131

Eur. J. Mech., AfSolids, 14, n® 3, 349-375, 1995

{

Ultimate bearing capacity of shallow foundations under
inclined and eccentric loads. Part I: purely cohesive soil

J. SALENCON* and A. PECKER**

ABSTRACT. — The problem of determining the bearing capacity of a strip footing resting on the surface of a
homogeneous half space and subjected to an inclined, eccentric load is solved within the framework of the yield
design theory, assuming the soil to be purely cohesive according to Tresca’s strength criterion. The soil foundation
interface is also purely cohesive, in terms of the homologous strength criterion.

Buth the static and kinematic approaches of the yield design theory are used to derive lower and upper bounds
for the ultimate bearing capacity. For an inclined centered load, an almost exact solution is derived; for increasing
values of the foad eccentricities, the ultimate bearing capacity can only be bracketed but nevertheless determined
within a sufficient degree of accuracy from an engineering standpoint.

In a companion paper, the same problem is solved for a soil and an interface with a tension cut-off. These two
solutions represent extreme conditions for the tensile resistance of the purely cohesive soil and could be used to
bracket the variations of the bearing capacity as a function of the soil tensile strength.

1. Introduction

The problem solved in the current study, relates to the ultimate bearing capacity of
a strip footing resting on the surface of a homogeneous half space and subjected to an
inclined, eccentric load. The foundation, with width B, is assumed to have an infinite
length and is subjected to uniformly distributed external loads along the direction Z
(Fig. 1). It is also assumed to be rigid.

The ultimate bearing capacity (hereafter referred to as the bearing capacity) of the
foundation is defined within the framework of the yield design theory, as detailed in .
[Salencon, 1983; 19931, using the yield strengths of the materials involved. It may be
recalled that the practical relevance of such an analysis for a proper design depends

on the possibility of simultaneously, where it is needed, mobilizing the resistance of
the materials.

The soil underlying the foundation is purely cohesive with tensile strength. In the
companion paper [Salencon, Pecker, 1995], the equivalent problem is solved for a
cohesive soil with tension cut-off, i.e. without tensile strength.

The foundation interface is characterized by its strength criterion; the results presented
in this paper are obtained for an interface without tensile strength and with a shear
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350 I, SALENCON AND A. PECKER

Fig. 1. — Strip foundation vnder inclined, eccentric load.

strength equal to the soil cohesion; however, results were similarly obtained, without
any- additional difficulty, for an interface with a limited tensile strength or with a shear
strength different from that of the soil.

Using the assumptions listed above, the problem can be studied within the framework
of the plane strain yield design theory, as defined in [Salencon, 1983].

Numerous publications (i.e. [Meyerhof, 1953; 1963, Hansen, 1961; 1970, Tran Vo
Nhiem, 1971, Khosravi, 1983, Swami Saran and Argawal, 1991]) deal with the problem
solved hereafter; however, load inclination and load eccentricity are seldom treated
simultaneously. Moreover, in the proposed solution the foundation bearing capacity is
computed with a very high degree of accuracy.

2. Problem modelization

2.1. PLANE STRAIN BEARING CAPACITY PROBLEM

The notations are given in Figure 1 where - is the unit weight of the soil:

(L V= =Yy
and
@) F=-Neg,+Te,, M=-Me,

are the force system resultants, computed at 0, the mid-point of the foundation A’ 4; e, &y
and ¢, arc the unit vectors of the cartesian coordinate axes Oz, Oy, Oz.

Let S be the point of application of F' on Oz, and e, the algebraic eccentricity, which
is positive along Oz; it follows that: ’

3) M = Ne, |e|<B/2
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In practical situations, the load eccentricity onto the foundation may arise due to an
elevated point of application of the horizontal force component T = T e; hence:

4 M=Th h>0

The strength criterion for the homogeneous, purely cohesive halfspace (y < 0) is written

as.

3 f(g)=]01—0’2|—20§0

where o1 and o are the principal in-plane stresses of the stress tensor g; C' designates
the soil shear strength and tensile stresses are positive.

The strength criterion. for the interface A’ A, y = 0, |z | < B/2 is denoted as:
(6) f o2y, oyy) = Sup(|oay | — C, oyy) <0
The halfspace is subjected to the following boundary conditions:
e zero displacement at infinity
(7) y<0, |g|—=oc0: U=0

e stress.free boundary surface outside the foundation A’ A

(8) y<0, |z|>B/2: oy=0zy=0

The external load, in addition to the gravity field, is applied on the upper face of
the interface A’ A by the rigid foundation which implies that the velocity field U for
y =01, | 2| £ B/2 must correspond with a rigid body motion in the plane Ozy defined
by ‘its components in 0 : Uy and w = —we,.

It is straigthforward to check that the problem defined above depends on a finite number
of loading parameters by expressing the principle of virmal work for any statically
admissible stress field and any kinematically velocity field with the data 4, U, and w:

© pe (U) = —p; (T)

The virtual work for the external forces is given by:

(10) pe(U) = F(0). T, +M(g).g—Lvadﬂ
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The loading parameters (); and associated kinematic parameters ¢; are therefore:

(@@=-N@=-[ oyds a@=-),

R@=T@=] onds @@=
1) ﬁ AlA

B@=M@=-[ soyds HWQ)=w

@@=7 «@=-[ vEae

The virtual work of the internal forces is then:

@ p@=-[g:dao- [ g @Wonis- [ o Wioe)d

where  represents the volume of the halfspace y < 0, ¥ any line of discontinuity, if
any, for the velocity field U; and [U], the velocity discontinuity when crossing 3 along
the direction of its normal 7, or between the upper and lower faces of the interface A'A.

2.2. FUNDAMENTAL RESULTS FROM THE YIELD DESIGN THEORY

For the problem defined above, the yield design theory determines the set of all values
for the four parameters N, T', M, , for which the equilibrium of the foundation is ensured
without transgressing the strength criteria (5) and (6). Such values of (N, T, M, «) are
called potentially admissible or potentially safe parameters.

The foundation ultimate bearing capacity is defined by the boundary of the surface
which, in the space (¥, T, M), given -y and C, delineates the set of potentially safe loads.

The yield design theory gives methods for the determination or approximation of that
boundary: a static approach “from inside”, or a kinematic approach “from outside”, which
yield lower and upper bounds for the bearing capacity. The main statements are recalled
hereafter for the particular case under smdy.

e Static approach “from inside”

The construction of a stress field @, in equilibrium with the soil gravity forces and which
complies with the strength criteria (5) in the soil and (6) at the interface, determines
through (11), a loading (N (g}, T (g), M (g)) representing a lower bound for the
foundation bearing capacity. The ultimate bearing capacity is, therefore, the envelope
of all these determinations.
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¢ Kinematic approach “from outside”

The concept of a maximum resisting work for the soil (resp. for the interface) is
introduced from the virtual work —p; (I/) in (12). The following functions are defined

from the strength criteria of the materials:

¢ for the soil

7(d) =Sup(g: &; f(g) <0)
(13) m{(n, [U]) =Sup ([U].c.n; f(g) <0)
=n(Ul®on+ne[U])/2

where f(g) is given by (5).
e for the interface along A'A

(14) {7 (IU]) = Sup (ozy [Ux] + oyy [Uyl; f {02y, yy) <0)

where f (ogy, oyy) is given by (6).

Axy loading (IV, T', M) whose work in some virtual, kinematically admissible, velocity
field U is larger than the maximum resisting work minus the work of the gravity forces
< is an upper bound for the foundation ultimate bearing capacity. Hence, since U is
kinematically admissible with the kinematic data U, and w, the inequality

19 -N (@) +T O +Mos [ r(@)ans [ 7o s

+L'Aw(ﬂgﬂ)dw+L7Uydﬂ

yields an upper bound for the foundation bearing capacity (N, T, M).

The plane strain expressions for 7 (d) and 7 (z, [U]) for the soil and « ([U]) for the
interface are recalled from [Salengon, 1983; 1993]:

» for a purely cohesive soil

16) 7 (d) = +co if trd #0
T(d)=C(|d|+]|da]) if trd =0
7(n, [U]) =+o0  if [U].n#0
a7 {w(@, [0]) =C| ]| i [U].n=0

e for the interface

7 ([Ul) = +eo i [Uy] <O
(18) {W([[Q]]) =C[U;] if |[UZ]| =0
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354 1. SALENCON AND A. PECKER
3. Fundamental results

3.1. INFLUENCE OF THE SOIL UNIT WEIGHT ON THE FOUNDATION BEARING CAPACITY

It can easily be shown that the bearing capacity of the foundation in the problem under
consideration does not depend upon the soil unit weight. The proof follows the reasoning
detailed in [Salencon, 1983] for the particular case of a vertical centered load specific to
Tresca’s yield criterion. From now on, the gravity forces will be set to zero, reducing
the number of loading parameters to 3.

3.2. CONVEXITY PROPERTIES

— The convexity of the strength criteria (5) and (6) implies both the convexity of the
domain of the potentially safe loads (N, 7', M) and of its boundary which defines the
. bearing capacity;

— Results are conveniently presented in the plane (IV, 1) as the domain of the
potentially safe loads for a given eccentricity e. The convexity of such domains stems
from the preceding statement and from the definition of e in (3).

— Finally, for practical applications, the domain of stability is drawn in the (7, e) plane
for a given N value. The convexity is ensured by the reasons stated above.

3.3. “(1 — 2| e|/B) THEOREM” AND METHOD OF THE REDUCED WIDTH FOUNDATION

The following result follows from the static approach.

If the load Fy = —Np e, + Tb e, represents a value for the bearing capacity with
zero eccentricity (e = 0}, then the load F = Fy(1 — 2|e|/B) represents a lower bound
estimate for the bearing capacity with the load eccentricity e.

In fact, if g, is a stress field in equilibrium with Fy which complies with the criteria
{5) and (6), everywhere in the medium and along the interface, then g, defined by:

Vy <0, YV
(19) - T—e iy B
= < —
g, (@9 =g (1—2§e|/13)’ 12178/ 1153

complies with the same criteria and is in equilibrium withi the load Fy (1 — 2|e|/B)
acting at an eccentricity e. As shown in Figure 2, this amounts to considering that the
foundation with a reduced width (B — 2|e|), with center S at the point of application
of F on Oz, solely contributes to the bearing capacity of the foundation A'A, thus
demonstrating a result which is usually admitted from heuristic considerations. This
result is still valid even if Fy is a lower bound for the bearing capacity with e = 0.

3.4. APPLICATION

In the following, the bearing capacity for a foundation with a centric load will be
estimated using both a static approach and a kinematic approach.
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Fig, 2. — Reduced width foundation method.

The use of the results of paragraphs 3.2 and 3.3 (static approach) will then yield lower
bound estimates for the eccentric Joad and new kinematic approaches will be derived
to obtain upper bound seolutions.

4. Bearing capacity for a centered load on a purely cohesive soil
4.1. VERTICAL LOAD

The theoretical analysis is well known and only the main results are briefly recalled
for use in the subsequent analyses.

The stress field given by [Prandtl, 1923] and extended by [Bishop, 1953], [Shield, 1954]
and [Sayir-Ziegler, 1968] is in equilibrium with the weightless soil and complies with the
strength criterion (5); along A’A it is in equilibrium with the normal, compressive stress

(20 y=0, I$I<B/23 Jyy=_(7r+2)cg O'a:ymo

thus cbmplying with the strength criterion (6) for the interface (Fig. 6).
This stress field is associated with the classical, constant volume, velocity field I/

represented ‘in Figure 3 where the soil boundary A’A is subjected to a rigid body
translation with velocity ¥V, inclined at the angle x on Ow:

(0 < |x| < 7/4,

in AAB U=V =V(e, sin X — &y €OS X)

in ABC Up =V cos(m/d—x), Ug=0

in A'BC Uy =0, Ug=—V sin(n/4 - x)
in ACD U=V/(e,+e,) cos(r/4—x) V2/2
\in A'C'D" U=V(-g, +g,) sin (/4 — x) V2/2

21 3
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356 J. SALENGON AND A. PECKER

Fig. 3. — Prandil's stress field: associated velocity fields (| x| <= /4); Shield’s static extension.

where U, and Ug represent the components of U in the orthonormal axes oriented along
the lines a and 8 at the current point. The velocity is continuous across the interface
A’A and the soil medium is motionless below D'C' BCD.

The inequality (15) then becomes:

22) {E.Z=V(N cos x+ T sin x) < VCB(m +2) cos x

V>0 |x|<x/4

which yields an upper bound for the bearing capacity. When compared with the static
approach, it yields the exact value for the bearing capacity for a foundation under a
vertical centric load:

(23) N ={(m+2) CB, T=40, M=0.
4.2, INCLINED LOAD: KINEMATIC APPROACHES
e Bilateral velocity fields

The velocity fields defined by equations (21) bound the bearing capacity for an inclined
load through equation (22). The best upper bound is obtained when | x | =m/4:

(24) (N+|T|) < (x+2)CB.
¢ Unilateral velocity fields

The velocity field sketched in Figure 4 is now considered, where the foundation and
the volume A’ AB are given a rigid body translation motion with the velocity V parallel
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Fig. 4. — Unilateral velocity fields (x/4 < | x| £ 7/2).

to A'B (or, symmetrically, AB according to the sign of x); the soil medium below
A'BCD is motionless; the volume ACD moves parallel to C'D with the velocity V;

a velocity jump with a magnitude of V occurs along A'BCD and the velocity field
in ABC is written as:

mfd <|x|<w/2
(25) V=V (e sin x— g, cos x)
Ua:V-, U‘BZO

The inequality (15) is then:

F. V=V (N cos x+T sin x) <VCB (sin | x}
(26) +@Br/24+1-2]|x]|) cos x)
7/4 < |x|<n/2

The bearing capacity is therefore bounded by a family of two straight lines in the
(N, T) plane which envelop cycloidal arcs with equations

N/CB=3n/2+1-2]|x|+sin 2|x|
@7 T/CB = —{x/|x|) cos 2x
/4 < |x| < w/2

and extend with the segments:

08 {o < N/CB < 1+m/2

|T|/CB =1

For | x| == /4, this result agrees with that obtained in the kinematic approach (Fig. 8).
For | x | = /2, the velocity ficld breaks down into a solution where there is a sliding of the
foundation, parallel to the interface A’ A and the velocity jump takes place within the soil
immediately below the interface, while the remainder of the soil mass stays motionless.
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4.3, INCLINED LOAD: STATIC APPROACH FROM INSIDE

¢ Purely tangential load

The discontinuous stress field proposed by Khosravi and Salengon [Khosravi, 1983]
is presented in Figure 5. Within the axes (OX, QYY) rotated by n/4 from (Oz, Oy)
this field is given by:

zone 1 OXXN = C, ayy = —G, gxXy = 0

zone 2 oxx =0, oyy=-C, oxy=0
(29)

zone 3 oxx =0, oyy= 0, oxy =0

zones 4, 5,6 oxx =0, oyy =0, oxy =10

Fig. 5. — Stress field with six zones in equilibrium with a purely tangential load.

The field is in equilibrium with the weightless soil and complies with the strength
criteria (5) anywhere in the soil and (6) along the interface. Along A’ A:

(30) oyy =0, oxy =C

It is in equilibrium with the loads

31 N(@=0, T(g)=CB, M(g)=0

e Arbitrary inclined load

A static solution has been constructed by Khosravi and Salencon [Khosravi, 1983]. It
is based on the classical results for the bearing capacity of an infinite trapezoidal purely
cohesive, weightless wedge ¢’ B/ Bt, with a vertex angle 2 «, subjected along B'B, to a
uniform normal stress T (positive in tension); the faces ¢’ B’ and tB are stress free.
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Figure 6 recalls that the association of the Prandtl velocity field with the corresponding
stress field, extended by Bishop’s or Shield’s methods, results in the exact value of this
bearing capacity: :

(32) IS|=2C(1+ )

Fig. 6. — Trapezoidal wedge with apex angle 2 .. Bearing capacity
from Prandtl’s stress fields and Shield’s criterion.

Let a, () be the stress field, sketched in Figure 6, obtained by Shield’s method, which
is in equilibrium with the uniform stress ¥ = 2C (1 + &) equal to the bearing capacity in
tension. The stress field for the static approach of the bearing capacity under an inclined
load is defined as follows (Fig. 7):

Fig. 7. — Bearing capacity under inclined load: static approach.

— zone 3 is a right-angled triangle A’ BA where g, is a homogenous field whose principal
stresses are % parallel to AB and Xy parallel to A’B;
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— zone 1 is a symmetrical infinite trapezoidal wedge z' A’ B¢, with a vertex angle 20:1,
where the siress field is g,

x
(33) g, = m ( 1) == g, (e1)
in which
34 _ T1=2C {1+ o1)

— zone 2 is another symmetrical infinite trapezoidal wedge t{B Az, w1th an apex angle
209 = 7 — 20y, where the stress field is:

¥
{35) gy = m (a2) = C’ (@2)
in which
(36) Y =203(1 + ag).

This field is obviously in equilibrium throughout the weightless soil medium. Along
A’A, the stresses:

(37 Oyy = (Za+21)/24+ (X2 — 51) cos 2m)/2
ooy = ((Z1 — T2} sin 2.04)/2
develop.
The strength criterion (5) imposes the following constraints:

(38) 122—21|-/2=102(1+g—a1)_01(1+a1)|gc,
(40) 1G] < C.

In view of (38), the strength criterion for the interface will be satisfied if:

@)y (B2 +E1)/2 + ((B2 — 1) cos 2e11)/2 <0

also holds.
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The family of stress fields under consideration depends upon three parameters

ai, C1/C, Ca/C, with the constraints (38) to (41). It yields the following lower bounds
for the bearing capacity: '

N(g)=—-B(X1+ % — (51 — X2) cos 21)/2

'(42) T(g)=B(E) — %) sin 2 03 /2

Mg)=0

Retaining the convex envelope and taking into account the exact value of the bearing
capacity already obtained for the case of an axial load, the lower bound for the bearing
capacity for any centric loading consists of three arcs and their symmetrical solutions
shown in Figure 8, whose equations are:

N/CB

0 1 T/CB

Fig. 8. — Bearing capacity nnder centered inclined load,
Solid lines: upper bound estimate. Dotted lines: lower bound estimate.

Arc A:

N/CB=1-(m+4)Ci/2C
T/OB:l

| —7/(r+4) < C1/C <2/(x +4)
(a1 =7/4, CofC =C/C —4/(x+4))

“3)

EURCPEAN JOURNAL OF MECHANICS, A/SOLIDS, VOL. 14, N° 3, 1995




362 J. SALENCON AND A. PECKER

Arec B:
N/CB=7+1—-2a +cos 21
T/CB =sin 2 o
(44)
wfd—1/2< o1 < wf4
(C1/C = (a1 - m/2) /(1 +1), Co/C = —1)
. Are C:
N/CB =(r4+2)— A(x/2 —sin 1)
45) T/CB=Xcos 1

0<A<1

It is worth noting that along the arc A, the strength criterion of the soil is reached,
i.e. equality in equation (5), in zone 3 only;, in particular, for oy = =/4, and
C1/C = 2/(w + 4), a stress field, different to that of Figure 5, is obtained, which is in
equilibrium with a purely tangential load. Along the arc B, the strength criterion of the

soil is reached in zones 2 and 3; in the former, the field g, = —g_ (o) is homogeneous
throughout ABb; and identical to g, from zone 3. For o1 = 7/4 — 1/2, the strength
criterion of the soil is reached simultaneously in all three zones (Cy = C = —C).

4.4. BEARING CAPACITY FOR AN INCLINED LOAD

The comparison of the results of both approaches, given in Figure 8 shows that both
approaches yield the same result along the arcs A, B and at point 2. An algebraic
check is straigthforward if one notes that for the arc 2, for instance, equations (27) for
wf2—1/2 < x < w/2 and (44) for /4 — 1/2 < oy < w/4 define the same cycloidal
arc, e and x being related by:

(46) xX—o =7n/4

As expected from the association theorem of the theory of yield design, it turns out
that the optimal stress field corresponding to the arc B given by (44) and the unilateral
velocity field, are associated when a1 and y are related through (46).

Denoting 6 as the load inclination defined by:
47N tan § = T/N,

the preceding analysis yields
— the exact value of the bearing capacity for § = 0 (axial load) and for 7° < § < 90°,
— an estimate within an error of 0.6% for a fixed §, for 0 < § < 7°.
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It may be anticipated that the result from the kinematic approach yields the exact value
and that an exact solution for 0 < & < 7° could be obtained through a more refined
static analysis. Such a solution would be purely academic and not particularly useful for
practical applications. The accuracy of the stress fields of Figure 7 is remarkable.

In fact, a comparison made by [Khosravi, 1983] shows that the values proposed by

.‘[Meyerhof, 1953], [Tran Vo Nhiem, 1968, 1971], [Mirzabekian, 1979] coincide exactly

with the results (equations (27) and (28)) of Figure 8 if N is expressed as a function
of 4. Paragraph 4.2 of the present study states that these values are upper bounds and
it follows that Meyerhof’s formula [Meyerhof, 1963], which reduces the normal bearing
capacity by the factor (1 ~ §/2 )%, becomes questionable as soon as 8° < § < 60° since
it may overestimate the bearing capacity by a factor of up to 30% for specific values
of § (Fig. 9). Paragraph 4.3, as a result of the accuracy of the static approaches, fully
justifies, from a theoretical viewpoint, the use of the values given by equations (27) and
(28), recommended for instance by [Giroud, Tran Vo Nhiem and Obin, 1973]. It shows
that the formulae proposed by [Brinch Hansen, 1961, 1970] slightly underestimate the
bearing capacity for low angles of load inclination; as does Meyerhof’s formula. It also
points out that the Meyerhof formula underestimates the bearing capacity for high angles
of load inclination, since Meyerhof predicts a nil bearing capacity for a purely tangential
load. Our results show definitively that the bearing capacity is |1'| = CB for N = 0.

However, the reader’s attention must be drawn to the fact that the latter result for the
tangential bearing capacity essentially depends upon the strength criterion (6) adopted
for the interface A’A; as shown in {Khosravi, 1983], the consideration of a Coulomb
criterion for the interface leads to a truncation of the domain in the (NN, 1') plane with

"N/CB.

0 1 T/CB

Fig. 9. — Inclined centered load: comparison with Meyerhof's formula (1933).
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364 1. SALENGON AND A. PECKER

straight lines |T'| = N tan ¢; where ¢; represents the friction angle of the interface
(Fig. 9). This question will be considered again in Section 5. _

Finally, it is worth noting that the format of the formulae proposed in the literature
gives the normal load as a function of the load inclination; even if the computation of
the tangential load is straightforward using equation (47), it is interesting to draw the

diagram in the (N, T') plane, since it highlights the sensitivity of both components to
the load inclination.

5. Bearing capacity for an inclined, eccentric load

5.1. STATIC APPROACH FROM INSIDE
o Application of the reduced width foendation method

Starting from the diagram in Figure 8, the reduced width foundation method yields
a lower bound estimate for any value of the eccentricity e{|e| < B/2) by applying
the similarity of center O and of ratio (1 — 2 |e[/B) to the arcs 4, B, C (and to the
symimetrical ones) in the (IV, T) plane, as shown in Figure 10.

¢ Use of convexity

The convexity, in the (N, T, M) plane, of the domain of (potentially) safe loads
makes it possible to improve the above results. In fact, since M = Ne (equation 3),

N/CB
¥
e=0
e
@;=45°
1
15 ™
0 1  T/CB

Fig. 10 — Inclined eccentric load: static approach from the reduced width foundation method
and convexity properties.
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it can be stated that: with any (N1, T1) and any (N2, T3) corresponding to lower
bound estimates of the bearing capacity for eccentricities e; and ez respectively, and
any A, 0 € A < 1, then, the load :

. (48) N =XAN;+ (1= X)Ng, T=X1+(1-ANT

represents a lower bound estimate of the bearing capacity for the eccentricity:

_AN161+(1——)\)N262

“9) A+ (=N,

A direct application of this result considers, on one hand, the lower bound approach
obtained by the reduced width foundation method for the eccentricity e;1 = ¢, and on
the other hand, the loads (N = 0, |T'| = CB) represented by the points ;" and 7
associated with the bearing capacity under a purely tangential load for es = (. From (48)
and (49}, we find that the convex envelope of the lower bound approach obtained by the
reduced -width foundation method on one hand and with points 76" and 7, on the other
hand, is itself a lower bound estimate of the bearing capacity for the same eccentricity e:
if (N, T) is (potentially) safe for e, so is (AN, AT F (1 — A) UB).

A systematic numerical exploration of formulae (48) and (49) did not improve the
aforementioned results which are sketched in Figure 10.

This result is of paramount importance since it demonstrates that the reduced width
foundation method associated with the reduction factor (1—2|e]/B), which is commonly
recommended in practice [Giroud, Tran Vo Nhiem, Obin, 1973], may significantly
underestimate the bearing capacity for large eccentricities.

However, it should be observed, that like points 'rd" and 75, the validity of this result
is closely related to the strength criterion (6) assumed for the interface. It can easily be
checked that for a different interface strength critetion (for instance a Coulomb interface),
the diagrams of Figure 10 should be truncated, as in Figure 9, by the representation of
the criterion expressed in terms of N/CB and T/CB instead of oyy and ogy.

5.2. KINEMATIC APPROACHES
o A straightforward upper bound

The bilateral velocity fields of Figure 3 and the unilateral ones of Figure 4 are associated
with a rigid body translation, with velocity V, of the upper face of the interface A’A. Tt
follows that the loading parameter M does not appear in the work done by the external
forces in the inequalities (22) and (26); in other words, this work does not depend
upon the eccentricity e. Consequently, the upper bound obtained in paragraph 4 and
represented in Figure 8 remains valid for an eccentric load. |

To improve this result, Pecker and Salengon (1991a) proposed different original velocity
fields which yield better upper bounds for the foundation bearing capacity, depending on
the values of the inclination of the load or of the eccentricity.
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A brief, concise description of these fields is given hereafter. The description will be
used in the computation of the maximum resisting work which is found on the right hand
side of inequality (15); the derivation of these expressions is still based on formulae (16)
and (17) for the soil and (18) for the interface, which are expressions of the functions
7 (.) given in equation (15). The results derived for the foundation bearing capacity
are presented for different eccentricities in the form of diagrams in the (N, T') plane.
Only positive values for the eccentricity are considered (0 < e < B/2); the results for a
negative eccentricity are obtained by changing e into —e, 6 into —6 and T into —T.

e Mechanism A

Mechanism A is presented in Figure 11. The velocity field U is the description of:
— a rigid body rotation, with angular velocity w = —w e, {w > 0), around the point €2,
for the lower face of the interface A'A along the segment IA and for the volume IJA
delimited by the arc JJ of a circle centered at  and tangential to A’A at I; point T
is assumed to lay between A’ and A;
— a shear zone AJK delimited by the arc of circle JK centered at A;
—a shear zone AKL;

— a constant tangential velocity discontinuity V. across the line IJKL, with the soil
medium below that line being motioniess.

Fig. 11. — Mechanism A.

The upper face of the foundation interface A'A, ie. the foundation itself, moves in
the same rigid body rotation around  with an angular velocity w; separation between
both faces of the interface A’ A takes place within the interface along the segment A'T;
the velocity is then continuous across IA.

This velocity field depends upon three parameters: the angles o and p (Fig. 11) which
define the directions A} and AK and the scalar A which positions I on A’A:

(50) IA = X Be,
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The inequality (15) is written as:

FUy+M.w=w[(A+e/B—-1/2) N+ AT tan o]
(51) CwCBA(lI—-A) tan a
+wCB M (/2 — p+ (tan p)/2+ (7/2 — a)/ cos® )

The minimization is first carried out on the right hand side of the equation with respect

to p, which gives g = w/4. Then, one can proceed, for a fixed 6, to minimize the
right hand side of:

52) N < Mr/4+1/2+ (1/2 — &)/ cos? o] + A(1 — A) tan «
CB ~ A(l+tan § tan «) +e¢/B—1/2

under the constraints on o and X

(53) (1/2—e/B)/(1 +tan § tan @) < A< 1
¢ Mechanism B

Mechanism B is shown in Figure 12; it is similar to the mechanism A but point I,
defined by (50), is now located left of point 4', i.e. A > 1. The velocity field does no
longer present a velocity discontinuity across the interface A’A. It depends upon three
parameters: the angles o, 8 and g, which define the directions AQ, A’ Q and AK.

Fig. 12. — Mechanism B.

The inequality (15) becomes:

( tan B e 1\ N  tanctanf T

tanf—tanae B 2/CB tanﬁ—tanaa_g
tan? 8 1 sin’® o

54 < — — —

%) ~ (tan 8 — tan a)? {(ﬂ p g tan N) (1 sin® ﬁ)

102
¢ Sln° @ 1
6 = -
[ b sin’® 8 ] cos? o
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The minimization with respect to y is trivial: 4 = = /4. For a fixed 6, minimization
is carried on the right hand side of:

(55) CI‘V_B
[tan? B (37 /4 +1/2) (1 —sin® o/ sin® §) + 8 sin? a/sin® B — a]

= cos? a(tan B —tan @)ftan B(1+tan 6 tan o)+ (e/B —1/2) (tan 5 — tan o)

under the geometrical constraints on @ and J

I<a<pf<r/2

(56) tan B(1+tan 6§ tan @)+ (e/B —1/2) (tan B —tan a) >0

The conditions (56) state that mechanism B is defined only if o < 8. However, if
a = (3, this mechanism breaks down to the unilateral mechanism of Figure 8 with ¥ = a.
This is confirmed by the limit value of equation (55) when ( tends to o

(57 N/CB < (3n/2+1+tan a—2e)/(1+tan o tan 6)

which does not depend upon e and whose right hand side should be minimized with
respect to «, & being fixed. Then for § > 0:

tan § = —cos 2a/(37/2+1 -2 a+sin 2a), rld<a<w/2
which yields

N/CB<3wf2+1—-2a+sin2a
T/CB L —cos 2

For § < 0, the same formulae are still valid with 0 < @ < 7/4.

¢ Mechanism C

Mechanism C is presented in Figure 13. This velocity field describes a rigid body
rotational motion with angular velocity w = —w e, (w > 8} around point {2 for the lower
- face of the interface A’A along the segment aA and for the volume AfaA delimited by
the arc Aq of a circle centered at . Point I on Oz, the vertical projection of €2, is located
between 0 and A; it is defined by eguation (50) with 0 < A < 1/2. The velocity U is
discontinuous across the arc of circle Ag, the soil medium below Aa being motioniess.

The upper face of the interface A'A, i.e. the foundation, moves in the same rigid body
rotation around § with velocity w; separation between both faces of the interface AA
takes place along A’ within the interface; the velocity is continuous along aA.

EUROPEAN JOURNAL OF MECHANICS, A/SOLIDS, VOL. 14, N° 3, 1995

ULTIMATE BEARING CAPACITY OF SHALLOW FOUNDATIONS. PART 1 369

vi

Fig. 13, — Mechanism C.

This velocity field depends upon two parameters: the scalar A and the angle o which
defines the direction AQ. The inequality (15) leads to the minimization with respect to
A and ¢, & being fixed, of the right hand side of:

(58) N <9 Aafsin? o+ (1/2 — A)/ tan o
CB A(l—tan §/tan @) +e¢/B—1/2
under the constraints

59) {0<a<1r/2

0<A<1/2, (1/2 —e/B)/(1 — tan §/tan a) < A
o Mechanism D

Mechanism I is presented in Figure 14. It is similar to the previous mechanism but

A > 1/2: hence point @ is no longer between A’ and A and the velocity is continuous
across A'A.

The inequality (58) becomes:

60) is 2 2% o/ sin? o
CB ~ A(1—tan é§/tan a)+¢/B—1/2

Fig. 14. — Mechanism D.
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and is minimized, for a fixed &, under the constraints:

0<a<w/2
(61) {

1/2 < A, (1/2—e/B)/(1 —tan 6/ tan o) < A

s Additional mechanisms

The constraint e/B > 0, adopted for the presentation of the results, is not significant
in the study of the mechanisms themselves. All the derived formulae, such as (52)
and (53), (55) and (56), (58) and (59), (60) and (61), are valid for the whole range
~1/2 < e/B < 1/2.

Advantage can be taken of this remark. For 0 < ¢/B < 1/2, without any additional
algebraic computations, the mechanisms A', B/, ¢', D', which are symmetrical about
the axis Oy to the mechanisms A, B, C, D, can be studied by changing e into (—e), T
into (~7) and 6 into (—4).

Tn addition to these four additional mechanisms, another mechanism E , which is
presented in Figure 15, has also been studied. It is closely related to mechanism A, with
slipping developing within the interface A’ A along I A: the velocity is continuous across
IJK L and shear takes place within the volume delimited by the line JJK L. Analytical
and numerical calculations were performed on mechanism £ which depends upon three
parameters, and on mechanism F which is similar to & but is relevant to the case where
T lies outside A’A. The results turn out to be less accurate than those of mechanisms A
and B: N/CB values are slightly higher for a fixed 6. The algebraic expressions for
these mechanisms can be found in [Pecker-Salengon, 1991a]. '

Fig. 15. — Mechanism E.

e Summary of results

The overall picture of the results obtained by the kinematic approach for all the
preceding mechanisms is presented in Figure 16. Curves for the best upper bounds for
the bearing capacity are given for load eccentricities /B =0, 0.1, 0.2, 0.3, 0.4. Each
curve is composed of different arcs which are detailled hereafter.

All the vertical lines with the abscissa | T'|/CB = 1 originate from the unilateral slip
mechanisms within the interface A’A.
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—e/B =0, the curved portions {cycloids) have been described in paragraph 4.2
(Fig. 8) and come from the unilateral mechanisms of Figure 4. They can also be viewed
as being representative of mechanisms B and B’ when « tends to S.

—¢/B = 0.1, the curve for § >> 0 comes from the mechanisms A or B, since for this

_value of e/B, point I of the best mechanisms is practically coincident with A’ (§ = = /2

“for the mechanism B); for § < 0, the mechanisms D are the leading ones.

- e/B = 0.2, the curve for § > 0 comes from the mechanisms A; for § < 0, the
mechanisms D are again the leading ones.

~e/B = 0.3, the curve for § > 0 comes from the mechanisms A; for § < 0, the
curve is defined by the mechanisms C or D, since point ¢ in the optimal mechanisms
is practically coincident with A’

—e/B = 0.4, the curve for § > 0 comes from the mechanisms B; the horizontal
portion of this curve also delimits the bearing capacity for § < 0 with an arc arising
from the mechanisms C.

From Figure 16, it appears that for e/B =0.1, 0.2 and 0.3, the angular point
corresponding to the intersection of the curves arising from the mechanisms 4 and D,
is Jocated on the axis N; moreover, this point is associated with the maximum value
of the normal component of the bearing capacity. This result does not as yet have any

theoretical basis and this must be considered when taking the accuracy of the numerical
minimizations into account.

T/CB

Fig. 16. — Inclined eccentric load: kinematic approaches using mechanisms
A, B, C, D, F and their symmetrical solutions for various e/ B values.
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It is worth noting that the evolution of the leading mechanisms with increasing load
eccentricity, and as a function of inclination, is in agreement with the most likely
intuitive failure modes. It must also be recalled that curves identical to the curves IJK L
of mechanism A (Fig. 11) or Aa of mechanism C (Fig. 13), are used as failure surfaces
in the stability analyses computer programs developed at NGI {Lacasse, 1985; Andersen-
Lauritzen, 1988]; experimental evidence regarding similar mechanisms had been obtained
by Tran Vo Nhiem (1965) on reduced scale models using Schneebeli rolls.

For a different interface strength criterion (for instance, Coulomb friction), mechanisms
with a velocity discontinuity across the interface must be considered. It can be easily
verified that the diagrams given in Figure 16 would be truncated by similar curves
representing the interface criterion expressed as a function of N/CB and T/CB as in
Figure 9 (for a Coulomb friction: |T'|/CB < N tan ¢;/CB).

5.3. ULTIMATE BEARING CAPACITY FOR AN INCLINED ECCENTRIC LOAD

The comparison between both approaches is presented in Figure 17, which shows, for
each e/B value, the upper and lower bound estimates for the ultimate bearing capacity.

As the eccentricity increases, the gap between the bounds significantly increases.
However, as shown in Figure 10, by taking advantage of the convexity properties, the
gap has been considerably reduced, compared with what it would be if the reduced
width foundation method was used alone. It is likely that the construction of new stress
fields applied to the static approach “from inside” would probably tend to reduce the gap
even more, especially for positive values of 6. Along these lines, it is worth noting that

_N/CB

‘T/CB

Fig. 17. — Bearing capacity vnder inclined eccentric load.
Solid lines: upper bound estimates. Dotted lines: lower bound estimates.
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the comstructed stress fields yield symmetrical diagrams for the lower bounds in 7" and
—7T, in the (N, T') plane, whereas the upper bounds diagrams are asymmetric (as could
intuitively be anticipated for the bearing capacity itself).

Whatever the eccentricity, the bearing capacity is computed exactly for a nil axial load
(N = 0): points 7; and 75 in Figure 17.

Once again, attention must be drawn to the importance of the strength condition
assumed for the interface, especially with regards to the latier result. All diagrams in
Figure 17 should be truncated by the curves expressing the interface strength condition
on gyy and o4y in terms of N/C B and T'/C B: for instance, for a Coulomb interface with
a friction angle ¢;, |T'|/CB < N tg ¢;/CB. This may result in a significant reduction.

6. Conclusions

The present study, conducted within the framework of yield design theory, refers only
to the necessary compatibility between the equilibrium of the system under study and the
strengths of the constitutive materials. It therefore incorporates the concept of constitutive
materials, not only the materials in their uswal definition-i.e. the foundation soil-, but
also any element for which a strength condition governing the system stability is set
forth—i.e. the soil foundation interface. The theory results in a umique, mathematically
simple, formalism, whose practical use calls for the construction of stress fields over the
whole system and for the construction of velocity fields or mechanisms.

The interpretation of the results, within this framework, is not ambiguocus: they are
lower or upper bounds for the ultimate bearing capacity.

This line of thought incorporates both limit analysis and limit equilibrium methods of
s0il mechanics [Chen, 1975], [Swami Saran and Agarwal, 1991]. The former methods
mostly fall within the scope of kinematic approaches. The latter usually appear as
partial static analyses along the lines of those developed by [Hill, 1950] or [Sokolovski,
1960, 1965]. It is recalled that [Bishop, 1953] presented a pertinent analysis for the
interpretation of the results of such approaches.

On this simple basis, new problems have been treated: load eccentricity and load
inclination, parameters which are seldom treated simultaneously [Swami Saran and
Agarwal, 1991]. The problem for a material with a tension cut-off in the strength
criterion has been solved in [Pecker-Salengon, 1991a], and in the companion paper
[Salengon-Pecker, 1995]. Since both cases studied represent extreme conditions for the
tensile resistance for the purely cohesive soil, it can be stated that the results bracket the
variations of the bearing capacity as a function of the seil tensile strength.

The foundation ultimate bearing capacity has been computed, exactly or with a very
high degree of accuracy, for a centered load. For an eccentric load, the bearing capacity has
been bracketed between lower and upper bounds as a function of the load eccentricity
and load inclination. In view of the safety factors used in the design of foundations
under vertical, centered, loads, the inclinations and eccentricities considered in practical
applications are usnally small.
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The results presented herein have been used for the seismic analyses of foundations
and are reported in [Pecker and Salencon, 1991Db].
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