (cf. [17]) 2006 Circular footing on

cohesive soil

Isotropic hardening plasticity model and non-associated flow rule. Application in the
case of quasistatic monotonic loading

Perfect plasticity model with non-associated flow rule. Application to simple
structures subject to seismic loading. Parametric studies

Hypoplastic model for the description of the system response under cyclic loading.
Consideration of uplift by reduction of elastic stiffness. Applications to structures
subject to quasistatic cyclic loading

Isotropic hardening plasticity model. Detailed description of the system ultimate
surface (identified as the yield surface of the plasticity modetl) via “swipe tests”.
Application in the case of quasistatic monotonic loading

Elastoplastic model derived from thermodynamical principles. Rugby-ball-shaped
yield surface and ellipsoidal plastic potential. Application to seismic loading

Non-associated plasticity model with isotropic and kinematic hardening coupled with
a model for uplift. Application to seismic loading

Non-associated plasticity model with isotropic hardening. Detailed description of the
yield surface via “swipe tests”. Application to quasistatic monotonic loading
Non-associated plasticity model with isotropic hardening. Detailed description of the
yield surface via “swipe tests”, Application to quasistatic monotonic loading
Hypoplastic model for the description of the behavior under cyclic loading. Application
to quasistatic cyclic loading

Fully three-dimensional formulation. Application to the off-shore industry. Quasistatic
monotonic loading

Decoupled Winkler springs with elastic perfectly plastic contact-breaking law derived
from thermodynamical principles. Application to quasistatic cyclic loading

Decoupled Winkler springs with elastoplastic contact-breaking law with hardening
derived from thermodynamical principles. Application to quasistatic cyclic loading

Extension of the plasticity model of Crémer to purely three-dimensional setting. No
separate uplift model included

conditions along the interface. For the description of the system
behavior under cyclic loading, Crémer formulated a plasticity
model with isotropic and kinematic hardening. Le Pape et al. [7]
and Le Pape and Sieffert [8] presented a macroelement model
similar to the one proposed by Nova and Montrasio particularly
oriented towards earthquake engineering applications and based
on thermodynamical principles. Several macroelement models
have also been proposed in the context of off-shore foundation
design for a variety of soil conditions and foundation geometries
[13,14,16]. Efforts have been made to obtain global models
of shallow foundations by considering uncoupled Winkler
springs attached at the foundation interface as in [9,10] that
are characterized by an elastoplastic contact-breaking law. The
advantage of such formulations is that they permit derivation of
the global system response by integration of the local spring
response, which can be achieved analytically. On the other hand,
they are subject to certain limitations associated with the Winkler
decoupling hypothesis, such as the difficulty to calibrate model
parameters. Finally we note that the concept of macroelement has
been applied to other types of geotechnical problems such as the
dynamic response of gravity walls (cf. [11]). The non-exhaustive
Table 1 presents an overview of some existing macroelement
models for shallow foundations.

2. Model formulation
2.1. Definition of generalized forces and displacements

The modeling procedure is initiated with the definition of
generalized forces and displacements, in terms of which *“con-

stitutive” equations for macroelements are written. We will
present in the following the proposed model for two particular
cases of footing geometry: (a) a perfectly rigid strip footing of
width B and (b) a perfectly rigid circular footing of diameter D. In
both cases the footing is supposed to rest at the surface of the
ground. So the embedment depth is zero. The perfect rigidity of
the footing determines the movement of all its points as soon as
the movement of a single point is known. We thus consider the
resultant forces in the vertical and horizontal direction and
the resultant moment acting at the center of the footing. We also
consider the corresponding kinematic parameters: vertical and
horizontal displacements and angle of rotation at the center of the
footing. For the case of circular footing, a planar loading will
be considered in the following as being more relevant to
earthquake loading conditions and in order to facilitate compar-
isons with the case of strip footing. The examined footing together
with the considered generalized forces and displacements is
presented in Fig. 3.

The *“constitutive” equations of the macroelement will be
written in terms of the force and displacement parameters
presented in Fig. 3, normalized according to the following scheme:

Qn N/Nmax an uz/a
Q=] Qv | =] V/Nma g=| v | =| x/a (1)
Qum M/aNmax am by

In (1), a= B and D for a strip and a circular footing, respectively,
and Nmax is the maximum centered vertical force supported by
the footing, i.e. in the absence of any horizontal force and
moment. From now on, Npax will always refer to this quantity.
The introduced normalization leads to the following expression
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Fig. 3. Definition of generalized forces and displacements for a perfectly rigid
footing under planar loading.

for the work of the force parameters:

1 w
Nu; + Vuy + M8, =
aNmax (N x 2 aNmax

Y Q=0 4= 2)
where the total work W in the system is normalized by the
characteristic quantity aNmax. We also note that if the force and
displacement increments are related to each other by the
introduction of a general stiffness matrix as in the following
expression:

Qw AN v Aam] [ On
Qv = Hw HAw Hvm qy (3)
Qum Amn Amv Amv | \dm

then, following (1), the elements of the stiffness matrix are
subjected to the following normalization scheme:

aKnv aKnv  Knm
A = 1 akKyw aKw  Kwm (4
- Nmax 1

Kun  Kmv  Kum

The quantities ", i,j=N,V, M in (3) represent normalized
elements of the stiffness matrix. Similarly, the quantities
Ay, i, j=N, V, M in (4) represent dimensional elements of the
stiffness matrix of the real system.

2.2. Structure of the macroelement model

A basic remark concerning the formulation of the model is that
the global behavior of the system reproduced by the macroele-
ment is actually the result of the combination of soil and
soil-footing interface properties. The macroelement should thus
reflect rigidity and strength characteristics of the soil as well
as strength characteristics of the soil-foundation interface.
Different possibilities existing for these properties give rise to
different macroelement formulations, for example cohesive soil
and perfectly bonded interface, cohesive or frictional soil with
frictional interface, etc. The macroelement presented herein are
developed for applications in earthquake engineering, for which
we make the following assumptions:

a. The applied seismic loads being in general of very short
duration (of the order of magnitude of a few seconds) in
comparison to the characteristic time of water pressure
dissipation and assuming a saturated soil, the soil response
will correspond to undrained conditions of loading. It will be
characterized by a Tresca strength criterion with an associated
plasticity model.

b. The soil-foundation interface is a no-tension interface that
allows for uplift of the footing with detachment between the soil
and the foundation. This is an essential and desirable feature
for applications in earthquake engineering, where it has
been commonly observed that such uplift taking place at the
foundation level acts as a seismic isolation mechanism for the
superstructure [18]. Interface strength criteria that satisfy this
condition are the perfectly rough no-tension interface, the Tresca
interface without resistance to tension, the Coulomb interface
with zero cohesion, etc. For the needs of present developments
we will retain the perfectly rough no-tension interface.

The soil and the interface strength criteria are combined in the
plane directly below the footing and can be represented in a 0—1
diagram, ¢ denoting the normal and 7 the tangential component
of the traction on the plane, as in Fig. 4(a). The considered criteria
for the soil and the soil-footing interface give rise to a surface
of ultimate loads supported by the system that is represented in
Fig. 4(b) in the space of the generalized force parameters (Qu, Qv
Qus: cf. [19-21]). We insist on the fact that this surface is obtained
within the Yield Design framework as a combined result of both
soil and the soil-footing interface strength criteria.

Given the aforementioned assumptions for the system beha-
vior, the passage to macroelement is made according to the
following modeling principles:

a. The uplift mechanism and the soil plasticity mechanism that
govern the system behavior will be modeled independently

a

Associated

Plasticity

Zero
dissipation

e,
‘r

ATV

1

Fig. 4. (a) Assumed behavior at the scale of the constituent materials of the system
for a macroelement oriented towards earthquake engineering applications and
(b) corresponding surface of ultimate loads of the system in the space (Qu, Qv. Qum).
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and incorporated in the macroelement. This will permit
retrieval of one mechanism if the other one is deactivated.

b. Fig. 4(a) reveals that the nature of the two mechanisms is
completely different. The soil plasticity mechanism is asso-
ciated with a dissipative process accounting for the irreversible
elastoplastic soil behavior. It can be modeled within macro-
elements by an associated plasticity model formulated in
terms of generalized forces and displacements. If we isolate
this mechanism by considering that no uplift is allowed at the
soil-footing interface, then the obtained global yield surface
can be approximated by an ellipsoid centered at the origin
in the space of the parameters (Qp, Qv, Qu), as has been shown
in [22].

c. The uplift mechanism, pertaining to a non-linearity of
geometric nature, is related to a non-dissipative reversible
process. Since the construction of macroelements is performed
by lumping the entire soil-foundation geometry at a single
point, the possibility of modeling the uplift mechanism by
continuous updating of the system geometry may seem a priori
excluded. As a matter of fact, uplift can be modeled within
macroelements with a phenomenological non-linear elastic
model written in terms of generalized forces and displace-
ments, which respects its reversible and non-dissipative
nature and reproduces the apparent reduction of the founda-
tion stiffness or the heave of the footing center as uplift is
initiated.

d. The surface of ultimate loads of the system, presented in
Fig. 4(b), defines the domain that must strictly contain in its
interior all the possible force states that will be obtained by the
macroelement model. But there is no reason whatsoever to
use the ultimate surface of the system for the definition of the
yield surface of the plasticity model. In the examined case,
such an assumption cannot be justified since the ultimate
surface is obtained as the combined result of both non-linear
mechanisms. Let us note that the yield surface of the plasticity
model has been traditionally identified with the ultimate
surface of the system in the majority of previous macroele-
ment models. Departing from this assumption is an important
original feature of the proposed model.

Following the aforementioned remarks, the structure obtained
for the macroelement is presented in Fig. 5(a) (plane Qn—Qy) and
in Fig. 5(b) (plane Qn—Qu). The plasticity model is defined by an
ellipsoidal yield surface with an associated flow rule and the uplift
model by a cut-off at Qy = 0. In the interior of the yield surface,
the elastic response of the system remains linear before uplift is
initiated and becomes non-linear after uplift initiation. The region
Qn<O0 corresponds to a situation where the footing is totally
detached from the soil and its treatment will not be included in
the model.

Concerning the influence of the horizontal force on the uplift
model, we will assume, following Crémer [4], that the horizontal
force has no effect on the uplift response of the system. This leads
to a formulation of the uplift model in terms of the parameters Qy,
Qs only.

The advantage of the proposed structure is that it can
be represented by the very simple rheological model presented
in Fig. 6, for which the decomposition of the displacement
increment into an elastic (i.e. reversible) and plastic part can be
introduced:

g=4"+¢" (5)

In the following sections we describe in detail the plasticity and
uplift models implemented in the macroelement.

a
Oy Associated
Plasticity

Total
detachment

Elastic

domain
Non-linear elastic Oum Associated
response (uplift) Plasticity

Total

detachment
On
...... Uplift
Linear elastic initiation

response Toppling limit

Fig. 5. (a) Structure of the proposed macroelement in the Qy—Qy plane and
(b) structure of the proposed macroelement in the Qv—Qu plane.

Associated

Uplift plasticity

Fig. 6. Rheological model of the proposed macroelement model.

2.3. Non-linear elastic model for uplift

The uplift of the foundation will be described by a phenom-
enological non-linear elastic model. This permits incorporation
of the linear elastic part of the behavior of the system into it.
The model will be formulated independently of any plastic
soil behavior (we thus consider that the plasticity mechanism
is deactivated). We initially introduce an incrementally linear
relationship linking the increment of forces with the increment of
the elastic displacements:

Q=xg" (6)

In (6), X=Xy 1,j=N,V,M is the tangent elastic stiffness
matrix of the system, with elements that are not constant in
general. These may be written as functions of the generalized
elastic displacements:

Hyj = (G (7)

2.3.1. Elastic stiffness matrix before uplift initiation
Before uplift initiation the system response is linear and the
matrix # represents elastic impedances of the foundation. For a
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footing with planar base that rests on the soil surface the coupling
terms are negligible (cf. [24]). So the matrix /£ is written as

Aww O 0
A= 0 Hw 0 (8)
0 0 Hmm

In (8), the quantities # v, # w, # mu depend on the foundation
geometry and on elastic parameters of the soil.

2.3.2. Elastic stiffness matrix during uplift

The elastic stiffness matrix during uplift has been calibrated
using finite-element solutions of a footing uplifting on a purely
elastic soil. The model is independent of the horizontal force
Qv and we consider that uplift is initiated when the moment
|Quml applied on the footing exceeds (in absolute value) a certain
value |Qumol representing the normalized moment of uplift
initiation:

Before uplift :  |Qu|<|Qumol = Qu = F mmqsy (9)
Uplift initiation :  [Qul = |Quol = G0 = Quo (10)
T A M

We note that the quantity |Qumol is linear with respect to the
vertical force applied on the footing:

Qv 1
Quo=+—~==%-

HNGY (11)
For strip footings on elastic half-spaces, Crémer [4] and Crémer et
al. [5,6] indicate that a = 4. For circular footings resting on elastic
half-spaces, Wolf [25] indicates that o = 6. The elastic angle of
rotation at the instant of uplift initiation is written as
1 -

laitol = — (%J{NNQEI) (12)
For the calibration of the elastic tangent stiffness matrix
during uplift we use numerical results presented in [4] for
the case of strip footings and {25,26] for the case of circular
footings.

Strip footings: The results presented in [4] have been obtained
by fixing the applied vertical force on the footing and then
increasing the applied moment until toppling of the structure
occurs. This means that the increment of the vertical force is zero.
So from (6), we can write

Qn = A wnln + H nmiy =0 (13)
The increment of the moment is written similarly as
Qu = A mnan + A vmdu (14)

The two main approximate relations introduced in [4] with
respect to the numerical results are the following:

QM 2 qﬁ/l’-o f
G =2 for 1Qul>1Ql (15)
qel 1 qﬂ 0
e (-%) "
M M

Expression (15) provides the Qu — g5y diagram and expression
(16) yields the coupling between the vertical force and the
moment during uplift. These two equations are not sufficient for
calculation of all the elements of the stiffness matrix. So we will
introduce the additional assumption that the element . ny
remains constant during uplift. This means that all the effects of
uplift on the vertical force and vertical displacement of the footing
will by attributed to the coupling term ' yy = A num.

The aforementioned assumptions and relations (9)-(16) to-
gether with the property of symmetry of £ lead to the following
elastic stiffness matrix:

On Hw 0 Al (9N
QV = 0 A w 0 [ﬁ a7
Oum A MmN 0 A MM QIevll
with
H'NN = ‘irNN e
0 if 1g51<lg5ol
A=A v i i 20
= %f.w(l - q"i‘.") if 151> a3}l 0
aum
A i 1g5I<IgSol
o (e o)’
Ay = fMM( A:,l0> +%fNN<1 - A:io) (21)
am I

it 1g1> g5 ol

The quantity qﬂvo, which is generally a function of the applied
vertical force, is given for an elastic half-space by (12).

Circular footings: By performing similar analyses, Wolf [25]} and
Wolf and Song [26] obtained results for the case of circular footing
uplifting on an elastic half-space. However the results are
presented in a different way. The actual irregular contact area
has been replaced by an equivalent circle with the same center
of gravity. The radius of this equivalent circle is calculated for the
two translational degrees of freedom (vertical and horizontal) by
equating the real contact area with the area of the equivalent
circle. For the rotational degree of freedom, the equivalent radius
is calculated by equating the two moments of inertia. Then the
elastic stiffness coefficients of the system are calculated using
standard formulae for elastic impedances of circular footings ([35]
¢f. Table 2) without the introduction of coupling terms %y, i#j.
The approximation relationships proposed by Wolf are the
following:

Quo = =
2%-1 - —4.296(%)2 - 0.1361%%\ +1.142
for |Quml>1Qmol (22)
%M:§(14‘%) for 1Qul>Quol
d:%:%%—:’—% for  1Qul>1Quol

In (22), Dn,v and Dy represent the diameter of the equivalent
radius for the translational and the rotational degrees of freedom,
respectively. Similarly xs represents the position of the equivalent
disk center with respect to the actual center of the footing. This
quantity is necessary for the calculation of the vertical displace-
ment of the center of the footing due to uplift. In other words it
provides the coupling between the vertical translational and the
rotational degree of freedom during uplift.

For the needs of the present formulation, the approximate
relationships by Wolf are written in a form similar to the
one adopted for strip footings. It can be verified that the
relationships (22) are approximately equivalent to the following



Table 2

CT. Chatzigogos et al. / Soil Dynamics and Earthquake Engineering 29 (2009) 765-781 771

Summary of model parameters

Numerical parameter

Strip footings

Circular footings

Comments

Normalization procedure
a

Nmax

Linear viscoelastic behavior

B
5.14¢B

cf. the exact solutions of
Salengon and Matar

D
DZ
6.06con— (cf. [33))

Homogeneous cohesive soil with cohesion cg

Cohesive soil with linearly varying cohesion. Surcharge and finite soil layer
depth taken into account

Faw 0.73% 29D of. [35]
1-v 1-v
Hw 29 49D f. [35]
. 2-v 2~V
XA MM ny 2 gDs Cf- [351
8(1-v) 3(1-v)
Cv PViB D> 34
PVia| - of. 35}, Via = per V)Vs
Cw pVsB D?
pVs ("T of [35), Vs = ﬁ
Cum B? nD? _ 34
Vi (ﬁ) Vil 57 of. [35), Via = mVs
Plasticity model
Qv max coB ~02 aD*c ~0.165 Footing sliding on a purely cohesive soil
Nrmax 4Nmax
2 0.67cpAD Footing perfectly bonded on a homogeneous cohesive soil
Qv max 067608 _ .13 (122)) oINS~ 0.1 ([23]) § perfectly 8
BNmax ‘max
Use solutions presented Use solutions presented Footing perfectly bonded on a heterogeneous cohesive soil
in [22]) in [23]
ho Parameters depending on Calibrated through a loading~unloading-reloading test of the footing under
the particular foundation centered vertical force
soil
P
Uplift model
| 05 imati i i ibrati -li
Qu _ 5 qeL,io Qu _ 53 % :ggtritzx;?:r::; ﬁ:::?xnshlps used for the calibration of the non-linear
Qmo ['17} Qmo q
‘:’—”=_l 1_qﬂ~° .‘M=_§ 1_%
M 2 a5 m 4 qa
Qumpo i%'! exp(—BQn) :i:% exp(—BQn) Moment of uplift initiation of footing on elastoplastic soil, § = 1.5-2.5
relationships: A i 1g5I< |q3’0|

05
Qu _3_, (qfvll,o>

Qmo a5

‘7_&'__2 1_q3~0
a4 a5

(23)

(24)

We proceed thus in a formulation for the elastic stiffness
matrix in a way similar to the one adopted for strip footings.
From Egs. (23) and (24) and with the introduction of the same
assumption that was adopted for strip footings, the elastic

stiffness matrix reads

HNN = A NN (25)

Hw=Hw (26)
0 if 1q51<Igol

A Nm = A un = o (27)

. q .
%x,w<1— q“f,f’) if 1qy > lqg ol

M

. qel 3/2 . qel 2
Hmm = fMM(%Q) +1%9{NN<1 - M'O)

(28)
M a5

i (g§h>1g8l

2.3.3. Comments

Concerning the formulation of the uplift model the following

remarks are worth pointing out:

i. The presented non-linear elastic model for uplift departs
from numerical analyses of a footing uplifting on an elastic
half-space and ends up (through curve fitting) in some
approximate analytical expressions for the elastic stiffness
matrix linking the increments of generalized forces and elastic
displacements in the system. In performing the passage to
macroelements all the information related to the change of the
geometry of the contact area is lost and effects of the actual
geometric non-linearity are reproduced phenomenologically
by a “material-type” non-linearity.

ii. The numerical results used for both strip and circular footings

are presented normalized with respect to the vertical force Qu.



772 C.T. Chatzigogos et al. / Soil Dynamics and Earthquake Engineering 29 (2009) 765-781

This is admissible because of the assumed linearity of the soil
behavior. It also implies that once the stiffness matrix is
defined, it can be used for any loading history and not only for
load paths of the numerical analyses in [4,25,26].

iii. The available results provide two equations for the four
unknown elements of the stiffness matrix. So the solution
for the matrix # that reproduces the observed behavior
cannot be uniquely determined. Besides the presented
approach, one has the option of preserving a diagonal matrix
even after uplift initiation and then reducing correspondingly
the diagonal terms Kyy, Kvs (@s a matter of fact this is Wolf's
approach) or even both reducing Kyy and Ky and introducing
a coupling term Kyy simultaneously. Note that a more
complete set of results, not yet available, will lead to the
exact, unique elastic stiffness matrix of the system.

iv. The criterion of uplift initiation in Eq. (11) should not be
confused with the conventional condition of uplift initiation
of strip foundations to be smaller than or equal to B/6. The former
is obtained using the exact normal stress distribution developing
below the footing whereas the latter is obtained assuming a
linear distribution. We finally note that when the rotation
angle qﬂ becomes too large we obtain the limits Qa— 2Qpp for
strip footings (cf. Eq. (15)) and Qum—3Qum, o for circular footings
(cf. Eq. (23)), which are coherent with standard design rules.

2.4. Plasticity model

For the description of the soil plasticity mechanism we develop
a “bounding surface” hypoplastic model following the formula-
tion presented in [27]. This formulation was chosen because: (i) it
gives a continuous plastic response even for initial load incre-
ments for both virgin loading and reloading, (ii) it is particularly
convenient for the description of cyclic behavior and (iii) its
simplicity and flexibility are particularly desirable for the
numerical treatment of the problem. The principal originality of
the model with respect to classical plasticity is the introduction of
a surface in the space of generalized forces, called bounding
surface, allowing for a straightforward and particularly flexible
definition of the plastic modulus.

2.4.1. Bounding surface

Following the reasoning of Section 2.2, the bounding surface of
the proposed model is identified with an ellipsoid centered at the
origin in the space of force parameters. It can thus be described by
the equation

fis= Q=04+ (Qx?;ax)z * (Qs,hfmx)z =1 (29)
Ovi0y

QV.max QM,max

Jos (@ =0

On

Fig. 7. Bounding surface for the hypoplastic model incorporated in the macro-
element.

We note that in the particular case where no uplift of the footing is
considered, this surface is identified with the surface of ultimate
loads of the system and more elaborate approximations can thus
be considered. The proposed ellipsoidal bounding surface, while
being extremely simple, retains a more than sufficient level
of accuracy with respect to the real behavior. The bounding
surface is represented in Fig. 7.
The role of the bounding surface is twofold:

a. to define the cases of pure loading, unloading, and neutral
loading, and

b. to define the direction of plastic displacement increment and
the magnitude of plastic modulus.

In the present hypoplastic formulation, pure loading and
reloading are accompanied by the development of plastic
displacements whereas in neutral loading and unloading the
response is purely elastic.

The objectives (a) and (b) are achieved by introducing a
mapping rule, which maps every point in the interior of the
bounding surface to a specific point, called image point, on the
surface boundary. For every point P at the interior of the bounding
surface we define its corresponding image point using a radial
rule as follows (cf. Fig. 7):

Ip = {AP|Ip € Ofgs and A=1) (30)

2.4.2. Definition of the plastic modulus
The inverse of the plastic modulus can be written for an
associated model in the form

2 =rmen (31)

In (31), h is a scalar function and n is the unit vector normal to the
bounding surface on the image point (cf. Fig. 7).

The magnitude of the plastic displacement increment is
controlled by the scalar quantity h. This quantity is defined as a
function of the distance between the current state of forces and its
image point. A simple measure of this distance is given by the
scalar A in Eq. (30). We can thus write

h = h(}) (32)

Eq. (32) can be calibrated using numerical or experimental results.
If the loading of the footing under a centered vertical force is
considered, a logarithmic variation of the plastic modulus (cf.
[28]) may be adopted, leading to the particularly simple expres-
sion

h = hg In(4) (33)

ho being a numerical parameter.

A more complicated formulation may be introduced to take
into account the history of loading of the system. For example, in
[15] the bounding surface evolves following an isotropic hard-
ening rule in pure loading, whereas in unloading/reloading the
bounding surface remains fixed and the plastic modulus is defined
via the image point of the current state of forces as explained
above. In the present formulation, a simpler account of the
loading history will be adopted by writing

el

where A, is the minimum value of A obtained during loading
and p, is a numerical parameter expressing the extent of plastic
response in reloading. The meaning of (33) and (34) is as follows.
For pure loading, Amin = A and we retrieve (33). If A is large, h is
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also large and the magnitude of plastic displacement increment is
small. So the response is principally elastic. On the contrary, for 4
small, h is also small and the plastic displacement increment is
large. In the case where the state of forces reaches the bounding
surface, A—1. Thus h—0 and the system is led to a state of plastic
flow. In the phase of reloading, Amin>4 and the response of the
system is less plastic than in the phase of initial loading.

The above formulation could be qualified as isotropic, in the
sense that Eq. (34) remains unaltered for all loading paths. More
sophisticated relationships could be introduced if experimental
data indicate so, in which the plastic modulus is a function of the
distance A, certain loading history parameters such as Aq, and
also the loading path.

It is finally noted that the present formulation leads to a
response with cycle stabilization for repeated cyclic loading.
Shakedown can also be obtained if for instance the parameter p,
in (34) is allowed to increase as a function of the cumulative
dissipated plastic energy during cyclic loading, but this has not yet
been included in the model.

2.5. Uplift-plasticity coupling

Up to now the uplift and plasticity mechanisms have been
examined separately. In real footing behavior however they
appear simultaneously and they are coupled. The coupling
between these two mechanisms can be summarized in the
following points:

a. Moment of uplift initiation: For an elastoplastic soil, vertical
stresses below the footing are limited by the soil strength
criterion. So the applied moment that is necessary to cause
uplift is no longer linear with respect to the vertical force. The
relation (12) is thus replaced by an ad hoc approximation
relation of the following form, as proposed by Crémer [4]:

q5 0= +1 (—.Q—"’)e"mw (35)
) “CNA mm
The parameter « is as in (11). The parameter 8 is a numerical
fit parameter that can be investigated by numerical analyses
of strip or circular footings uplifting on an elastoplastic soil.
For strip footings, Crémer [4] has proposed S = 1.5-2.5. For
circular footings, and in lack of specific experimental and
numerical data, § can be calibrated by the condition that force
states obtained by macroelements remain within the ultimate
surface of the foundation. The range f = 1.5—-2.5 proves to be
acceptable.

b. Direct coupling: A direct uplift-plasticity coupling is obtained
in the first place within the macroelement by observing that
both plasticity and uplift mechanisms couple degrees of
freedom of the system. If for instance an increment of rotation
gy is applied on the footing, this changes both Qu and Qn. The
change of Qu leads through (35) to a change of qﬂ.o and by
consequence to a change of the elastic stiffness matrix %,
which again couples Qus and Q. The formulation is thus highly
non-linear and an iterative procedure has to be adopted so that
the force state satisfying both mechanisms is determined.

¢. Change of footing contact area: An even more complicated
coupling phenomenon between the two mechanisms is
obtained as the footing uplifts and rocks cyclically on an
elastoplastic soil. The footing contact area gradually becomes
rounded and consequently the characteristic dimension a is
reduced. Extremities of the footing remain detached from the
soil even in full unloading. This in turn leads to an increase of
vertical stresses on the footing and a decrease of Nnmay, Which in
turn tends to flatten the contact area. The reduction of contact

Oy

Iso-uplift curves

/ Uplift Initiation

Bounding Surface

Homothetic
yield surfaces

On

Fig. 8. Neutral loading for plasticity and uplift mechanisms.

area due to rocking, especially for qu,>0.01rad, leads to an
apparent degradation of rotational stiffness as has been
verified experimentally through cyclic tests for both cohesive
(cf. [29]) and frictional soils (cf. [29,31,32]). It follows that the
normalization scheme introduced in (1) has to be updated in
every load increment according to the irreversible reduction
of a and Npax This complicated uplift-plasticity coupling
mechanism, which could be qualified as a ‘“second-order
phenomenon”, has not been included in the presented
formulation. In any case, its importance for design purposes
is limited since admissible rotations for conventional founda-
tion design would anyway not be larger than 0.01 rad. We note
that this limit is more relevant for relatively soft cohesive soils
while dense frictional soils may indicate a smaller value.
Models addressing this “second-order” effect have been
proposed in [30,31].

d. Neutral loading: We may define neutral loading for both
mechanisms. As far as the plasticity mechanism is concerned,
the hypoplastic bounding surface formulation implies an
infinite number of homothetic ellipsoidal yield surfaces.
Neutral plastic loading is thus obtained if the force state
follows an elliptic path in the space of the loading parameters.
For the uplift mechanism, neutral loading may be defined as
the combination of moment and vertical loading that is
necessary to keep unchanged the detached area of the footing.
This has also been considered in [4-6] by the introduction of
the so-called “iso-uplift” curves. These are schematically
presented together with the homothetic yield surfaces in
Fig. 8 in the plane Qy = 0, where it is seen that the two families
of curves intersect with one another. So it is not possible to
obtain neutral loading for both mechanisms unless the force
path follows the intersection of two curves in the three-
dimensional space, a rather narrow set of loading paths for real
applications.

2.6. Model parameters

In this section, we summarize the parameters of the model and
we comment on their determination. These are:

e a: the only geometrical parameter is the footing width B or the
footing diameter D, which is prescribed.

® Nmax: the maximum vertical force supported by the footing
in the absence of any horizontal force or moment may be
calculated by standard bearing capacity solutions for shallow
foundations. In the case of a homogeneous cohesive soil with
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cohesion ¢y, we obtain

Nmax = 5.14c¢¢B (strip footings) (36)

Nmax = 6.06c0# (circular footings, c¢f. [33]) (37)

For soils with linearly varying cohesion, exact bearing
capacity solutions presented by Salencon and Matar {34]
may be used. They provide the ultimate pressure q, supported
by the soil (Nmax = Aqy, A: area of footing):

( Vc)a)
4cy

Ay =q+uccO(Nc+ (38)

@ =q+v(qy,—q) (39)

In (38) and (39) q, and g3, are the ultimate pressure for a

strip and a circular footing, respectively, g is the surface
surcharge, N, is a function of a/d where d the depth of the soil
layer and u,, v, are functions of the ratios a/d and a (Vc)/co,
where Vc is the vertical cohesion gradient.
Elastic foundation impedances: the commonly used approx-
imate expressions for strip and circular footings on an elastic
half-space with constant shear ¢ and Poisson’s ratio v may be
recalled (cf. [35] ). These have been tabulated in Table 2. Note
that the vertical and horizontal elastic impedances of an
infinitely long strip footing are actually zero. The proposed
values are derived from approximate expressions for rectan-
gular foundations proposed in [35]:

0.75
Hwy = % [0.73 +154 (g) ] (40)
0.85
XW=%[2+2.5(§> ] (a1)

where we have let the term on B/L vanish in front of the
constant term as L— co.
Bounding surface: the parameters defining the bounding sur-
face are
o The maximum horizontal force supported by the footing:
Vmax _ CoA

QV,max =N_ =
Nmax  Nmax

(42)

In (42), co designates the soil cohesion at the surface of
the soil and A the area of the footing. It is noted that Qy, max
is dependent only on the surface cohesion of the soil and
not on the vertical cohesion gradient.

o The maximum normalized moment Quy, max Supported by a
footing perfectly bonded on a cohesive soil. For the
determination of Qu, max We can use results established in
[22] for strip footings and in [23] for circular footings. The
aforementioned references cover the case of both homo-
geneous soils (c¢f. Table 2) and soils with a linearly varying
cohesion.

Plastic modulus: the parameters hy and p; describe the
evolution of the magnitude of plastic modulus and may vary
significantly for different soil formations. The standard
procedure to determine these parameters is a loading-unloa-
ding-reloading test of the footing under vertical force only.

Surface surcharge, load eccentricityfinclination, embedment
depth: We finally comment on the consideration of foundation
configurations with surface surcharge, load eccentricity/
inclination and embedment depth. The first can be incorpo-
rated into N as in the solutions by Salen¢on and Matar [34]

(cf. Eq. (39)). For the second, it suffices to consider as initial
loading conditions (static loading conditions) the combination
of Qn, Q. Qu corresponding to the given load inclination/
eccentricity without any modification in the model para-
meters, (i.e. Nmax will still refer to the maximum centered
vertical force). The consideration of the depth of embedment is
on the contrary more delicate. For small depths one could
possibly adjust the values of Nmax, Qv, max. Qum,max (cf. [29] for
experimental results) and consider that the non-linear beha-
vior of the system remains otherwise unaffected. However,
when the depth of embedment becomes significant, further
non-linearities may arise at the lateral footing-soil interfaces
pertaining to the behavior of caisson-type foundations.
The consideration of a significant depth of embedment is not
included in the model.

2.7. Numerical treatment

One of the main concerns regarding the numerical treatment
of the macroelement model is that it can be cast into a finite-
element code as a separate element. This means that the adopted
resolution scheme should be governed by displacements, i.e. given
the current state of the system and a total displacement
increment, find the decomposition in plastic and elastic compo-
nents and then update the stresses. This is performed with an
iterative algorithm beginning with an elastic prediction, If the
prediction violates the bounding surface a “cutting plane”-type
algorithm (cf. [36]) is implemented in order to bring back the
stress state on the bounding surface boundary. If not, an iterative
procedure is used to update the elastic and plastic components of
the total displacement increments until convergence is achieved.
Let us note that, as far as the elastic stiffness matrix is concerned,
which also becomes non-linear after uplift initiation, an explicit
approximation scheme has been adopted. This proves convenient
in terms of incorporation of this additional non-linearity into the
plastic model. However, if the iteration step is large, numerical
errors in describing uplift behavior of the system may accumulate.

3. Behavior under quasistatic loading

We investigate in this section the system response under
quasistatic loading. This is achieved by performing numerical
displacement-controlled loading tests. A specific displacement
history is prescribed for the footing center and the force-
displacement response of the system is computed. Since no strict
calibration of the model parameters has been performed, we will
limit ourselves to an investigation of qualitative aspects of the
systemn response. Model parameters are presented in Table 3. It
will be shown in particular that the surface of ultimate loads of
the system, although not explicitly used for the formulation of the
two non-linear mechanisms, is nonetheless retrieved as their
combined result.

3.1. Vertical force-vertical displacement

We initially examine the system response under a prescribed
history of vertical displacement gy. The results presented in

Table 3
Parameters for the numerical application of Section 3

Numerical parameter B=1m, co=1kPa, ¥ = 1000kPa,

ho = 01wy, Py =5, Quuo = + L exp(~1.5Q4),

a3
QV. max = 0.2, QV,max =013
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Fig. 9(a) provide the model purely elastic and fully elastoplastic pure loading. This is a feature that agrees well with the observed
response in cycles of loading-unloading and those in Fig. 9(b) soil behavior. We also note that the elastic response of the system
present corresponding experimental results obtained in [37]. The (cf. Fig. 9(b)) in unloading is almost negligible. This is achieved in
bounding surface hypoplastic model predicts a smooth transition the model by prescribing a plastic modulus parameter hg
towards plastic flow and between the phases of reloading and considerably smaller than # .
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Fig. 9. (a) System response under quasistatic vertical loading and (b) experimental results obtained in [37]. EL, elastic response; MC, full macroelement response.
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Fig. 10. System response under quasistatic monotonic moment loading. BS, bounding surface; FP, recorded force path; US, ultimate surface; UP, surface of uplift initiation.
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3.2. Moment-rotation angle

The response of the system under moment loading is
investigated next. Four simulations under monotonic loading are
presented in Fig. 10. In these tests, the following displacement
histories are applied:

(a) vertical displacement gy = 0.1, then rotation angle gy, = 0.01;

(b) vertical displacement gy = 0.05, then rotation angle gy = 0.01;

(c) vertical displacement gy = 0.005, then rotation angle gy =
0.01 and

(d) vertical displacement gy = 0.0005, then rotation angle gps = 0.01.

For every simulation, we present the trace of the vector Q in the

space of generalized forces (plane Qy—Qy). Each diagram contains
three additional curves: the elliptical bounding surface, the curve
representing the moment of uplift initiation Qu ¢ as a function
of Qy and finally the surface of ultimate loads of the system
(rugby-ball-shaped curve). The curve of uplift initiation is given
by the expression as in [5,6]:
Quo = + 2 exp(-1.5Qx) (43)
The surface of ultimate loads has been found to be sufficiently
approximated by the expression proposed in {5,6], which is the
one adopted herein:

Qm = £0.37Q3%(1 — Qu)°® (44)

The results reveal how mechanisms of plasticity and uplift are
combined to provide admissible states of forces of the system. As
is seen, these prove to be always included in the interior of the
surface of ultimate loads. As the initial vertical displacement
becomes smaller and smaller the effect of the plasticity mechan-
ism gradually decreases. In parallel, the effect of uplift becomes
more and more important and, once the uplift initiation curve is
crossed, a shift is induced in the direction of the force trajectory.
The force path in diagram (d) is almost linear with a slope
approximately equal to 1/3: this is linked to the standard bearing
capacity restriction for strip and rectangular footings that the
eccentricity (expressed herein by the ratio Qu,/Qy) should be less
than 1/3. Actually this condition is slightly more conservative than
the “exact” force path, showing its perfect compliance with the
presented results. The results also show that although the surface
of ultimate loads is not explicitly used in the formulation of either
the plasticity or the uplift model, it is possible to formulate both
models independently (respecting their particular characteristics),
but in such a way that the obtained force states are always
contained in the interior of the surface of ultimate loads of the
system.

4. Extension to dynamic loading

The structure of the macroelement model presented so far
refers to the system behavior under quasistatic monotonic or
cyclic loading (terms in the equilibrium equations associated with
acceleration and velocity have been neglected). However, the
principal domain of application for macroelements is using them
for efficient non-linear dynamic soil-structure interaction ana-
lyses. In this paragraph, we explain under which assumptions the
macroelement is incorporated into the global superstructure
model and we present, in a numerical application of the dynamic
analysis of a real structure, the type of results that can be obtained
with the macroelement.

4.1. General principles

The extension of the domain of application of the macroele-
ment to dynamic loading conditions is performed by considering
that the soil domain is divided into two separate sub-domains:
the near field and the far field. The near field is identified as the
soil sub-domain in the footing vicinity where all the non-
linearities (material and geometric) of the system take place.
These are described within the macroelement by the plasticity
and the uplift model as has been explained. The far field, on the
other hand, is the soil sub-domain where the response remains
purely linear. This distinction between near and far fields permits
description of the contribution of far field on the system behavior
using dynamic (elastic) impedances of the foundation and the
contribution of the near field with macroelements. Extension to
dynamic loading conditions may thus be achieved by performing
the following:

a. Identifying the parameters 2 ny. o w. # muy in the uplift non-
linear elastic model of macroelements as the real part of the
corresponding dynamic impedances of the footing.

b. Introducing the imaginary part of the retained dynamic
impedances in order to account for the phenomenon of
radiation damping.

c. Resolution of the system is performed in the time domain and
no dependence of dynamic impedances on the frequency of
excitation is considered. The retained dynamic impedances can
thus correspond (as done in engineering practice) to some
characteristic frequency of the system, such as its fundamental
eigen-frequency, etc.

d. Material damping in the near field is directly reproduced by
the plasticity model of macroelements.

{10m

20m

4
v

b 60m

mg, Ks, Cs

mg, Jg

B' Nmax

<y Ky

Fig. 11. (a) Finite-element mesh for numerical application (cf. [6]) and (b) simple
model for dynamic analysis with macroelements.
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Table 4
Parameters for the numerical application of Section 4.2
Numerical parameter DYNAFLOW with soil mesh ({6}) Macroelement

Structure
I=213m*% E=35x10°Pa
Foundation B=10m;e=0.7m; L=10m; p =18 x 103kg/m>; E—» 0
Interface Uplift allowed; no sliding
Soil ¢ =co*+3z (c, cp in kPa, z in m)

o= 30kPa
@/c = 1300; v = 0.48

p = 19 x 10® (kg/m*y+plastic parameters of the multi-yield law

ms =5 x 10*kg; Js = 1.25 x 10°kgm?; H =20m; S = 1.6 m?

B=10m; mg =12 x10°kg
Je=1.0x10°kgm?; Npax = 2.4 x 105N
H =23 %108 N/m
Hw=11x10*N/m

Hmm = 3.7 x 10° Nm/rad
Can =53 x 10°Ns/m

Cw = 2.7 x 10°Ns/m

Com = 4.4 x 10’ Nm sfrad
Qu,max = 0.2

Qu,max = 0.13

Quo = % exp-2.500)
ho = 0.1 i p1 =5

Units are considered per unit length of the strip footing.

Acceleration Time History injected at the base of the FE model
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Fig. 12. Acceleration time histories used in the numerical application.
4.2, Numerical application 4.0.E+06 T z
i R ’:Fem'_j
. . . 0. +---| — Magroelement
In order to illustrate the results that can be obtained using 3.0.E+06 A I O T L
the macroelement we present an example of application of 2.0.E+06 T
the proposed model for the dynamic analysis of a bridge E 10E+06 \ A Aa
. . . A . . b4 . Y

column subjected to a real seismic acceleration time history. < | A
The examined structure is modeled with a simple structural S 0.0.E+00 98 T TR Jbg z
model as the one presented in Fig. 11(b). The model exhibits four § 10E+06 \r 7 V’ ifvy .
degrees of freedom: the horizontal translation of the deck and the = " !
horizontal and vertical translations and the rotation of the column -2.0.E+06 1~ -
foundation. The latter three will be described by the macroele- -3.0.E+06
ment. The results of our analysis are compared with results
obtained in [4,6] using a more sophisticated model of the -4.0.E+06 Time [sec]

examined system. Soil is modeled with a fine mesh of finite
elements (cf. Fig. 11(a)); its constitutive model is the multi-yield
constitutive law presented in [39]. A complete description of the
finite-element model (FEM) model is given in [4,6]. The model
was analyzed with the code DYNAFLOW (cf. [40]). Numerical
parameters for the FEM and the application with the macroele-
ment are summarized in Table 4.

Fig. 13. Response of the system considering purely linear behavior.

The system is subjected to the acceleration time history
recorded in the Gemona station during the Friuli earthquake
(Italy, 1976) scaled at 0.2g, which is represented in Fig. 12. This
accelerogram is injected at the base of the FEM. The acceleration
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time history used in the macroelement model is the one 4.2.2. Elastoplastic behavior with uplift

computed at the surface-free field in the FEM. No vertical input Fig. 14 presents four diagrams related to the behavior of the
motion component has been considered. Integration of the system with the two non-linear mechanisms of uplift and soil
equilibrium equation has been performed using a Newmark-type plasticization activated. In particular, the following diagrams are
integration scheme. In the following, we present the results of the presented:

dynamic analysis for the cases of:

a. the moment-rotation angle diagram for the case of purely

a. linear elastic behavior (uplift and plasticity mechanisms elastic response and elastoplastic response with uplift,
deactivated) and b. the evolution of the moment on the foundation,
b. full elastoplastic behavior with uplift. c. the evolution of the rocking angle of the foundation and

d. the evolution of vertical displacement of the foundation.

42.1. Linear elastic behavior The last three diagrams contain the curves obtained with both the
A preliminary elastic analysis has been performed in order to ~ Macroelement and the FEM. The following remarks may be made:
check the compatibility of the two acceleration time histories and

the elastic parameters of the macroelement model. The evolution e The moment-rotation diagram reveals how the two mechan-
of the moment on the foundation with time is represented for the isms are combined. One part of the response remains
two models in Fig. 13. The macroelement reproduces very well the reversible because of uplift but now we also have the creation
purely elastic response of the system both in terms of frequencies of cycles of energy dissipation during loading.
and in terms of moment amplitudes. The maximum moment on e The activation of the two non-linear mechanisms leads to a
the footing is around maxM~3.3 MNm. significant isolation effect on the foundation. The maximum
a
€
)
;E) t 1 ; T T
g -0.g05 -0.004 -0.003 -0.002 0.001 0.002 0.003 0.004 0.¢05
— Macroelement
= Macroelement Elastic
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Fig. 14. System response considering full elastoplastic behavior with uplift.
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Fig. 14. (Continued)

moment on the footing does not exceed the value of 1.8 MNm.
The rotation angle remains less than 0.002rad. One can
also observe a small residual rotation accumulated at the end
of the excitation. The vertical displacement of the foundation is
however rather significant, reaching the value of 0.01 m. The
results emphasize the gain but also the price to pay in
considering non-linear effects in foundation design: forces
are reduced substantially, leading to a far more profitable
design. Nevertheless, the maximum and residual displace-
ments have to remain below certain performance limits.

The macroelement reproduces very well the evolution of the
moment and the rotation angle on the foundation. They also
provide a satisfactory estimate of the residual vertical
displacement of the footing (settlement is denoted as positive).
Actually, the observed difference may be attributed to the fact
that the plasticity model in the macroelement leads to cycle
stabilization in repeated loading (the vertical settlement thus
continuously increases throughout the loading). On the other
hand, the plasticity formulation in the FEM leads to shake-
down. The vertical settlement ceases to increase after
approximately half the duration of the excitation.

5. Conclusions

The macroelement model presented in this paper incorporates
an associated plasticity model that can account for the soil
elastoplastic response in undrained conditions and a phenomen-
ological non-linear elastic model for the uplift mechanism. It was
shown that these two mechanisms may be formulated indepen-
dently from one another and then combined in such a way so that
the obtained force states are contained in the interior of the
surface of ultimate loads of the system, attributing to this surface
its real meaning from the point of view of Yield Design theory
(cf. [38]), i.e. domain of all the combinations of loads that can be
supported by the system.

From the point of view of its numerical treatment, the
proposed formulation reduces to a particularly simple rheological
model and allows for a simultaneous resolution of both mechan-
isms. It is particularly flexible in modifying, activating or
deactivating different mechanisms, since the modeling of each
mechanism is performed independently. Moreover, its extension
to fully three-dimensional configurations is straightforward,
especially as regards the uplift model that is written with respect
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to generalized displacement parameters without introduction
of additional parameters linked with the footing geometry.

The proposed model offers a simple and attractive framework, the
validity of which was illustrated through a number of theoretical
examples.

The model up to its present state of development is nevertheless
bound to have certain limitations. These may be summarized in the
following points:

a. There is the need for an extensive validation procedure and
calibration of numerical parameters, especially for the plasticity
model. This procedure would eventually lead to a classification
of soils and a set of parameters associated to each class, also
comprising qualitative characteristics of the response (eg.
shakedown, cycle stabilization, etc.)

b. In terms of algorithmic aspects, an implicit resolution scheme
for the uplift non-linear elastic model would further increase
the accuracy of the model.

c. The dependence of foundation impedances on frequency of
excitation has not been taken into account and constant dynamic
impedances have been used. A topic for future research could be
to incorporate simple models for frequency-dependent impe-
dances as in [41] within macroelements.

d. The introduction of effects of the seismic acceleration on the
bearing capacity of the foundation would give further insight
to earthquake engineering applications. This has been the
subject of recent work by the authors (c¢f. [21]) and it can
be performed by introducing the variation of Ny,.x due to the
incident acceleration in each time step.

e. An extension of the model to the case of a frictional material
obeying the Mohr-Coulomb strength criterion is also essential.
This would require the introduction of a sliding mechanism
along the interface and the formulation of a non-associated
plasticity model.

f. The introduction in the model of “second-order effects” such
as the reduction of contact area due to rounding of the soil
surface when both uplift and soil yielding occur, the gradual
settlement of the footing inducing a “depth of embedment”
effect, the consequent variation of Nnax due to these effects,
etc. are also essential for the validation of the model. Actually,
it is deemed that displacement levels beyond which these
phenomena become important could serve as limits for a
“performance-based” design of shallow foundations.

Acknowledgments

The first author wishes to thank the Ecole Polytechnique and
the Public Benefit Foundation “Alexandros S. Onassis” for the
financial support during the execution of this study. The authors
would also like to thank the reviewers of this paper for their
fruitful comments.

References

[1] Nova R, Montrasio L. Settlements of shallow foundations on sand. Géotechni-
que 1999;41(2):243-56.

[2] Paolucci R. Simplified evaluation of earthquake-induced permanent displace-
ments of shallow foundations. | Earthquake Eng 1997;1(3):563-79.

[3] Pedretti S. Non linear seismic soil foundation interaction: analysis and
modelling method. PhD thesis, Dpt Ing Strutturale, Politecnico di Milano,
1998.

[4] Crémer C. Modélisation du comportement non linéaire des fondations
superficielles sous séisme. PhD thesis, Laboratoire de Mécanique et de
Technologie, ENS—Cachan, France, 2001.

[5] Crémer C, Pecker A, Davenne L. Cyclic macro-element for soil-structure
interaction: material and geometrical non linearities. Int | Num Anal Methods
Geomech 2001;25:1257-84.

[6] Crémer C, Pecker A, Davenne L. Modelling of nonlinear dynamic behavior of a
shallow strip foundation with macroelement. J Earthquake Eng 2002;6(2):
175-211.

{7] Le Pape Y, Sieffert JG, Harlicot P. Analyse non linéaire par macro-éléments du
comportement des fondations superficielles sous action sismique. In:
Comptes Rendus du 5éme Colloque National AFPS, Cachan, France, 19-21
Octobre 1999, p. 207-14.

[8] Le Pape Y, Sieffert JG. Application of thermodynamics to the giobal modelling
of shallow foundations on frictional material. Int | Num Anal Methods
Geomech 2001;25:1140-377.

[9] Houlsby GT, Cassidy M], Einav I. A generalised Winkler model for the
behaviour of shallow foundations. Géotechnique 2005;55(6):449-60.

[10] Einav I, Cassidy MJ. A framework for modelling rigid footing behaviour based
on energy principles. Comput Geotech 2005;32:491-504.

{11] Wood DM, Kalasin T. Macroelement for study of the dynamic response of
gravity retaining walls. In: Triandafyllidis N, editor. Cyclic behaviour of soils
and liquefaction phenomena. London: Taylor & Francis; 2004. p. 551-61.

[12] Gottardi G, Houlsby GT, Butterfield R. Plastic response of circular footings on
sand under general planar loading. Géotechnique 1999;49(4):453-69.

[13] Martin CM, Houlsby GT. Combined loading of spudcan foundations on clay:
laboratory tests. Géotechnique 2000;50(4):325-38.

[14] Houlsby GT, Cassidy M]. A plasticity model for the behaviour of footings on
sand under combined loading. Géotechnique 2002;52(2):117-29.

[15] Di Prisco C, Nova R, Sibilia A. Shallow footing under cyclic loading:
experimental behavior and constitutive modeling. In: Maugeri M, Nova R,
editors. Geotechnical analysis of the seismic vulnerability of historical
monuments. Patron; 2003. p. 99-121.

[16} Cassidy M]J, Martin CM, Houlsby GT. Development and application of force
resultant models describing jack-up foundation behaviour. Mar Struct 2004;
17:165-93.

[17] Grange S, Kotronis P, Mazars . Advancement of simplified modeling strategies
for 3D phenomena and or/boundary conditions for base-isolated buildings or
specific soil-structure interactions. Deliverable report 67, Risk mitigation for
earthquakes and landslides integrated project, European Program LESSLOSS,
September 2006.

[18] Psycharis IN. Dynamic behavior of rocking structures allowed to uplift.
J Earthquake Eng Struct Dyn 1983;11:57-76;

Psycharis IN. Dynamic behavior of rocking structures allowed to uplift.
J Earthquake Eng Struct Dyn 1983;11:501-21.

[19] Salencon ], Pecker A. Ultimate bearing capacity of shallow foundations under
inclined and eccentric loads. Part I: purely cohesive soil. Eur ] Mech 1995;
14(3):349-75.

[20] Salengon ], Pecker A. Ultimate bearing capacity of shallow foundations under
inclined and eccentric loads. Part II: purely cohesive soil without tensile
strength. Eur ] Mech 1995;14(3):377-96.

[21] Chatzigogos CT, Pecker A, Salengon J. Seismic bearing capacity of a circular
footing on a heterogeneous cohesive soil. Soils Found 2007;47(4):783-97.

[22] Bransby MF, Randolph MF. Combined loading of skirted foundations.
Géotechnique 1998;48(5):637-55.

[23] Randolph MF, Puzrin AM. Upper-bound limit analysis of circular foundations
on clay under general loading. Geotechnique 2003;53(9):785-96.

[24] Veletsos AS, Wei YT. Lateral and rocking vibrations of footings. ASCE ] Soil
Mech Found Div 2001;97(9):1227-48.

[25] Wolf JP. Soil-structure interaction analysis in the time domain. New Jersey:
Prentice-Hall; 1988.

[26] Wolf JP, Song C. Some cornerstones of dynamic soil-structure interaction, Eng
Struct 2002;24:13-28.

[27] Dafalias YF, Hermann LR. Bounding surface formulation of soil plasticity. In:
Pande GN, Zienkiewicz OC, editors. Soil mechanics—transient and cyclic
loading. New York: Wiley; 1982. p. 173-218.

{28] Butterfield R. A simple analysis of the load capacity of rigid footings on
granular materials. ] Géotech 1980:128-34.

[29] Gajan S, Kutter BL, Phalen JD, Hutchinson TC, Martic GR. Centrifuge modeling
of load-deformation behavior of rocking shallow foundations. Soil Dyn
Earthquake Eng 2005;25:773-83.

[30] Gajan S, Kutter BL. A contact interface model for non-linear cyclic
moment-rotation behaviour of shallow foundations. In: Proceedings of the
fourth international conference on earthquake geotechnical engineering,
paper no. 1458, Thessaloniki, Greece, 25-28 june 2007.

[31] Paolucci R, Shirato M, Yilmaz MT. Seismic behaviour of shallow foundations:
shaking table experiments vs. numerical modelling. Earthquake Eng Struct
Dyn 2007.

{32] Faccioli E, Paolucci R, Vivero G. Investigation of seismic soil-footing interaction
by large scale cyclic tests and analytical models. In: Proceedings of the fourth
international conference on recent advances in geotechnical earthquake
engineering and soil dynamics, March 26-31 2001, San Diego, CA, USA.

[33] Eason G, Shield RT. The plastic indentation of a semi-infinite solid
by a perfectly rough circular punch. ] Appl Math Phys (ZAMP) 1960;11(1):
33-43.

[34] Salengon ], Matar M. Capacité portante des fondations superficielles
circulaires. ] Méc Théor Appl 1982;1(2):237-67.

[35] Gazetas G. Foundations vibrations. In: Fang HY, editor. Foundation engineer-
ing handbook. New York: van Nostrand Reinhold; 1991 [Chapter 15].

{36] Simo JC, Hughes TJR. Computational inelasticity. New York: Springer; 1998.

[37] Martin CM, Houlsby GT. Combined loading of spudcan foundations on clay:
numerical modeling. Géotechnique 2001;51(8):687-99.



C.T. Chatzigogos et al. / Soil Dynamics and Earthquake Engineering 29 (2009) 765-781 781

[38] Salengon J. An introduction to the yield design theory and its applications in User manual. Princeton, NJ: Department of Civil Engineering, Princeton
soil mechanics. Eur ] Mech A Solids 1990;9(5):477-500. University; 1999.

[39] Prévost JH. Anisotropic undrained stress-strain behaviour of clays. ] Geotech [41] Saitoh M. A simple model of frequency-dependent impedance functions in
Eng Div ASCE 1978;8:1075-90. soil-structure interaction using frequency independent elements. ] Eng Mech

[40] Prévost JH. DYNAFLOW: a finite element analysis program for static and ASCE 2007;133(10):1101-14.

transient response of linear and non-linear two and three-dimensional systems.



