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SEISMIC BEARING CAPACITY OF A CIRCULAR FOOTING
ON A HETEROGENEOUS COHESIVE SOIL

CHARISIS THEODOROU CHATZIGOGOS?, ALAIN PECKER” and JEAN SALENCON'

ABSTRACT

This study concerns the determination of the seismic bearing capacity of a circular footing resting on a purely cohe-
sive heterogeneous soil layer. The problem is treated using the kinematic approach of the Yield Design theory. The soil
strength is modelled by the Tresca criterion with C, the cohesion at the soil surface and G the vertical cohesion
gradient. The loading process of the system is described by four loading parameters: an inclined force (N: vertical com-
ponent, V: horizontal component), a moment (M) acting at the center of the footing and horizontal uniform inertial
forces (F,) acting in the soil volume during the seismic excitation. Two cases are considered for the soil: a soil with an
infinite tensile strength and a soil with zero tensile strength. The soil-footing interface is considered purely cohesive
with zero tensile strength. The study presents optimal upper bounds for the ultimate combinations of the dimensionless
loading parameters (N, V, M, F,) by the examination of a series of three-dimensional virtual kinematic mechanisms of

failure. The results are presented in the form of surfaces in the space of the parameters (N, V, M) for a range of values
of Fh.
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INTRODUCTION

The motivation for the study of the seismic bearing
capacity of shallow foundations has been given by a series
of field observations after several major earthquakes
within the last twenty five years, which revealed a particu-
lar type of foundation failure without the presence of lig-
uefaction in the supporting soil layers. The main charac-
teristics of this failure mechanism are: a) large permanent
rotations at the foundation level (sometimes leading to
the toppling of the structure) without significant structur-
al damage in the superstructure (c.f., Fig. 1), b) creation
of a zone of detachment at the soil-foundation interface
(c.f., Fig. 2), ¢) development of a failure mechanism
within the soil volume and d) large vertical displacements
(often of the order of 1 m) (c.f., Fig. 3). Such cases of
foundation failure have been reported mainly after the
1985 Guerrero-Michoacdn earthquake (Mendoza and
Auvinet, 1988), and also after more recent earthquakes
(e.g., 1990 Luzon earthquake; 1999 Kocaeli earthquake,
etc.). The same failure mechanism was also identified ex-
perimentally: Zeng and Steedman (1998), by performing

Fig. 1. Large permanent rotations at the foundation level of a build-
ing after the 1999 Kocaeli earthquake (Source: http:/nisee.
berkeley.edu/elibrary)

(UK) and with the aid of the Particle Image Velocimetry
technique measured the velocity field at failure within the
soil volume and studied the effect of the intensity and fre-

a series of centrifuge tests at the University of Cambridge
(UK), were able to reproduce the main characteristics of
this failure mechanism and to underline the particularly
negative effect of high vertical load intensity and eccen-
tricity; similarly Knappett et al. (2006), by means of shak-
ing table tests performed at the University of Cambridge

i)

que.com).

quency content of the seismic action together with the in-
fluence of the depth of embedment of the foundation. It
was thus understood that a shallow foundation may ex-
perience a bearing capacity failure during an earthquake
excitation due to the combined negative effect of a highly
eccentric and inclined load on the foundation originating
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Fig. 2. Creation of a zone of detachment at the soil-foundation inter-
face. The building has completely toppled. 1999 Kocaeli earth-
quake (Source: http://nisee.berkeley.edu/elibrary)

Fig. 3. Development of 2 mechanism of failure within the soil volume
accompanied by significant vertical displacements. Building in
Mexico City after the 1985 Guerrero-Michoacdn earthquake

from the inertial response of the superstructure and of
the action of the inertial body forces within the soil
volume. This can occur even without a decrease in the soil
strength from liquefaction or other related soil softening
phenomena.

From a theoretical point of view, numerous studies
have been published on the subject. One initial approach
to the problem of seismic bearing capacity was to work
within the classical framework of Terzaghi’s bearing
capacity formula. This was achieved by modifying the
bearing capacity factors N;, N,, N, in order to account
for the effect of the inertial body forces in the soil volume
during the seismic excitation, while applying appropriate
correction factors for the load eccentricity and inclina-
tion. Following this idea, Sarma and Iossifelis (1990),
Richards et al. (1993) and more recently Fishman et al.
(2003) conducted limit equilibrium analyses whereas Ku-
mar and Rao (2002) worked with the slip line method
(without constructing however, a complete stress field)
and suggested bearing capacity factors N, N,, N, as func-
tions of a characteristic seismic horizontal acceleration.
A second approach was developed in parallel, as a more
convenient way to visualize the effects of overturning mo-

ments and horizontal forces on the footing. It is based on
the representation of the seismic bearing capacity of the
foundation system by an ‘‘ultimate surface’’ (surface of
ultimate combinations of loads) in the space of the load-
ing parameters (V: vertical force, V: horizontal force, M:
overturning moment) which would vary as a function of
the intensity of the horizontal inertial forces F, in the soil
volume. Following this idea, Pecker and Salengon (1991)
established upper bounds of the exact ultimate combina-
tions of N, ¥V, M and F, for a strip footing on a
homogeneous purely cohesive soil whereas Salen¢on and
Pecker (1995a, b) provided very close lower and upper
bounds of the ultimate combinations of N, V and M for
the same foundation configuration. Paolucci and Pecker
(1997a) extended the upper bound solutions to the case of
rectangular footings on purely cohesive soils and Dor-
mieux and Pecker (1995) and Paolucci and Pecker
(1997b) to the case of strip footings on homogeneous
purely frictional soils (including the effects of the unit
weight of the soil and the vertical earthquake accelera-
tion). All these results were incorporated in the European
norms for earthquake resistant design of civil structures
(Eurocode 8-Part 5: prEN 1998-5) and were numerically
‘“fitted’” by an analytical expression defining the seismic
bearing capacity of a strip footing on either a purely co-
hesive or a purely frictional homogeneous soil (Pecker,
1997). This analytical expression represents the ultimate
loads supported by the footing as a surface in the (V, V,
M) space and is function of the soil strength criterion and
the values of the other loading parameters of the system
(horizontal and vertical seismic acceleration and soil unit
weight). The Eurocode 8 expression for the seismic bear-
ing capacity of shallow foundations, though unifying and
reflecting a large volume of results, has its limitations: it
can only be applied to strip footings on homogeneous
soils, either purely cohesive or purely frictional.

The present study aims at extending the existing theo-
retical results for the seismic bearing capacity of shallow
foundations to the case of a circular footing resting on
the surface of a heterogeneous purely cohesive soil layer.
Due to similarities between the problems concerned, a lot
of insight can be gained from the many studies relating to
the problem of bearing capacity of strip and circular
footings-subjected to a combined (N, ¥, M) loading, that
have been performed in the context of the offshore indus-
try. Randolph et al. (2005), in a state-of-the-art report,
summarized the large variety of solutions, both in terms
of the examined configurations and in terms of the im-
plemented methods of analysis, for strip and circular
footings of offshore structures. Although these solutions
cover a lot of features (combined loading, soil heter-
ogeneity, depth of embedment etc.), they do not incor-
porate the effect of the seismic inertial forces in the soil
volume. Furthermore, they usually make the assumption
of perfect adhesion at the soil-footing interface, which is
a more realistic assumption for offshore shallow founda-
tions. Thus, they do not allow for the creation of a zone
of detachment between the soil and the footing, which is
an essential characteristic of seismic bearing capacity
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failure of shallow foundations.

The problem is treated herein using the kinematic ap-
proach of the Yield Design theory (Salengon, 1983, 1990,
2002), thus providing upper bound estimates of the ulti-
mate seismic loads supported by the soil-foundation sys-
tem. It must be clear that the question of liquefaction is
not addressed in this study: it is considered that the risk
of liquefaction at the soil site, where the foundation will
be installed, has been addressed at an initial stage, prior
to the seismic bearing capacity evaluation.

PROBLEM FORMULATION

The Yield Design theory makes it possible to determine
upper bound estimates for the ultimate loads that can be
supported by a structure once three pieces of information
are available, namely: as regards the structure itself, its
geometry and the loading process it is submitted to and,
as regards the constituent materials, their strength criter-
ia, whatever the physical phenomena they are related to.
Since it does not need incorporating any other data such
as the constitutive law of the materials at failure, it
should be kept in mind that the obtained results are but
upper bound estimates and that no information can be
obtained regarding the displacements.

Geometry

The geometry of the considered configuration is de-
scribed as a circular footing of radius r, resting on the
surface of the soil.

Strength Criteria

a. Strength criterion of the soil. The soil is considered
as a heterogeneous purely cohesive material. Its strength
is described by the Tresca failure criterion; its cohesion ¢
is considered to vary linearly with depth:

C=C0+GZ, (1)

where C, is the value of soil cohesion at the soil surface
and G is the vertical gradient of the soil cohesion (c.f.,
Fig. 4). Two separate cases have been considered in order
to evaluate the influence of the tensile strength of the soil:
- The classical Tresca criterion described by the equa-
tion:
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Fig. 5.
responding relevant velocity vectors
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f(@=lo1—031 —2c=0 2

- The Tresca criterion with zero strength to tension (a
zero tension ‘‘cut-off’’) described by the equation:

f(@=sup{lo—a;] ~2c, 01} <0 3)

In Egs. (2), (3) g, and o; are the major and minor prin-
cipal stresses of the stress tensor g. Stresses are consi-
dered positive in tension. These criteria are depicted in
Fig. 5(a) and 5(b) in the (o, 7) space, where ¢ and 1
denote the normal and tangential stress components re-
spectively, acting on any facet within the soil mass. An-
ticipating on the concept to be introduced in section 3
from Eqgs. (11)-(15), the corresponding relevant velocity
vectors are also illustrated in this Figure.

b. Strength criterion of the interface. The soil-foot-
ing interface is also considered as purely cohesive and its
strength is modelled by the Tresca strength criterion with
no tensile strength (zero tension ‘‘cut-off’’). This choice
comes from observing that the occurrence of detachment
zones between the footing and the soil is an essential char-
acteristic of seismic bearing capacity failure. The inter-
face cohesion is considered equal to C,. This criterion,
represented in Fig. 6, is described by the equation:

f(o, Dy=sup{|t| —C,, a} <0 )

Loading Process
The loading of the soil-foundation system is developed
during a seismic excitation. The propagation of the seis-
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Fig. 4. System geometry and variation of soil cohesion with depth
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a) Classical Tresca criterion (with infinite tensile strength) and b) Tresca criterion with no tensile strength (zero tension ‘‘cut-off*’) and cor-
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Fig. 6. Tresca criterion without tensile resistance for the soil-footing
interface and corresponding relevant velocity vectors

mic waves leads to the inertial response of the soil and of
the superstructure through the soil-structure interaction.
The hypothesis of a perfectly rigid footing allows for the
description of the forces originating from the superstruc-
ture and acting on the footing by means of the resultant
force and moment acting at a specific reference point of
the footing. This reaction is herein described by the fol-
lowing loading parameters: a vertical force N, a horizon-
tal force ¥ and a moment M acting at the center of the
footing. It is noted that the effect of the forces acting on
the footing itself is included in these three loading
parameters.

Moreover, the supporting soil is subjected to the action
of the inertial forces F that can be decomposed into a ver-
tical and a horizontal component, F, and F;, respectively.
Let us emphasize that these forces are assumed to be
uniform throughout the soil mass; an assumption to be
discussed later on. From now on, the vertical component
of the inertial forces F will be added to the unit weight of
the soil and give rise to the modified unit weight:

yr=y+F,=ye (5)

with e, the unit vector in the downward vertical direction.
Concerning the influence of the unit weight on the ulti-
mate loads, the classical demonstration is worth being re-
called here, which starts from the static definition of the
ultimate loads as the highest loads that can be equilibrat-
ed by a statically admissible stress field complying with
the strength criteria. It turns out that any statically ad-
missible stress field g° in the case of the weightless soil
provides a statically admissible stress field ¢”" for the
material with modified weight y* and vice versa, through
the following equation:

g =a"—y*ze,Re, (6)

These two stress fields equilibrate the same load on the
foundation. If the classical Tresca strength criterion is
concerned, they obviously comply with it at the same
time. We also see that the same result holds with the Tres-
ca strength criterion with no resistance to tension if y* is
positive, which is true for the usual seismic excitations. It
follows that in those cases y* does not influence the value
of the ultimate loads supported by the footing.

Denoting by N, V, M and F; the magnitudes of the cor-
responding vectors, we represent the loading parameters
of the system by the loading vector:

=W, V, M, F) )

The loading process is considered pseudo-static. No
variation in time of the quantities in Eq. (7) is considered,
since ultimate combinations of the loading parameters
are sought.

We note finally that although no surface load at the soil
surface is considered herein, the presented framework
can accommodate the effect of a uniform vertical surface
load g.= g.¢; due to the additive character of the vertical
surface load with respect to the vertical force N as ex-
plained by Salencon (1983). More specifically in the
present case, if Q°= (N, V, M, F,, 0) is supported by the
foundation, then Q*=(N+qA, V, M, F, g))is also sup-
ported by the foundation, A denoting the area of the
footing, for positive values of ¢q,. It is clear, however,
that consideration of the vertical component of surface
load separately is devoid of any physical meaning in the
context of earthquake loading. Since the surface load
models the weight of overlying soil layers or adjacent
structures, the horizontal component of the surface load
should by no means be overlooked.

SOLUTION PROCEDURE

The kinematic approach of the Yield design theory is
used to treat the problem. Following Salencon (2002), the
procedure is briefly outlined:

a. In the domain Q of the examined system (i.e. the
foundation and the soil half-space), a virtual kinematical-
ly admissible (v.k.a.) velocity field U is considered. This
means, according to the usual continuum mechanics ter-
minology, which we refer to here, that this vector field
satisfies the boundary conditions on the velocity and is
piecewise continuous and differentiable. It corresponds to
a strain rate tensor d defined in Q. It also corresponds to
velocity jumps [U] defined along jump surfaces = in Q,
which include the interface.

b. The resisting rate of work 2 (U) developed in Q
by a stress tensor field g in the v.k.a. velocity field Uis
given by the equation:

2(0)= S oyd[dQ+ S oy[Ulndz (®)
Q z

where a;; denote the components of g and n;, the compo-
nents of the unit vector normal to 2. Summation over
repeated indexes is implied throughout the paper. Given
the v.k.a. velocity field U, the resisting rate of work
2 (U) is maximized over all the stress fields that comply
with the strength criteria of the soil and of the interface,
through the introduction of the functions =, that
represent the maximum resisting rate of work at a point
in the domain. These are derived from the strength criter-
ia as follows:
« For the soil:

{n(é)=sup {oydy;  fonlg) =<0}

N 9
n(a, [0)=sup {o,l0M; fus@)<0}
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» For the interface:
71'@, [_U]) =Ssup {aij[Uf]nj; .ﬁntcrng_) = 0} (10)

In Egs. (9) and (10), fii and fier denote the strength
criterion for the soil and for the interface respectively.

The explicit expression of the functions n, which are
derived through duality from the strength criteria can be
found in Salencon, (1983, 2002) for a series of strength
criteria both for continuous media and for interfaces.
The following are recalled for the needs of the problem
considered herein:

» Classical Tresca criterion (infinite tensile strength)

+ 0 if tr@)#O
"@_(c(tdnﬂcizuid,l) if trd)=0 th
0 __l+oo if [0]'nz0 "
n(n, [UD= 0N i [0]-n=0 (12)

In the above, d,, d; and d; are the principal values of d
and trc? 31+d2+a3
« Tresca criterion with zero tension “‘cut- off”’

7 _[-f-oo if tr (d)<0 a3

)= c(ldi| +1do| + 1ds| —tr @) if tr (d)=0 )
if [O]'n<0

(@, O)= [ «(I1011 = (01 n) if (O] n=0 14

» Tresca criterion for the interface without tensile
strength

’ 1f [0]'n<o0
[[O]1- (U1 mn| if [0]-n=0

Thus, the maximum internal rate of work 2 ,(U) is given
by:

n(n, [0) = { 15)

9’mr(l_7)=S ft@)d9+5 n(n, [UDdZ (16)
Q z

c. Given the velocity field U and for all the loading
parameters Q;, the associated kinematic parameters ¢(U)
are determined directly by the velocity field and the rate
of external work can thus be computed as follows:

P exl(Q) = qul(_l:j_) (17)

d. Since the resisting rate of work in Eq. (8) is max-
imized through the z-functions it follows from the princi-
ple of virtual rates of work that the fundamental inequal-
ity should be satisfied:

?ext@)igmr(g)- (18)

The equality in Eq. (18) yields upper bound estimates for
the ultimate loads of the structure.

e. Through the examination of a series of v.k.a. ve-
locity fields, the minimum upper bound is retained as the
most satisfactory approximation to the exact solution.

Relevant velocity fields. Any v.k.a. velocity field may
be used in the above procedure but it comes out obviously
that only those v.k.a. velocity fields for which P o)
remains finite shall lead to a valuable upper bound esti-
mate of the extreme loads. This condition implies that the

787

functions 7 defining 2 ., (U) must be kept finite at any
point in the system. Such so-called relevant virtual veloc-
ity fields must comply with conditions on é and (n, [O]),
which are mathematically derived from Eqs. (11)-(15),
that is just from the strength criteria without any physical
significance as a constitutive law or a flow rule. They are
sometimes called kinematically admissible in the litera-
ture, which is somewhat misleading since the condition
comes from the material strength criterion and not from
the geometry of the problem.

Obviously, it comes out that a relevant virtual velocity
field for the classical Tresca criterion is also relevant for
the Tresca criterion without tensile strength, but not vice
versa.

Virtual failure mechanisms as sets of virtual velocity
fields. An exhaustive examination of all v.k.a. velocity
fields is neither possible nor necessary from a practical
point of view: only satisfactory upper bounds need to be
established. To this end, a series of v.k.a. velocity fields is
investigated. It is clear that each v.k.a. velocity field cor-
responds to a particular virtual mechanism of bearing
capacity failure of the soil-foundation system. The vir-
tual failure mechanisms considered are grouped in classes
of mechanisms corresponding to a particular bearing

 failure pattern depending on a number of geometrical

parameters which define the shape of the mechanism. The
optimization procedure outlined in steps (a)-(e) results in
finding those values of the geometrical parameters in each
class that give rise to the optimal upper bounds and then
selecting the minimum among the minima derived from
those classes of mechanisms.

BASIC ASSUMPTIONS

Uniform horizontal inertial forces in the soil. As al-
ready stated the assumption is made that the horizontal
inertial forces F; developing in the soil volume are
uniform in space. Qualitatively, in order for such an as-
sumption to be valid, the failure mechanism has to be
shallow with respect to the depth of the supporting soil
layer in which the seismic waves are propagating. Pecker
and Salencon (1991) suggested that, denoting by d and D
respectively the failure mechanism thickness and the
depth of the soil layer, the following condition should be
satisfied: d/D < 1/10. In general, if it is expected that the
variation of the horizontal inertial forces near the ground

3

Fig. 7. Collinear loading parameters on the footing, justified by the
consideration of a SDOF superstructure
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surface is significant, a more sophisticated profile for F,
should be adopted.

Collinear loading parameters. We will consider that V
and F, are collinear while M is perpendicular to their
direction as presented in Fig. 7. As a matter of fact, this
choice corresponds to the excitation of a single-degree-of-
freedom (SDOF) superstructure, for which ¥ is collinear
with F, and the moment is expressed by the product M=
Vh, where A is the height of the SDOF superstructure.
However, the collinearity of the loading parameters
remains valid for a multi degree of freedom superstruc-
ture under specific conditions.

CLASSES OF VIRTUAL FAILURE MECHANISMS

Planar non plane strain mechanisms. Following Puzrin
and Randolph (2003a, b) we may characterize the virtual
mechanisms under consideration as planar non plane
strain ones. The term ‘‘planar’’ refers to the fact that the
velocity field is such that a Cartesian coordinate system
(x, ¥, 2) may be defined, in which the velocity component
parallel to an axis is zero: e.g. U,=0 as it is presented in
Fig. 8. The term ‘‘non plane strain’’ refers to the fact that
the two non zero components of the velocity remain func-
tions of the three coordinates (x, ¥, z). Similar velocity
fields have been used by Cuvillier (2001) and Subrin and
Wong (2002) for the study of the stability of a tunnel face
by the kinematic approach of the Yield Design theory.
Such velocity fields are treated herein using the theoretical
methodology recently proposed by Puzrin and Randolph
(2003a, b). The key idea of this methodology is a coor-
dinate transformation from the original to a new cur-
vilinear coordinate system, such that only one component
of the velocity does not vanish (e.g., U, 0):

(x, ¥, 2)— (x’, ¥', ') such that:

U,=U.=0and U.=f(x, y', 2') (19)
The coordinate transformation in Eq. (19), combined
with the conditions of relevance for the Tresca strength
criterion, leads to a significant simplification of the ten-
sorial quantities (elements of cj ) required for the evalua-
tion of the n-functions and for the determination of the
maximum resisting rate of work in the system.

Class of translational mechanisms. This pattern of
bearing failure was originally proposed by Green (1954)
for combined shear and pressure plane strain problems.
It was adapted to a rigid circular footing by Puzrin and
Randolph (2003b) by considering that the width of the
mechanism in a cross-section by a vertical plane is
proportional to the width of the footing in the same
cross-section (c.f., Fig. 9). The mechanisms are named
“‘translational’’ as the footing translates with a virtual ve-
locity U,. This velocity is constant in magnitude along the
streamlines of the mechanism. The shape of each virtual
mechanism of failure is defined by the two angles J and ¢.
Allowable values for these parameters are:

Fig. 8. Planar, non plane strain virtual velocity fields

Zone of non planar
shear strain rate

Fig. 9. The class of translational mechanisms: Planview and lon-
gitudinal vertical sections

™ T
0<o< i O<e< >

The mechanisms exhibit three zones within the soil
mass, presented in Fig. 9. Zones 1 and 3 translate rigidly
with velocity U, while zone 2 is a region where non-plane
shear strain rate is developed. Contributions to the maxi-
mum resisting rate of work for this class are developed
within the volume of zone 2 and along the velocity jump
surface in the soil. The mechanisms involve no uplift of
the footing. Since this class of virtual mechanisms does
not imply any rotation of the footing, the upper bound
estimates it provides through Eq. (17) do not involve the
moment M.

Class of purely rotational mechanisms. The plane
strain version of this class of mechanisms was studied by
Salencon and Pecker (1995a, b). Segikuchi and
Kobayashi (1997) extended the mechanisms for a circular
footing subjected to an eccentric vertical load (action of
N and M). Herein, the configurations studied by
Segikuchi and Kobayashi (1997) are extended in order to
include a horizontal force V and horizontal inertial forces
F, in the soil. The rigid circular footing is considered to
rotate rigidly around an axis of rotation as depicted in
Fig. 10. The rotation of the footing induces rigid rota-
tional failure of the soil below with a virtual angular ve-
locity &. The shape of each mechanism in the class is de-
fined by two geometrical parameters: x and A. Two dis-
tinct failure patterns are obtained depending on the value
of the parameter 1; For 1 <4 <2, there is no uplift of the



SEISMIC BEARING CAPACITY 789

(@

- l Zone of
\ detachement

)

Fig. 10. The class of purely rotational mechanisms (a) without detachment and (b) with detachment at the soil-foundation interface

Axis of rotation N
Planview

Zone of
detachment
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i
Axis of rotation
A — Section AB

Fig. 11. The class of shear rotational mechanisms; Configuration with
a small zone of detachment at the soil-footing interface. Planview
and longitudinal vertical sections

footing with respect to the soil surface and the maximum
resisting rate of work is only produced along the velocity
jump surface within the soil volume. For 0 <A <1, uplift
of the footing with respect to the soil surface takes place
and a fraction of the maximum resisting rate of work is
developed on the zone of soil-footing detachment.
Class of shear-rotational mechanisms. The geometry
of the ‘‘shear-rotational”” mechanisms is presented in
Fig. 11. This failure pattern was originally proposed by
Brinch Hansen (1953) for the study of active earth pres-
sures. Salencon and Pecker (1995a, b) presented a varia-
tion of this mechanism adapted to the bearing capacity
problem of a strip footing under an inclined and eccentric
load (N, V, M). A similar mechanism was also studied by
Randolph and Puzrin (2003) for a circular footing con-
figuration exhibiting perfect adhesion at the soil-founda-
tion interface. Bearing failure is induced by rotation of
the footing around an axis of rotation, which is located
within the soil mass. The shape of mechanisms in the
class is defined by three geometrical parameters: x, A and
the angle u. The mechanisms are named *‘shear-rotation-
al’’ to be distinguished from the purely rotational ones,
since development of non planar shear strain rate occurs

in the zones 2 and 3 within the soil volume. By changing
the position of the axis of rotation with respect to the
footing, three separate configurations are obtained: a)
with a small zone of detachment (c.f., Fig. 11), b)
without detachment (c.f., Fig. 12(a)) and c) with a large
zone of detachment (c.f., Fig. 12(b)). For this family of
mechanisms, contributions to the maximum resisting rate
of work are developed within the soil volume in the zones
2 and 3, along the velocity jump surface in the soil mass
and on the zone of soil-footing detachment in the case of
uplift.

KEY ASPECTS OF THE SOLUTION PROCEDURE

Rate of work of the external forces. Since the circular
footing is assumed to be perfectly rigid, any v.k.a. veloc-
ity field U is due to comply with a rigid body motion of
the footing as a boundary condition. For planar velocity
fields, assuming Uy=0, such a rigid body motion is de-
fined by the virtual rate of rotation & and the two compo-
nents Up, ., Uo, ., of the virtual velocity of the center O of
the footing. It follows that the complete expression for
the rate of work of the external forces is:

9m=NUo,z+V00,x+Mcb+FhS U-e,d? (20
2

Use of Tresca criterion with and without tensile
strength. The considered v.k.a. velocity fields satisfy the
conditions of relevance for the classical Tresca strength
criterion and consequently, for the Tresca strength
criterion with a zero tension ‘‘cut-off’’. There is no differ-
ence in the use of the two criteria as far as the maximum
resisting rate of work is concerned within the soil volume
and along the velocity jump surfaces in the soil mass. The
only difference arises from the calculation of the maxi-
mum resisting rate of work on the areas of foundation
uplift, where the soil strength criterion is combined with
the strength criterion of the interface itself. Obviously
(Salengon, 1983) the upper bound estimates in the case of
the Tresca criterion with a zero tension cut-off are expect-
ed to be lower than or equal to the ones obtained in the
case of the full Tresca criterion. This difference is ob-
served when the optimal virtual failure mechanism ex-
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Fig. 12. Shear rotational mechanisms; Planviews of (a) configuration without detachment and (b) configuration with a large zone of detachment at

the soil-foundation interface

hibits a zone of uplift of the footing.

Optimization procedure. An important part of the so-
lution procedure is the optimization of the virtual failure
mechanisms in order to obtain the minimum upper
bounds for the ultimate loads supported by the system.
For each separate geometrical configuration of the consi-
dered classes of virtual mechanisms (1 configuration for
the translational mechanisms, 2 for the purely rotational
and 3 for the shear rotational ones), an optimization
problem is solved. It concerns the minimization of a non-
linear objective function depending on a number of
bounded variables, namely the geometrical parameters
used to define the shape of each geometrical configura-
tion (2 variables for the translational and the purely rota-
tional mechanisms and 3 variables for the shear-rotation-
al mechanisms). The problem was solved on a commer-
cial platform for scientific computing with an algorithm
using a robust interior trust region approach (Coleman
and Li, 1996).

RESULTS

Dimensionless parameters. The interpretation of the
results is made easier through the introduction of a set of
dimensionless parameters derived from the geometrical,
loading and strength parameters that define the problem,
namely:

Neq Vea Mzq rpay
N= , V= , M= , Fh=— 21
C()?Zrz (3077,'1'2 26‘07'['J B C()7T ( )
and
rG
k=— 22
c (22)

where the index ‘“Ed”’ refers to the values adopted for
Earthquake design. The definition of the dimensionless
F,, involves the soil mass density p together with a
horizontal acceleration a, characteristic of the considered
earthquake, which can be, for instance, the peak ground
horizontal acceleration (PGHA).

The latter parameter k expresses the degree of heter-
ogeneity in the system. For a homogeneous soil layer, k=
0. Common values of r, G and C, lead to the range

Table 1. Values of the critical F,, as function of &
critical value of F;,

Class of mechanisms
k=0 k=0.5 k=1 k=3
Translational 1.32 1.80 2.29 4.05
Purely rotational 0.99 1.28 1.54 2.45
Shear rotational 0.66 0.90 1.15 2.03
MINIMUM 0.66 0.90 1.15 2.03

O<k<3.

Critical Fy. In principle, failure of the system may be
induced just by the action of the soil inertial forces, even
for very small values of the vertical, horizontal and mo-
ment loads. This idea gives rise to the notion of critical
F,, which is defined as the maximum horizontal inertial
volume force in the soil supported by the system, when
the other loading parameters are zero: (N=0, V=0, M=
0). Table 1 summarizes the calculated values of critical F;,
for the classes of mechanisms examined, as a function of
k, the degree of heterogeneity of the system. The values in
Table 1 reveal an important increase of the critical value
of F,, with increasing k. The minimum value is equal to F,
=0.66 and is obtained through a shear-rotational
mechanism. For homogeneous soils and usual values of
the other parameters, this value of F; corresponds to a
very strong earthquake (e.g., a,=10 m/sec’=1 g for r=4
m, Cy=40 kPa, p=20 kN/m?). Even so, it can be noted,
that this value is obtained by a mechanism with very large
dimensions with respect to the footing width that has no
physical meaning whatsoever. It is understood that for
practical applications, the value of F;, will turn out to be
smaller than the critical one. Nonetheless, if this condi-
tion is violated it means that the method cannot describe
the overall process of seismic loading of the footing
sufficiently and that a more realistic description of seismic
excitation should be retained.

Presentation of the results. The upper bounds for the
ultimate loads supported by the foundation are represent-
ed as surfaces in the space of the loading parameters (V,
V, M) for different values of F;, and k. A simplified sketch
of such a surface is given in Fig. 13. Several interesting
points can be noted:
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i. The point of intersection of the surface with the
axis of vertical forces N corresponds to the maximal verti-
cal force supported by the footing (Ny.). If additionally
F, =0, this value is the static bearing capacity of the foun-
dation under centered vertical loading, denoted by NY,,.
For the examined configurations, N9, is known exactly
(see, for example, Salencon and Matar, 1982) and can
help investigate the error induced by the upper bounds es-
tablished herein.

ii. For M=0, two symmetric branches are obtained
by the intersection of the ‘‘ultimate surface’’ with the (N,
V) plane. The optimal upper bounds along these
branches are mainly obtained by translational mecha-
nisms. These branches are symmetric since the problem
with N, V and F; only, is symmetric with respect to sign
inversion of V and F;.

ili. For non-zero values of M, one part of the ulti-
mate surface is obtained from shear-rotational mecha-
nisms and the other part from purely rotational mecha-
nisms. The ultimate surface is not symmetric with respect
to the plane V'=0.

iv. The region that corresponds to quasi-axisymmet-
ric configurations of loading appears not to be sufficiently

Symmetric branches
(Translational mechanisms) + M

Shear-rotational
mechanisms

Purely rotational

mechanisms .
Maximum

Quasi — axis etric vertical force

loading

Fig. 13. Simplified sketch of ultimate surface in the space (N, V, M)
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described by the mechanisms considered, which may
come from the fact that they are unilateral. Anyway, such
configurations of loading do not present a great interest
when earthquake loadings are concerned, since the latter
imply significant horizontal forces and moments acting
on the footing. It can be expected (without rigorous
proof) that the error induced by the established upper
bounds is maximum in the region of the ultimate surface
that corresponds to quasi-axisymmetric configurations of
loading.

In the following, the results refer to the more realistic
Tresca criterion with a zero tension ‘‘cut-off’’ for the soil
strength, unless otherwise stated. Several diagrams are
presented that can be viewed as sections of the ‘‘ultimate
surface’” in the (N, ¥, M) space. The curves represent the
bounds for the ultimate combinations of the loading
parameters and indicate the class of mechanisms from
which each bound is obtained. This is done by assigning a
specific symbol for each class. The symbols used in the di-
agrams are summarized in Table 2. We note that the only
configuration that yields no optimal upper bounds is the
shear rotational mechanism with no uplift.

Interaction diagram (N, V, M=0, F,). The diagrams in
Fig. 14 present the relation between the ultimate horizon-
tal and vertical force for k=0 and k=1 and for three
different values of F,. The maximum value for Vis 1, cor-
responding to a translational mechanism of failure by

Table 2. Symbols representing the different classes of mechanisms in
the result diagrams

Translational &
Purely Rotational-No uplift (]
Purely Rotational- With uplift A
Shear Rotational-Small uplift zone ]
Shear Rotational-Large uplift zone *
Exact values O

1.00

] &
o f
i

Fp=0.0
Fr= 025
040

, N
o LFu=038 \ \I.
020 \ :

0.10

0.00 O— &
000 100 200 300 4.00~5.00 6.00

700 800 900

(b)

Fig. 14. Interaction diagram (N, ¥, M=0, F,). Tresca criterion with zero tension “‘cut-off”’. a) k=0 and b) k=1
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pure sliding along the soil-footing interface, if F,=0.

It is also interesting to note that for F, >0, the purely
rotational mechanism gives a better optimal upper bound
than the pure sliding one. The depth of this mechanism is
relatively small, so that it is very close to a pure sliding,
but nevertheless it incorporates a contribution of F; to
the rate of work of the external forces. This phenomenon
is less pronounced for larger values of k as revealed by the
diagram for k= 1. Another interesting observation is that
the effect of F, remains negligible as long as N2,/
N>2.5. It becomes more important when N increases
and especially when N9,,/N < 2. This is true both for k=
0 and k=1. However, for k=1, the negative effect of a
high F, is reduced. This observation emphasizes the
favourable effect of a cohesion gradient which, not only
increases the global system strength, but also reduces the
relative adverse effect of F,.

Interaction diagram (N, V=0, M, F,). By setting V=0,
we obtain optimal upper bounds for the ultimate combi-
nations of M and N, represented in Fig. 15 for k=0and k
=1. From the paper by Houlsby and Martin (1993) ex-
perimental data are available in the case k=0, F,=0,
which are plotted in Fig. 15(a)) for comparison. It comes
out that the upper bounds are satisfactory, from a practi-
cal point of view, and that the difference is larger for the
larger values of N that correspond, as it was explained, to
quasi-axisymmetric loading configurations. For small
values of N, the optimal upper bounds are obtained by
mechanisms with a significant zone of uplift of the foot-
ing, which is not the case as N increases. The effect of F;,
follows the same behaviour as in Fig. 14 (interaction V,
N). The practical significance of this observation is that a
factor of safety against permanent loads (expressed by
the ratio Np./N) larger than 2.5 can guarantee that the
effect of soil inertial forces is negligible, even for very
strong earthquakes. On the contrary, for a safety factor
against permanent loads smaller than 2 it is necessary to
take these forces into account for the earthquake-
resistant design of shallow foundations. Such conclusions
are in agreement both with observations of real founda-
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Interaction diagram (N, V=0, M, F,) and experimental results by Houlsby and Martin (1993). Tresca criterion with zero tension ‘‘cut-

tion bearing capacity failures, mainly after the Guerrero-
Michoacan earthquake (Mexico, 1985) as presented by
Mendoza and Auvinet (1988) and with the existing theo-
retical results for strip and rectangular footings (c.f.,
Pecker and Salengon, 1991); Paolucci and Pecker,
1997a).

Interaction diagram (N = const., V, M, F;). For a fixed
value of the vertical force N, the interaction between ulti-
mate values of M and V is obtained. In Fig. 16, two plots
are presented (k=0) for N}../N=3 (corresponding to a
proper foundation design) and N%..,/N=1.5 (unconser-
vative design). This diagram presents a significant practi-
cal usefulness: if the geometrical and rigidity characteris-
tics of the superstructure are known, a relationship be-
tween the resultant moment and the horizontal force
(base shear force) on the footing can be established. For
example, in the simple case of a SDOF superstructure,
this relationship is simply: M= Vh. Such a relationship
defines a loading path in the (M, ¥) plane allowing for
the determination of the ultimate combination of M and
V for given N and F;. Such trajectories are presented in
Fig. 16. The two diagrams highlight the significant:
decrease of the bearing capacity with increasing F; for
N%../N=1.5. Even for V=0, M=0, a value F,,=0.5 can-
not be supported by the footing.

Another interesting remark, is the fact that the part of
the diagram obtained from purely rotational mechanisms
(V'<0), corresponds to SDOF structures with a negative
height h. For loads that originate from the inertial
response of a superstructure, such a case presents limited
physical sense.

It is noted finally that in this diagram, the values of F,
reflect the magnitude of the horizontal inertial volume
forces but not necessarily the sign of their direction. The
inertial forces are deemed to be directed in the same direc-
tion as ¥ and always act in an unfavourable way in the
creation of the failure mechanism, /.e. their contribution
has always a positive sign in the expression of the rate of
work of the external forces. This is justified by noting
that a seismic bearing capacity failure is actually driven
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Ultimate loading paths for F,=0.25 in a SDOF superstructure

by the earthquake excitation of the soil-foundation sys-
tem.

Soil with and without tensile strength. As it has been
explained, for the examined v.k.a. failure mechanisms,
the only difference between the two soil criteria consi-
dered herein concerns the maximum resisting rate of
work developing in the zone of soil-footing detachment.
Therefore optimal upper bounds obtained from a virtual
mechanism of failure exhibiting foundation uplift are
slightly smaller in the case of a Tresca criterion with a
zero tension ‘‘cut-off’’ than with the classical Tresca

criterion. The difference between the results obtained

with the two criteria is expected to increase for regions of
the ultimate surface corresponding to failure mechanisms
with a significant zone of foundation uplift. These are the
regions that correspond to small N and large M, V load-
ing (high eccentricity and inclination of the load). In Fig.
17, results obtained with the two criteria are compared in
the (M, V) interaction diagram for N%,,/N=3 and k=0.
The diagram reveals that the difference is quite important
and thus the use of the classical Tresca criterion for load-
ings with high values of M, V accompanied by small
values of N should be looked at very carefully.
Assessment of the error induced by the upper bounds.
The solutions established in this study are optimal upper
bounds of the ultimate loads supported by the founda-
tion. They are thus unconservative, With this in mind, it
is helpful to evaluate how much the solutions presented
differ from the exact solutions. This can be done, for ex-
ample, for the static bearing capacity of the footing un-
der centered vertical loading, which is known exactly.
This means that for this loading configuration, it has
been feasible to construct a complete statically admissible
stress field and an associated kinematically admissible ve-
locity field. Here, the exact solutions of Salengon and
Matar (1982) are compared with the optimal upper
bounds for a range of values for k. Figure 18 presents the
results. The optimal upper bound is obtained by a shear
rotational mechanism with a small area of foundation
uplift. The error increases from approximately 11% for a
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Fig. 17. Comparison between classical Tresca and Tresca criterion
with a zero tension ‘‘cut-off’’. Interaction diagram (N=1/3 Nl..,
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Fig. 18. Comparison between optimal upper bounds and exact solu-
tions (Salencon and Matar, 1982) for the static bearing capacity of
a circular footing on a heterogeneous soil
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homogeneous soil up to approximately 20% for a strong-
ly heterogeneous soil. It is recalled that these values
reflect the maximum error induced by the optimal upper
bounds since the mechanisms chosen (unilateral mechan-
isms) are more suitable for loadings with significant M, V
and Fi.

Adaptation of the EC8 expression for circular foot-
ings. Finally, an adaptation of the Eurocode 8 expression
is proposed so that it can be used also for strip and circu-
lar footings on homogeneous or heterogeneous cohesive
soils. The expression of the Eurocode 8 for strip footings
is written as follows:

(L= eF) (V)"
(NYI(1~mFy) = NP

—1<0

(1 = fE)™(yM)*
(NYI(1 - mFyy* =N}

(23)

subjected to the constraints:

_ 1
—_ FC'~ (4% V _
O0<N=( )5 Vi< ——y
In Eq. (23), we define:
— Nea o Vea -, Mea _ paB
N= , V= , M= , F,=
NS’ Niw = BNW " ¢

Nuax=(n+2)cB
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known as: Np.=6.05cnr? (Eason and Shield, 1960).
Moreover, for use of Eq. (23) the value of F}, needs to be
updated as follows: F, = nF;, with F;, calculated for circu-
lar footings as in Eq. (21). Concerning the Eurocode 8 ex-
pression and its modification, it is noted that the ultimate
surface described by Eq. (23) is symmetric with respect to
the plane V=0, which is not the case for the optimal up-
per bounds established herein. Figure 19 presents the (M,
V) interaction diagrams for N%,.,/N=3 and N%,./N=1.5
as obtained by the upper bounds and the modified Euro-
code 8 expression. The agreement of the two families of
curves is very satisfactory mainly for the part M>0,
V>0, which corresponds to physically realistic combina-
tions of loads. The good agreement of the two curve fam-
ilies is in line with the hypothesis (see also, Bransby and
Randolph, 1998) that the shape of the ultimate surface
for strip and circular footings is very similar and that its
size is controlled by the value of N, This is verified
herein even in the presence of F.

For strip or circular footings on heterogeneous soils,
further modification is required to account for the inhibi-
tory role of the vertical cohesion gradient G on the nega-
tive effect of Fy,. The proposed modification consists in
considering that the soil-footing system exhibiting
strength parameters (Cp, G#0) is replaced by a system

The values of the other parameters in Eq. (23) are Table 3. Values of constant numerical parameters in Eq. (23)
presented in Table 3. These are constant numerical
. . a 0.70 N 1.22
parameters that were obtained by Pecker (1997) using a
procedure of curve fitting to theoretical results of the seis- b 1.29 ek 1.00
mic bearing capacity of strip footings. ¢ 2.14 e 2.00
As it was said, this expression has been established and
. . X . . . d 1.81 oM 2.00
therefore is valid for strip footings of width B resting on
homogeneous cohesive soils with cohesion c. For applica- e 0.21 Ci 1.00
tion to circular footings, the proposed modification con- I 0.44 8 2.57
sists in replacing the value of N%,, for strip footings by
R m 0.21 y 1.85
the corresponding value for circular ones, which is
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Fig. 19. Comparison between optimal upper bounds and ultimate loads obtained by the modified ECS8 expression. Interaction diagram (N = const.,
V, M, F,). Tresca criterion with zero tension ‘‘cut-off”’ and k=0: 2) 1/3 N%,, and b) N=2/3 N,
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with strength parameters (Cy, G=0), which is subjected
to reduced inertial volume forces Ff. It is proposed that
the reduced inertial forces are given by:

0
F},1=(Nmax|0)F,h (24)

N?nnle

with F, = (pa,B/C,) for strip and F, = (rpa,/ Cp) for circu-
lar footings respectively.

In Eq. (24), Nuxlo and Nl are the static bearing
capacities of a homogeneous (C;, G=0) and a heter-
ogeneous (Cp, G#0) soil respectively. These quantities
have been given for strip and circular footings by
Salencon and Matar (1982). The other parameters for ap-
plication of Eq. (23) are given by:

_ NEeq _ Vea _ Mrq .
N = s V= N M = t ’
Nowle | = Nl M= B0, 1, )
~ M Ed N
M=————(circular
2" N 9nax I G ( )

Note that N and M are normalized with respect to
N3axlc whereas V is normalized with respect to N lo.
This is because the ultimate value of ¥V is controlled
uniquely by C, while the presence of a nonzero G has no
effect on it whatsoever. Also note that in the above adap-
tation of Eq. (23) to heterogeneous soil conditions, the
shape of the ultimate surface is preserved, which is not
true in general as it has been revealed by Gouvernec and
Randolph (2003). However, by considering that the
change in the shape of the ultimate surface is negligible,
the proposed modification offers a quick extension of Eq.
(23) to circular footings and heterogeneous soil condi-
tions without recalibration of the numerical parameters
or modification of the general format of Eq. (23).

Table 4 summarizes the definition of the different

parameters for use of the analytical expression of the EC§
in the cases of strip and circular footings on homogene-
ous and heterogeneous cohesive soils.

The optimal upper bounds are compared with the ulti-
mate loads as obtained by the modified Eurocode 8 ex-
pression in Fig. 20, where the interaction diagrams (M,
V) for N=1/3 N%.lcand k=1, k=3 are presented. It is
revealed that the two families of curves exhibit a satisfac-
tory agreement and that the modified Eq. (23) can be used
as a quick estimate of the ultimate loads on the footing.
Attention should be paid however to the particular load
combinations that violate the established upper bounds
given by Eq. (23). These correspond mainly to loading
with large N combined with large V (c.f., Fig. 19(b)).

CONCLUSIONS

Optimal upper bounds have been established for the ul-
timate seismic loads supported by a circular footing rest-
ing on the surface of a purely cohesive soil with a vertical
cohesion gradient. These bounds are deemed to be ac-
ceptable, from a practical point of view, especially for
small to moderate values of the vertical gradient of the
cohesion. The results revealed that the effect of the
horizontal inertial forces in the soil volume is, in general,
negligible as long as the vertical force on the footing
remains smaller than one third of its static bearing capac-
ity. Moreover, it was pointed out that the Eurocode 8§ ex-
pression describing the seismic bearing capacity of a strip
footing on homogeneous soil can be satisfactorily extend-
ed to circular footings and heterogeneous soils with very
small modifications. Finally, it is emphasized that the
corpus of results established herein should necessarily be
enriched by other solutions (mainly lower bound solu-
tions) or by experimental results, since the established

Table 4. Definition of parameters for use of Eq: (23). The index ‘‘Ed’’ denotes the values chosen for earthquake design of the footing

HOMOGENEOUS COHESIVE SOIL HETEROGENEOUS COHESIVE SOIL
(Go, G=0) (Go, G)

PARAMETER STRIP CIRCULAR STRIP CIRCULAR
Neulo (m+2)CoB 6.05Conr? (m+2)C,B 6.05C,nr?
Niasle — — ¢f. Salencon and Matar (1982)

N Nes Neq N4 Nea
Niaxlo Niaslo Nialo Niaxlc
v Vea Ves Veg Vea
Niaxlo Noaxlo Nuaxlo Noaxlo
i Mgy Meq Meqy M4
BN?naxlo ZrN?naklo BNa.n]G ergnale
F PanB [ﬂ' N&;x lo pahB N?nax lo w
’ G G Noula) Go Niwlo) Go
CONSTRAINTS
N 0<N<(l —mFH*
- - 1 — 1 . 1 — 1
1 4 Vig— V —_—
=25 Wi=g0s W= METT




796

CHATZIGOGOS ET AL.

w——Qptimal upper bounds — =-Modifled Eum:od"l! I—OpthulUpporbounds — =—Modiflod Eutowdoll
+ e
v NN
A
—— // i — \\
A 70
41.4'/ ), i =T~ \\l\\ // / LE 200
= 7-/ // \\&\ = /// 8011 Fpy = 0.25
X7 7 N 5[ Fp,= 0.50 |
4 / \ A / 40
// / Y Fa=00 -
//\ Fa= 025 20
/ Fy= 0.50 "

-0 08 06 04 02 00 02 04 08 08 10

v
(@)

10 08 06 04 02 00 02 04 06 083 10
v

®

Fig. 20. Optimal upper bounds and modified Eurocode 8 results for heterogeneous soils. Interaction diagram (N=1/3 N, ¥, M, F,) for circular

footing on soil with no tensile strength: a) k=1 and b) k=3

results, although considered to be close to the exact ulti-
mate loads, are upper bounds and they are thus found on
the unsafe side of the design.
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NOTATION

Greek small
B, y=Constant parameters in the analyti-
cal expression of the EC8
y=Soil unit weight
0 =Geometrical parameter in mechan-

isms

&£=Geometrical parameter in mechan-
isms

x = Geometrical parameter in mechan-
isms

A=Geometrical parameter in mechan-
isms

u=Geometrical parameter in mechan-
isms

n=Function of maximum resisting
work

p=Soil mass density

o=Normal component of the stress
vector on a plane

g =_Stress tensor

T=Tangential component of the stress
vector on a plane

@ = Virtual angular velocity

Greek capital
2= Velocity jump surface
2 =Half-space of soil domain
Latin small
a=Earthquake-induced soil accelera-
tion
a, b, ¢, d, e, f, m=constants parameters in the analyti-
cal expression of the EC8
on, ¢k Cr1, CM, Chi=constants parameters in the analyti-
cal expression of the EC8
d= Virtual strain rate tensor
Jeoir=Strength criterion of soil medium
Simerr="Strength criterion of soil-founda-
tion interface
k=Degree of heterogeneity
n=Unit normal vector
g;=Associated kinematic parameter for
o
g=Surface load on the soil surface
r=Radius of the foundation
tr(d)=d, + d, + ds=Trace of the strain rate tensor
Latin Capital :
A=Foundation surface area
B=Width of a strip footing
F,=Magnitude of horizontal inertial
force in the soil
F, = Vector of horizontal inertial force in
the soil
M=Magnitude of moment on the foot-
ing
Mzqy=Moment for Earthquake design
M= Vector of moment on the footing
N=Magnitude of vertical force
Ngq= Vertical force for Earthquake de-
sign
N=Vector of vertical force
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N?.=Static bearing capacity under cen-
tered load
Qi;=Loading parameter of the system
U= Virtual velocity
[01= Virtual velocity jump
V'=Magnitude of horizontal force
Vea=Horizontal force for Earthquake de-
sign
V=Vector of horizontal force
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