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Ultimate bearing capacity of shallow _
foundations under inclined and eccentric loads.
Part II: purely cohesive soil without tensile strength

J. SALENCON * and A. PECKER **

ABSTRACT. — The problem of determining the bearing capacity of a strip footing resting on the surface of 2
homogeneous half space and subjected to an inclined, eccentric load, is solved within the framework of the yield
design theory assaming that the soil is purely cohesive without tensile strength according to Tresca's strength
criterion with a tension cut-off. The soil foundation interface is also purely cohesive, in terms of the homologous
strength criterion with a tension cut-off. ‘

As in a companion paper [Salengon & Pecker, 1995], both the static and the kinematic approaches of the yield
design theory are used. New stress fields are constructed, in order to comply with the condition of a tension cut-off
within the soil medium, and new lower bounds are determined as substitutes to those given in the companion paper.
Velocity fields taking advantage of the tension cut-off contribution in the expression of the maximum resisting
work are also implemented, giving new lower bounds.

As may be expected from common sense and from the general results of the theory, it appears that the tension
cut-off condition within the soil medium results in lower values of the bearing capacity of the foundation, and that
the gravity forces acting in the soil mass have a stabilizing effect.

1. Introduction

The problem solved in the current study, relates to the ultimate bearing capacity of
a strip footing resting on the surface of a homogeneous half space and subjected to an
inclined, eccentric load. The foundation, with width B, is assumed to be rigid and to
have an infinite length. Tt is subjected to uniformly distributed external loads along the
direction Z (Fig. 1). The evaluation of the ultimate bearing capacity is obtained within
the framework of the yield design theory [Salengon, 1983, 1993], as detailed in the
companion paper [Salencon & Pecker, 1995].

In the companion paper, the problem is studied assuming the soil to be purely cohesive,
in accordance with Tresca’s strength condition, while the interface between the soil and
the foundation is also purely cohesive, with a similar cohesion and no normal tensile
strength. In the present case, a tension cut-off condition is added to the soil strength
criterion, describing a purely cohesive medium with no tensile strength. As in the
companion paper, other interface strength conditions can be easily taken into account.
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Fig. 1. — Strip foundation under inclined, eccentric toad.

Under aforementioned assumptions, the problem can be studied within the framework
of the plane strain yield design theory, as defined in [Salengon, 1983, 1993].

Numerous publications (i.e. [Meyerhof, 1953-1963; Hansen, 1961-1970; Tran Vo
Nhiem, 1971; Khosravi, 1983; Swami Saran & Argawal, 1991]) deal with the problem
of load inclination and load eccentricity for a purely cohesive soil; however, to the best
of the authors” knowledge, the problem for a cohesive soil without tensile sirength has
never been solved before.

2. Theoretical framework

The notations, identical to those of the companion paper, are recalled in Figure 1. We
denote -y as the unit weight of the soil:

1) . 7= ey
and
@) -E:_Ngy"l'TQn: M=-Me,

are the force system resultants, computed at O, the mid-point of the foundation A A e,
g, and g, are the unit vectors of the cartesian coordinate axes Oz, Oy, Oz.

Let S be the point of application of F on Oz and e the algebraic eccentricity which
is positive along Ou; it follows that:

3 M=Ne, le<B/2

F;Sr pratical situations, the load eccentricity onto the foundation may arise due to an
élevated point of application of the horizontal force component I = T e.; hence:

@ M=Th, k20
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The soil is assumed to be purely cohesive without tensile strength. The strength criterion
using Tresca’s criterion with tension cut-off is:

() f{g) =5up(lor —o2| —2C, 01, 02) <0

"where o7 and g9 are the in-plane principal stresses of the stress tensor g; € designates

the soil shear strength and tensile stresses are positive.
The strength criterion for the interface A’ A, y = 0, |z| < B/2 is written as:

(6) .f(Umya oyy) = Sup (|oayl — C, gyy) <0

The halfspace is subjected to the following boundary conditions:
* zero displacement at infinity

Q) ' y<0, |z|—o0:U=0

» stress free boundary surface outside the foundation A’ A

(8) y <0, lz] > B/2: 0pq = 04y = 0.

The external load, in addition to the gravity field, is applied on the upper face of the
interface A’ A by the rigid foundation which enforces the following boundary condition
for y = 0%, |z| < B/2: the velocity field U must be a rigid body motion in the plane
Ozy defined by its components in 0: U, and w = —we,.

The loading parameters of the problem namely N (g), T (¢), M (g) and ~ for any
statically admissible stress field, together with the associated kinematic ones for any
kinematically admissible velocity field have been detailed in the companion paper.

The foundation bearing capacity is given by the boundary of the surface which, in the
space (N, T, M), given « and C, delineates the set of all values for the parameters
N, T, M, for which the equilibrium of the foundation is ensured without violating the
strength criteria (5) and (6).

In this paper, both the static approach from “inside” and the kinematic approach are
used to determine bounds for the foundation bearing capacity. The use of the static
approach has been described in detail in the companion paper together with that of

the kinematic approach, which requires the introduction of the concept of maximum
resisting work.

1t is recalled that the former approach yields lower bound estimates for the bearing
capacity, the latter, upper bound estimates.

The expression for the maximum resisting work in the soil medium presented in the
companion paper must be changed. Referring to [Salencon, 1983, 19931, the expressions
for the corresponding densities of maximum resisting work, = (d)} and = (n, [U]), for
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any plane strain velocity field, in the case of a purely cohesive soil without tensile
strength, are:

7 {d) = +oo if trd <0

©) {w(g)=c|d1|+|dg|—trg) i trd >0
 (a, [Z]) = +o0 it U] -n<0
a0 {w(@, W =c (Ul - [U-m i [L-n>0

The kinematic approach then states that, if I is a kinematically admissible velocity field
with the kinematic data Uy and w, the inequality

11) —N(Ug)y+T(Uo)x+ngfnw(g) dQ+/E 7 (n, [U])dS

+[4IAW(|[Q]])da:+/nyUde

yields an upper bound for the foundation bearing capacity (N, T', M).

3. Fundamental results

3.1. STABILIZING EFFECT OF THE GRAVITY FORCES ON THE FOUNDATION BEARING CAPACITY

In the companion paper, it was recalled that the bearing capacity of the considered
foundation did not depend on the unit weight of the soil medium. This result refers to
a classical proof based upon the fact that Tresca’s strength criterion is a function of the
stress deviator only. In the present case, where the strength criterion of the soil exhibits a
tension cut-off, the same reasoning can be followed, but the conclusion will be different.

Let o0 be a stress field in equilibrium with zero gravity forces in the soil medium
{v= 0_) and complying with the strength criteria (5) and (6), and consider the stress
field o7 defined by:

(12) Vy<0, Vz; o'(@my)=2(z, ) +vyl, 120

It is clear, from Eq. (12), that g7 is in equilibrium with the gravity forces v = —7ve,.
Since vy < ¢ and ot complies with the strength criterion (5) in the soil medium, so
does g”. Since g7 (a?, 0) =g (z, 0), g” obviously satisfies the strength criterion (6) in
the in?erface; and g and go_equilibrate the same values of the strength parameters then:

(13)  N{@)=N("), TE)=TE"), M()=M)

It follows, from the static approach, that the bearing capacity in the case of non zero
gravity forces is greater than or at least equal to the bearing capacity for zero gravity
forces. ’
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Contrary to the case of the companion paper, Eq. (12) does not provide an exhaustive
construction of all the stress fields ¢” which comply with the strength criteria (5)
and (6) and are in equilibrium with the gravity forces Y = —7¢& It means that the
bearing capacity on a purely cohesive soil without tensile strength may, under certain

~ circumstances, depend upon the soil unit weight which acts as a stabilizing factor.

Referring to the kinematic approach, it can also be stated that any upper bound estimate
for the bearing capacity on a purely cohesive soil still remains valid for a soil with the
same shear strength but without tensile strength. It follows that such an upper bound
estimate is valid whatever the gravity forces in the soil medium.

The derivation of additional (and better) upper bounds for the bearing capacity on a
soil without tensile strength will proceed from the implementation of velocity fields in
equality (11) which take advantage of the new expressions (9) and (10) for the maximum
resisting work within the soil. Such velocity fields exhibit dilation (trd > 0) and/or uplift
velocity jumps {[U] - » > 0): consequently, the work of the gravity forces within the
soil medium is always negative (the result is established using Stokes’ formula) which
proves that the unit weight of the soil acts as a stabilizing factor for the upper bound
estimates (except for the case when the velocity field only exhibits velocity jumps at the
soil boundary below the interface A’ A and is non dilatant anywhere else).

As a consequence of the preceding considerations, the problem will be studied assuming
zero gravity forces, both for the static and the kinematic approaches. Due to the form of
the implemented velocity fields, the computed upper bounds will prove to be valid, even
without this assumption, while the lower bounds might be conservative. '

3.2. CONVEXITY AND METHOD OF THE REDUCED WIDTH FOUNDATION

‘The general results regarding the convexity of the lower bound estimates of the bearing
capacity, and the application of the method of the reduced width foundation presented in
the companion paper, remain valid without any alteration.

4. Foundation bearing capacity for an inclined eccentric load on a purely cohesive
soil without tensile strength

Since the strength domain defined by Eq. (5) for a purely cohesive soil without tensile
strength is contained within the strength domain for a classical purely cohesive soil (as
defined in the companion paper), the following general statement holds [Salengon, 1983]:

— for a given soil unit weight -y, the foundation bearing capacity (N, T, M) for a
purely cohesive soil with tension cut-off is lower than the foundation bearing capacity

for a classical purely cohesive soil (the proof is straigthforward and stems from the
static approach from inside).

Moreover, as previously stated, for a soil without tensile strength, the bearing capacity
may depend upon the soil unit weight acting as a stabilizing factor: for increasing values
of -, the bearing capacity increases but remains bounded by the bearing capacity of the
foundation for a classical purely cohesive soil.
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The object of the following study is twofold.

The kinematic mechanisms described for the purely cohesive soil are reanalyzed to -

introduce slight modifications in order to take advantage of expressions (9) and (10) for
the maximum resisting work and therefore yield new, beiter, upper bounds for the bearing
capacity. New mechanisms will subsequently be introduced.

Thercafter, the stress fields of the static approach used for the classical purely cohesive
soil will be checked with respect to the strength criterion with tension cut-off (5). New
stress fields, compatible with the new criterion, are constructed.

4.1. KINEMATIC APPROACH

As previously stated, the upper bound estimates described in the companion paper
which were derived from the kinematic mechanisms and do not depend upon the soil
unit weight, remain valid for the soil without tensile strength.

The associated velocity fields do not imply any volume change within the soil medivm:

14 tré:O
) {m-@:o

The interface A’ A incorporates, for the mechanisms A and C, an inclined (not tangential)
velocity discontinuity [U] which corresponds to a separation between the two sides, that
is, the soil and the foundation: the discontinuity takes place within the interface. The
analysis focuses on this specific aspect.

The new mechanisms Ap and Cp are defined below, given that:

— the velocity is identical to that of the corresponding mechanisms A or C within
the soil medium;

— the velocity discontinuity, equal to the velocity discontinuity in the interface A’ A
for the A or C mechanisms, takes place within the soil immediately below the interface.

Consequently, when the new mechanisms Ag and C), are compared with the original
mechanisms A or C, it is found that

- the work of the external loads remains unchanged and independent of the soil unit
weight, :

_ the maximum resisting work is altered using Eq. (10) to reflect the contribution of
the velocity discontinuity along IA (or a A). The maximum resisting work is smaller
than or equal to the values derived for the purely cohesive soil. The Ap and Cp

mechanisms consequently yield better upper bounds for the bearing capacity than the
A or € mechanisms.

» Mechanism Ap

Referring to Figure 2, the velocity discontinuity [U] develops along A'T in the
soil immediately below the interface. Therefore, the maximum resisting work in that
mechanism includes a contribution along a discontinuity line within the soil (whose
normal is €.} instead of a contribution within the interface.
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Fig. 2. — Mechanism Ajp.

I.Jsing the notation presented in the companion paper, the corresponding upper bound
estimate for the bearing capacity is given by:
T 1 T
T o4 T 2
4+2+(2 a)/cos o
st -t (-5 -1 (- )
as) N < 773 Ln (tan 173 /4
CB A{l+tandtanc) +e/B —1/2

in which the angle ¢ is defined by:

(16) tane = (A'I/QI) = (1 - X)/Atana, 0<e< g

The right hand side of inequality (15) is minimized, for a fixed §, with respect to the
parameters A and o under the same constraints that were applied to mechanisms A:

(17) (1/2—¢/B)/{1+tanatanf) < A <1

* Mechanism Cp

Referr’ing to Figure 3, the velocity discontinuity [I/] for the Cy mechanism, develops
alon_g A’ a within the soil immediately below the interface. The application of the same
modifications used in mechanisms A leads to the inequality

2 T £ T
Sinz o + |:L11 tan (Z — 5)/'[’:3.]1 (Z — 5) ‘
. 1
+Arctan (sin ) — Arct i ————
. N oy (sin €) — Arctan (sin a)] STl o
CB — A(l+tané/tana) +e/B —1/2
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y
=
X
Fig. 3. - Mechanism Co.
where the angle & is defined, using the parameters A and «, by:
(19) tane = (A’ I/QI) = (1 - A)/A tane, O<e<mf2

The right band side is minimized, for a fixed 5, with respect to A and o under the same
constraints which were applied to mechanisms C

D<a<wf2
@0 {0<A<1/2, (1/2 —e/B)/ (1 —tand/tanc) < A

» Mechanism Fy

With one exception, the other mechanisms implemented in the companion paper, namely
the B and D mechanisms, do not involve a velocity discontinuity along the 1nt§rfa:ce
A’ A. Therefore, they are not affected by the possibility of locating this discontinuity
within the soil medium and consequently of improving the corresponding upper bo'unds.
The exception concermns the limiting case of the “ynilateral mechanism” examined in the
companion paper, which reduced to'a slip in the interface A'A \_vhen .the vellocny v
was tangential to the surface (x = 7/2) and to an uplift velocity jump 1n the interface
when 7/2 < x < 7.

In the present case, the homologous mechanism can be developed, assqming that Ehe
velocity jump takes place within the soil medium immediately below the interface A" A
(Fig. 4):

Fig. 4. — Mechanism Fp.
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— the foundation follows a translation rigid body motion with the velocity V' defined
by its inclination x;

~ the velocity is continuous across the interface A’ A;

— a constant velocity discontinuity [U]= V develops within the soil immediately
below the interface A’ A;

— the soil medium (y < 0) is motionless.

The maximum resisting work in the mechanism is obtained through Eq. (10). For any
prescribed value of , the corresponding upper bound for the bearing capacity is given by:

1) {11'/2<X<1r
N cos x+T sin x <CB(1+cos x)

The right hand side of inequality (21) is minimized for a fixed § (0 < § < 7/2) with
respect to the parameter

(22) N/CB < (1+cos x) cos §/cos (6 — x)

under the constraints:

(23) T/2< x<6+7m/2

The following results are obtained:

—For w/4 < § < w/2, the best mechanism is obtained for x = 26 and the upper
bound for the bearing capacity is:

" { N/CB = (1 + cos 26)

T/CB=tan§(1+cos 26) =sin 26

—For 0 < § < = /4, the best mechanism does not depend on é and is obtained for
x = w/2; it yields the upper bound:

N/CB = 1/tan 6
23) { T/CB=1

In Figure 5, Eqgs. (24) représent a aquarter of a circle with a unit radius, centered at
(N/CB =1, T/CB = 0) and Egs. (25) stand for the vertical tangent at the abscissa
T/CB = 1. These upper bounds for the bearing capacity are valid regardless of the
load eccentricity e.

» Summary of the results

A summary of the results obtained using the kinematic approach with the mechanisms
Ap, B, Cy, D and Fyp, and their symmetrics B’, Fy, is presented in Figure 5 for load
eccentricities e/B = 0, 0.1, 0.2, 0.3 and 0.4. The curves delimiting the best upper
bounds for the bearing capacity are derived from different mechanisms and the following
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N/CB

0 1 T/CB

Fig. 5. — Inclined, eceentric load: kinematic approaches from
mechanisms Ag, B, Co, D, Fo and symmetric ones for various e/B values.

comments, suggested by a comparison with the results in Figure 16 of the companion
paper, apply: -

—e/B=0: for 0 < |6 < m/4, the best resulis are obtained from the unilateral
mechanisms of the companion paper (i.e. a degenerated mechanism B with o = Ay, for
w4 < |6] < 7/2, the mechanisms Fy and Fy prevail.

—e/B=0.1: for § > 0, increasing from the vertical loading (6 = 0), thf: same
estimate as for the classical purely cohesive soil is achieved through the mechanisms B
(with 8 = w/2); the associated curve is then extended by an arc obtainf:d from the
mechanisms Ay, which is closely coincident with the upper bound obtained by the
mechanisms Fp; for § < 0, decreasing from the vertical loading, the same evaluation
as for the purely cohesive soil is obtained through the mechanisms D, extended to
§ = —=x/2 by the upper bounds from the mechanisms F.

~e/B=0.2:for § >0, the entire curve comes from the mechanisms Ag; for 6 5 0,
the curve is first derived from the mechanisms D then extended by an arc following
from the mechanisms Cp, which, for § values close to m/2, almost coincides with the
upper bound yielded by the mechanisms Fy.

- e/B =0.3 and 0.4: for § > 0, the curves are generated from the mechanisms Ap;
for § < 0, from the mechanisms Cp.

Comparing these results with the diagrams of Figure 16 in the t%om;.)anion paper
clearly shows a significant decrease in the bearing capacity for the soil without tensile
strength. This decrease is more pronounced when the load inclination and/or the load
eccentricity increases. The curves will then follow from the mechanisms Ag, Cp and Fy
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which take advantage of the decrease in the maximum resisting work for the soil without
tensile strength. From this point of view, the evolution of the leading mechanisms with

increasing load eccentricity and load inclination is in good agreement with what could
be intuitively expected.

. 4.2, STATIC APPROACH FROM INSIDE FOR A CENTERED LOAD

It is worth comparing the upper bounds given in Figure 5 for the bearing capacity of
the foundation on a cohesive soil with a tension cut-off, with the lower bounds presented
in Figure 17 of the companion paper corresponding to a classical purely cohesive soil.
It appears that, for high values of load eccentricity or of load inclination, the bearing
capacity of the soil with a tension cut-off is (significantly) smaller than the bearing
capacity of the classical purely cohesive soil. This proves that, in those cases, the stress
fields constructed for the classical purely cohesive soil are definitely not compatible with
the strength criterion (5), due to the presence of “unconfined” zones where at least one
of the principal stresses is (positive) tensile.

Referring to the comments regarding the influence of gravity forces, it must be recalled
that those stress fields are in equilibrium with zero gravity forces within the soil medium
and may be substituted for go in Eq. (12). Assuming that such a stress field, defined for
y < 0, incorporates unconfined zones, Eq. (12) shows that, provided that the minimum
depth of those zones is non zero and the tension remains finite, the incorporation of the
soil unit weight v > 0 in vy in the expression for g7 may balance the tractions in the

field gﬂ: the stress field g‘f will then become compatible with the strength criterion (5)
for the soil with a tensile strength cut-off.

This is the stabilizing effect of the gravity forces stated in Paragraph 3.1, the application
of which requires that the stress fields for the classical purely cohesive soil be reexamined
in order to detect the presence of unconfined zones. The stress fields in equilibritm with

centered loads will be checked first, before the application of the method of the reduced
width foundation and the use of convexity properties.

» Stress field in equilibrium with an axial load

The stress field 5 (7 /2) in Figure 6 is composed of the Prandtl stress field in the area
located above the line D'C/BCD and of the Shield extension below.

N4 ;V 5
SOEH

Fig. 6. — Prandtl’s stress field and Shield’s extension.
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The formulation of the first stress field is straightforward and shows that the principal
stresses are compressive everywhere. .

The Shield stress field is detailed in the original publication [S‘hield, 1954] and in
[Philips, 1956] (see also [Salengon, 1969, 1973]). It is composed, u’1 thef areas lroc?te’d
left of Bu' and right of Bu, of the same stress fields as in areas A BC an.d. A'C D_,
and ABC and ACD respectively: the principal stresses are aga_jn fﬂther 1l3osmve or nil
everywhere. In the area located in between the lines of discontinuity Bu' and Bu, thE:
principal directions are Oz and Oy; 0gc (resp. oyy) does not depend upon m‘(resp. ¥);
the lines of discontinuity B’ and Bu and the stresses oz, and Tyy are determined from
the continuity of the stress vector and from the additional condition ayy — 0zz = 20
on Bv' and Bu.

Egs. (26), with & = ©/2, are derived and indicate that the stresses' Oz and oyy are
either compressive or zero everywhere. Consequently, the stress field in Figure 6 which
is in equilibrium with the axial load

N/CB=m+2, T/CB =0, M=0
and complies with the tension cut-off strength critexion (5).

Tt follows that this load is also the exact value for the bearing capacity of an axially
loaded soil with a tensile strength cut-off.

s Stress field in equilibrium with an inclined centered load .
The derivation of the siress field in Figure 7 is based on the solution for the bearing

Fig. 7. — Beaning capacity under inclined load: static approach.

capacity on an infinite trapezoidal wedge whose stress ﬁelt_i s (o) is depicted in F1gufe 8.
It is composed of the Prandtl stress field whose principal stresses are a%ways either
compressive or nil and of its cxtension by Shield’s method, whose Qescnptlon h.as been
given above. With the notations of Figure 8, the following expressions are derived on
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Fig. 8. — Infinite trapezoidal wedge with apex angle 2 ¢: Prandfl's stress field and Shield's extension.

by’ for ozz and oy, (Eq. 26) which determine the stress field gs{a) in the area in
between bu and bu'.

(26) {cr:cm:ZC[cos(a—g)_g_l]
oyy = 2C [cos (a — 8) — 0]

In the extended area, the principal stresses above the lines of discontinuities bu and bu’
are either compressive or nil everywhere. In between these lines, Eqgs. (26) show that
Ozy is always compressive and that:

—1f 0 < @ < 1, oyy is everywhere bounded and tensile (< 2CY),

—if 1 £ @ < 7/2, gyy is compressive within a “column” centered on the Oy axis
which spreads out when o increases until it occupies the entire area in between bu and
bu’ when o = 7 /2. Outside this column, ¢y, is bounded and tensile (< 2 C).

It follows that the stress field g, (@), for 0 < o < #/2, is not a valid solution for
a soil with a tension cut-off.

Referring now to the stress fields of Figure 7, three areas must be checked. It turns out
that these stress fields never comply with the strength criterion (5):

a) for those associated with the arcs 0 < N/CB < 1, |T|/CB = 1 of the lower
bound estimate in the companion paper, the area 3 is on the whole unconfined, and so
are some subareas of areas 1 and 2;

b) for those associated with the remaining parts of arc A, with arc B and arc C,
areas 1 and 2 are, in part, unconfined.

Consequently, the stress fields, of the ¥ type, introduced in Paragraph 3.1 of the
companion paper, can no longer be used in a static approach. In the first case, the result
holds for any g7 field, as derived through Egq. (12). In the second one, the stabilizing
effect of the gﬁvity forces can be effective: the stress field o7, derived from a stress
field go, can be used if v B/C is sufficiently large. B

* Consequences for the bearing capacity

The following conclusions can be drawn from these results:

~ the bearing capacity is exactly determined in the case of an axial load (§ = 0), since

both the kinematic and the static approaches yield the values N /CB = (r+2), whatever
the tension strength of the cohesive soil;
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— for 0 < |6 < =/4, although the stress fields of Figure 7 are no longer compatible
with the strength criterton, it is not possible to make a conclusion regarding the instability .
of the corresponding loads for they might be balanced by other stress ficlds which comply
with the criterion. Moreover, it has been proven that these stress fields are stabilized by the
soil unit weight. In the following, atiempts are made to construct new stress fields making
the application of the lower bound approach possible with the strength criterion (5).

For |6| > 7/4, the kinematic approach of Paragraph 4.1 proves that the diagram is
no longer valid.

s New stress field in equilibrium with an inclined centered load

Khosravi and Salengon [Khosravi, 1983] considered the discontinuous stress field with
three zones, presented in Figure 9.

Fig. 9. — Stress field in equilibrium with a centered, inclined load.

The angle 3 represents the inclination of the lines of discontinuity At and At
0< 8 < 7/2
In the areas 1 and 3, the principal siresses are:

(2’7) 0-:1217:_201: Jyy:(], OS 01 S C

In the area 2, the principal directions are OX and OY defined by the inclination o of
OX on At; the principal stresses are:

r = —p— Cy, 0<Cy <C
28) {O’XA £ 2 L2 =

oyy = —p+ Cy,

The continuity of the stress vector determines o and p as functions of the three independent
parameters 3, C; and Ch:

29) { sin 2 = (C1/C3) sin 20
p=C1(1—cos28)+Cp cos 2

This stress field is in equilibrium, for the weightless soil, with the centered load:

{ N/CB = (1 —cos 28)(Cy cos 2 — Cy cos 23)/C

30) T/CB =sin 23 (Cs cos 2 — C1 cos 28)/C
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v&ihose inclination is § = (7/2 — ), ie the force F is parallel to the lines of
discontinuity A'# and At.

In view of the constraints set on € and Cj, these fields obviously comply with the
strength criterion for the purely cohesive soil.

Using the static approach with these stress fields, which depend upon three parameters,
leads to the determination of the convex envelope of the loads (30) while the parameters
8, C1/C, C3/C vary under the constraints already listed:

0<pB<n/2 0<C/C L1, 0<G/C <1
This envelope is defined by the equations for the arcs 4, B and C (sec Fig. 10):
Arc A

0<fB<n/4 hencen/2>8>m/4
01/O=0 (G!=U), 02/O=1

(3D
N/CB=(1—-cos28)=1+ cos 2§
T/CB =sin 28 =sin 2§
Arc B
7f4<B<37/8 hencen/4> 6> n/8
32) C1/C=—-1ftan28 (a=8=-n/4), C3/C=1
N/CB =tanf '
T/CB=1
Arc C
37/8<B<m/2 hencen/8>6>0
(33) Ci/C=1 (a=n/2-8), C/C=1

N/CB=-2cos 28(1~ cos 23) =2 cos 26 (1 + cos 26)
T/CB=—sin4f=sn4é

When these stress fields are analysed with regards to the strength criterion (5) for a
soil with a tension cut-off, it is found that the most sensitive stress, in area 2, is oyy
which vanishes on the arc 4 and is compressive on the arcs B and C. In contrast, oy, is
always nil in areas I and 3. It follows that the arcs A, B and C in Figure 10 effectively

yield a lower bound for the bearing capacity of an inclined centric load on a soil with
a tension cut-off. '

The accuracy of the lower bound is improved by taking advantage of convexity

propertics using the exact value of the bearing capacity for an axial load, yielding the
arc D in Figure 10.
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N/CB

o 1 T/{_)B

Fig. 10. - Centered, inclined Ioad: convex envelope of the lower bound estimates.

« Synthesis of the results for a centered load

Comparing these results with those using the kinematic approaches presepted in
Figure 5, it appears that for e/B = 0, with the exception of the case of. the axial load
(§ = 0) which has already been mentioned, both approaches give identical results_for
7/8 < {6} < m/4 in the form of the vertical segments:

r/4< N/JCB<1++2,  |T|/CB=1

and for n/4 < |6] < w/2 where they both yicld the same quarter of-a c_ircle whose
equation is given by (24) or (31) and its symmetric. The bearing capacity is computed
exactly.

The identity of the two results reveals that the mechanisms Fp consiflered in the
kinematic approach and the stress fields which define the arcs A and B in Figure 10, are
associated with each other as shown in Figure 11. For w/4 < |8| < x/2, the foundation
rests on the “soil column” # A’ At (area 2) which is in unconfined compression parallel
to the force F. The tension cut-off in the strength criterion makes a velocity discontinuity

L -\.\":?_
® N @ w207\ 0
~ ~

0~ 5

Fig. 11. — Velacity field Fy and associated stress field.
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[U]l= V possible in the soil medium immediately below the interface A’ A, acting at
an inclination y = 246.

For w/8 < {6] < x/4, the soil column parallel to the force £ in area 2 is laterally
confined by areas 1 and 3; the principal stress directions are inclined at Fx/4 on Oz,
and the velocity field is a slipping mechanism within the s0il below the interface A’ A,
and parallel to A' A.

Referring to Figure 10 and recalling the stabilizing effect of the gravity forces within
the soil medium on the stress fields of Figure 7, it also follows that, when -y B/C is large
enough, the lower bound estimate of the bearing capacity for 0 < 6 < /8 is improved:
the lower bound obtained for the classical purely cohesive soil can then be retained for
the cohesive soil with a tension cut-off.

4.3, STATIC APPROACHES FOR AN ECCENTRIC LOAD

The lower bounds for eccentric loads are obtained using the reduced width foundation
method and taking advantage of the convexity properties in the (N, T, M) space stated
in Paragraph 3.2.

The results are presented in Figure 12 where it appears that the convexity property,
which has been numerically implemented, does improve the lower bound estimate: this
improvement is particularly noticeable for the maximum value of T/ C B, for a fixed e/ B.

o A T/CB

Fig. 12. — Bearing capacity under inclined eccentric load.
Solid lines: upper bound estimates. Dotted lines: lower bound estimates.
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4.4, BEARING CAPACITY FOR AN ECCENTRIC INCLINED LOAD ON A PURELY COHESIVE SOIL WITH A
TENSILE STRENGTH CUT-OFF

Figure 12 compares the results of both approaches showing the upper and lower bound
estimates for the bearing capacity for each indicated value of e¢/B. This diagram may be
compared with the corresponding one for the classical purely cohesive soil.

As stated previously, for a centered load (e/B = 0), the foundation bearing capacity
on a soil with a tension cut-off is determined exactly for § = 0 and for 7/8 < § < 7 /2.
Between 0 and 7 /8, the assessment of the bearing capacity is obtained with less than a
4% error for v B/C = 0, an accuracy which improves as -y B/C' increases.

The comparison with the results obtained for the classical purely cohesive soil for
the centered load (e/B = 0) shows that, for § = 0 and 7/8 < § < w[4, the bearing
capacities are equal to each other, regardless of the strength criterion, they do not depend
upon the soil unit weight; for 0 < § < m/8, the difference, if any, between both values,
does not exceed 7 to 8% for v B/C = 0. The most significant difference appears for
7/4 < |8| < w/2. As a matter of fact, within this range of 6, the bearing capacity diagra}m
is nothing but the representation, using axes (N/CB, T/CB), of the comprehensive
criterion for the interface A’ A [Salengon, 1983], i.e. of the criterion expressed in terms
of gyy and oy which simultaneously takes into account the limitations imposed l?y the
interface itself and by the constituent materials on either side of the interface (in the
present case, only the soil is considered, since the foundation is assumed to be rigid).
This is not merely a coincidence since the mechanisms corresponding to the arcs on
the bearing capacity diagram (unilateral mechanism with x = 7 /2, and mechanism Fp}
imply a velocity discontinuity across the interface. -

It must be noted that the most important parameter is the tension cut-off in the soil,
since in both cases, the interface does not present any resistance in tension. '

Referring to Figure 9 in the companion paper, where the diagram obtained
from Meyerhof [Meyerhof, 1963], “parabolic” formula is drawn, it appears that for
73 < |§] < 7/2, the values obtained using this formula slightly overestimate the
bearing capacity.

As the load eccentricity increases, the difference between both bounds increases
significantly, despite the slight improvement achieved by utilizing the convexity properties
in the results obtained from the reduced width foundation method. Comparing these results
with the results for the purely cohesive soil, it appears that:

— the bearing capacities are considerably lower for large load inclinations,

_ for 7/12 < |6] < 7/6, the lower bounds computed for the same e/B values are
comparable.

Furthermore, the symmetry of the lower bound diagrams for e/B # 0 is a result of
their construction methods; on the other hand, it may be observed that the upper bound
diagrams appear to be more symmetrical in Figure 12 than they did for the classical
purely cohesive soil; however, a definite conclusion on that point would be risky.

Finally, it will again be recalled, as explained in the companion paper, that in the
case of the interface which exhibits a strength criterion which differs from (6), all the
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diagrams in Figure 12 should be truncated by the corresponding curves which express
the interface strength criterion in terms of N/CB and T'/CB instead of oyy and oy
e.g. |[T|/CB < N tan ¢1/CB for a Coulomb strengh criterion with a friction angle
¢1. Obviously, this is in line with what has just been stated about the comprehensive
strength criterion of the interface.

5. Conclusions

Within the same framework of the yield design theory which was adopted for the case
of a classical purely cohesive soil in the companion paper [Salengon & Pecker, 1995],

the ultimate bearing capacity of a foundation resting on a cohesive soil with no tensile
strength has been studied for an inclined eccentric load.

Due to the strength criterion of the soil, the bearing capacity in the general case
of inclination and eccentricity can no longer be proven to be independent from the
gravity forces, whose effect will always be a stabilizing one, and is governed by the
adimensional factor v B/C. However, for the case of a centered load with a small
inclination, independence has been proven or may be anticipated.

As a general comment, the effect of the tension cut-off condition can be perceived
within the soil medium and in the interface. Therefore, new stress fields were constructed
in order to comply with the additional tension cut-off condition. New velocity fields
were then implemented which could take advantage of the expression of the maxirmum
resisting work associated with the comprehensive strength criterion of the interface.

The foundation bearing capacity has been computed, exactly or, at least, with a very
high accuracy, for a centered load. For an eccentric load the bearing capacity has been
bracketed between lower and upper bounds, as a function of the load eccentricity and
load inclination. From a practical standpoint, in view of the safety factors used in the
design of foundations under vertical, centered, loads, the implications of the inclinations
and eccentricities are usually small.

The results presented herein have been used for the seismic analyses of foundations
and are reported in [Pecker & Salencgon, 1991].

Since both cases studied in this paper and in the companion one, represent extreme
conditions for the tensile resistance for the purely cohesive soil, it can be stated that

the results bracket the variations of the bearing capacity as a function of the soil tensile
strength.
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