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APPLICATION OF THE YIELD DESIGN THEORY TO THE
SEISMIC ANALYSIS OF SLOPES

Luc DORMIEUX, Alain PECKER' ', Jean SALENGON

Abstract: The present paper describes a method of evaluation of
the residual displacements induced by an earthquake in a
homogeneous earthdam built in cohesive material. This method
constitutes an extension of the yield design theory to the case of
a dynamic loading. '

Résumé: La présente communication propose une méthode de calcul
des déplacements résiduels dus a un séisme dans un barrage
homogéne constitué d’un matériau purement cohérent. Elle s’appuie
sur une extension de la théorie du calcul a la rupture au cas
d’une sollicitation dynamique.

1 Introduction

The design of earthdams in earthquake prone areas must account
for the inertia forces developing within the soil mass. In the
pseudo-static method, this is commonly performed with a classical
slope stability analysis in which the static gravity field is
modified by introducing horizontal and vertical body forces
representing these inertia forces, which are taken constant in
time. To overcome these difficulties, the pionnering work of
Newmark settled down the idea of a design based on allowable
residual (permanent) displacements which the dam undergoes
following an earthquake. In the present paper, we propose a
method of evaluation of these residual, plane strain,
displacements for a homogeneous earthdam built in a purely
cohesive material with an .undrained shear strength C. ‘This method
is related to the one developed by Pecker and Salengon (1991) for
the seismic response of shallow foundations.

Under the hypothesis that failure occurs through sliding of a
block along a circular surface, the potential failure surface and
the critical acceleration, corresponding to the onset of rupture,
are determined within the framework of the Yield Design Theory
(Salengon, 1983, 1990). Given the acceleration time history at
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224 SLOPE STABILITY IN SEISMIC AREAS

the base of the dam, the acceleration field within the earth mass
is analytically computed; the residual displacements are then
evaluated, - for the potentially unstable soil mass, when the
computed accelerations exceed the critical threshold.

The method presented herein is not, in essence, different from
the one originally proposed by Makdisi and Seed (1979). It
however presents, over the latter, the advantages of being
analytic and of having a sound mechanical basis within the
framework of the Yield Design Theory. Besides, it can be easily
implemented on a P.C. and requires only a few seconds to yield the
answer; it is therefore easily amenable to parametric studies.

The idea of using the yield design theory for the computations of
permanent displacements of a slope submitted to a seismic
excitation has already been used by Chang et al (1984). Their
work, dedicated to a cohesionless material, is  however
questionable with regards to the use of the kinematic theorem for
a material for which the flow rule is clearly not associated.
Besides, the dynamic analysis of the slope, which is reflected by
a significant variation of the inertia forces over the volume, is
not accounted for in their analysis.

2 Determination of the critical failure surface and computation
of the yield acceleration

A schematic drawing of the geometry of the problem under study
is given on figure 1.

The acceleration field within the soil mass, whose derivation is
given in paragraph 3., is taken parallel to the horizontal
direction; furthermore, it is admitted that the inertia forces
within a mass B can be accounted for in the stability analysis by
replacing the actual acceleration field a (x , t) by an average
field a(t) over the mass B.

B = Awe = — | 2,4V (1)

* |B] “(B)

In accordance with the hypothesis of circular shape failure
surfaces, the family of blocks represented on figure 2a are
analysed. Each block is limited by a circular arc Mle located in

space by the depth of the exit point h = y (Mz) and, either by the

coordinates of its center Q, or by the angles 9l and 62 between
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the horizontal axis and the vectors QM1 and ﬂz' In view of the

asymmetry of the structure introduced by the upstream water
pressure, only the downstream oriented surfaces are analyzed;
situations where the water pressure would have a favorable effect
on the stability are excluded. In the same way, for practical
purposes, it is sufficient to study situations where the
acceleration vector a(t) _is directed upstream (a > 0), so that the
inertia body forces - p a are directed downstream. For each block

B, the stability analysis aims at determining the upper limit aB

of a, ‘beyond which the equilibrium of the block is no more
compatible with the strength of the material.

The yield acceleration :1", associated with the so-called
"critical block" B°" corresponds to the lowest value of agr:
~cr ~cr
a = inf ag (6,6 ,h) (2)

o1,62,h > 12

~

agr appears to be the threshold of instability related to a

circular rupture of block B around Q. It can therefore be
determined through the kinematic approach of the yield design
theory.

This approach compares the work Wext (¥, g), in the failure

mechanism, of the _external static forces, noted ¥, and of the

inertia forces - p a, to the maximum resisting work W . The
res

latter represents the maximum energy the soil can set against the
failure mechanism, taking into account the material strength
capacities.

The kinematic theorem of the yield design theory states that the

inequality W (¥, a)=w is a necessary condition for
ext res

stability. The threshold of instability ggr is the solution of:

~cr
Wext (5’ aB) - Wres (3)
with respect to the unknown aB; equation (3) requires the
determination of the two quantities W and W . Let 0 =@ e
ext res - Z
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(@ > 0) be the virtual rotational velocity of block B (91,92.,h)

around Q, the work of the external forces in such a rigid body
motion writes:

W _ (#,a= M +M +M) .o (4)
ext ~-a -g -w -

where :ma, m ,'m,w represent respectively the moments around  of
A g "=

the inertia forces, of the gravity forces and of the hydrostatic
water pressure. '

These moments have a single component along e,

a a Tz -

a— y

M =paXe ;X (6,6, h) J' OM . e dV (5a)
- a 1 2 (B)

— X

=)
]

pgX e ;X (8,0, h) j QM . e d V (5b)
gz 8 12 (8)

y
M1 .
m =p ng,Xw(el,ez,h)—J QM.lM_dylfyMl>yw
Yw
(5¢)

Xw = OIfymSyw

where W represents the intersection of the upstream slope with the
free surface of the reservoir (figure 1).

The resisting work in the rotational movement of B arises from
the velocity discontinuity I[!]] along the arc f M . .Since the
. S . By e s P2 . .
discontinuity is tangent to the arc Mle’ 1t Is associated with a
resisting work per unit length equal to C|[¥]] whose integral is
w

PCS.
= - 2 _ -
Wrcs - J',-\ C”[X]“ d¢ - CR (92 91)0) (6)
M M
12
N
where R is the radius of the arc MM . Using (4) and (6), the

inequality of the kinematic theorem writes:
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~v‘ ‘2 -
ana+ngg+pngwSC-R (92-91) 7

cr

According to (3), the threshold of instability 35" for the set of

parameters el,ez,h is obtained for the equality in .equation (7).

Whenever the 3-parameters set (6_1,92,h) takes all -the

permissible values, the set of inequalities (7) defines a family
of necessary conditions for stability. As anticipated, the
systematic numerical evaluation indicates that the most stringent
stability condition is achieved, h being given, when the inertia
forces, the gravity force and the water pressure are all driving
forces (Xa, ‘Xg, Xw z 0). The yield acceleration a’" is then given

by (2): 2
. CR"(6_-198) X , X
a” = inf )2( ‘~-g[‘+.‘_' _.W] (8)
91, 92, h P a “Ta

a

excluding from the search the sets of paraméters -(81, 62, h) for
which X = 0. It turns out that the yield acceleration is reached
a

when the exit point of the failure surface is at the downstream
toe of the dam (h = H).

In aseismic conditions, i.e. a = 0, we define a confidence
factor with respect to a circular failure along the arc @2 as

the ratio, when the inertia forces and gravity forces are driving
forces (p g X +p gX > 0O)
g w w

CR*(6_ -90)
2 1

(9)
P g Xg tp,8X

F (91, 62, h) =

With this definition, (8) can be written:

inf - + .
g e,6,hLx (6,6 hn) P x (8,0 ,h)
1 2 a 1 2 a 1 2

. [F ©.6 1) - 1]} (10)
1 2

gcr {[_Xg (91,92,1’1) pw Xw (el’ez'h) ]
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For a stable structure in aseismic condition~s, the confidence
factor F (Gl,ez,h) is greater or equal to I and a“ is theref‘ore_ a

positive or nul scalar quantity. The 3-parameters set (Ol,ez,h)

associated with the minimum of (10) defines the critical block B
and the corresponding potential failure surface.

3 Computation of the acceleration field

The computations are based on the shear beam model originally
developed by Ambraseys (1960) and Ambraseys-Sarma (1967). It has
been extensively used to estimate the lateral seismic response of
earthdams, its popularity stemming mainly from its simplicity. A
number of rigorous studies have largely corroborated one of the
crucial assumptions of the shear beam model, i.e. that strains and
displacements are unif ormly distributed over the width of the dam.

In the present paper, we restrict our attention to a homogeneous
dam with uniform properties (modulus and mass density) over
height. More realistic assumptions regarding the variations of
the shear modulus G have been studied by Dakoulas and Gazetas
(1985) and could be implemented without further difficulties.

Referring to figure 3, the governing equation of motion is
derived by considering the dynamic equilibrium of an infinitesimal
slice of thickness dy and width b.

2 »
8" u 3 u
o — = 1 8 [y G — ] (11)
8 t2 y 48y dy
where:

u  horizontal relative displacement with respect to base,
*

[~

absolute displacement = u+u e
g

displacement of the base

QLc

shear modulus

Introducing the shear wave velocity (p V: = G), (11) can be
written
2

4" u . 1 a

y a

e
[o5)
e
o,
[N}
o1

= 1 g
- = — e (12)
s

8y

«
uoN
N
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Equation (12) is solved using modal superposition; hence u (y,t)
is obtained as a summation . of discretely infinite number of
displacement

histories corresponding to each of the natural
frequencies of the dam '

[+]
u (3,1) =( ZP U (4D (t)] e

(13)
n=1
where Dn(t) is the well-known Duhamel integral.
The absolute acceleration is given by:
[o¢] o
a (y,t) = gx[ Z P U (y) D (t)]+ i [1 -IP U (y)] e,
n=1 n=1
(14)
with
t -Bw (t-T)
I = w J u(r)e " sinfw (t-7)] d T
n n g n
0
t ~Bw (t-T)
J = w J u(r) e coslw (t-t)l d =
n 0 g n
2 2
D) = L p (1) =21 .28 5 (15)
n n
dt (1 - B8%)
2 1
P = = __ - _ (16a)
" qn Jl (qn)
= A 6
Un (y) Jo [qn i ] (16b)

where q is the n™ root of Jo(.) = 0; J and Jl are Bessel’s

functions of order O and 1; B is the material damping ratio.



230 SLOPE STABILITY IN SEISMIC AREAS

v

w is the undamped circular frequency = q_n-—;T and w: the damped

circular frequency.

A realistfc evaluation of the acceleration field a (y,t) usually
‘requires that at least 10 modes be included in the analysis.

Referring to figure 4, the average acceleration a(t) over a
given depth is 'then computed as the acceleration developing the
same inertia forces within the potentially sliding block (eq. 1).
Considering the simplified geometry of figure 4, which is a valid
approximation for a circular arc, it can readily be shown that:

3 = 2—2 j a (y,0) y dy 17)
Y o

A further refinement is introduced in the ‘computations by
computing the strain compatible properties for the dike.
Following Makdisi and Seed (1979), the average shear strain
through the dam is computed as, retaining only the first mode:

(7 ) = 02 —2 Max [D" (1)] (18)
‘av 2 . 1 .
Vs St

from which the compatible damping ratio 8 and shear modulus G (or
shear wave velocity V) can be evaluated. A few iterations are
s

required to achieve convergence and a (t) can then be computed
from (14) to (17) with the appropriate value of Vs and B.

4 Evaluation of the permanent displacements

In the preceding paragraph, the time history of the average
acceleration a (t) has been derived for any potentially :unstable .
block. At the critical time t when a(t) reaches the yield
acceleration a°, a rupture along the arc @42 is initiated

(figure S). The evaluation of the permanent, irrecoverable,
displacements taking place from that time is based on two
‘hypotheses: the first one deals with the kinematic of the rupture
‘and the second one has to do with the material behavior.

Let (Q, €. -gy, ‘€_) be the coordinates -axes attached ‘to the dam,
.Z

‘translated -with respect ‘to a fixed reference according to the
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acceleration time history a (t). It is assumedrthat, beyond the

critical time tcr, the kinematic of the block B° , relative to the

reference (Q, e, e, gz) is a rigid body rotation around the axis
; % Sy

Qz, whose angular velocity is noted w(t) = w(t) e The circular
P

_arc Mle along which sliding takes place, is a surface of

discontinuity for the velocity field within the dike. In
compliance with an elastoplastic constitutive behavior, the second
hypothesis states that, as soon as sliding occurs, the stress
state along the failure surface is located on the boundary of the
elastic domain of the material, defined by (3). In other words,
equality is ensured in (3) if w # O

w>0 > T = C (19a)

w<oO = T = -C (19b)

To compute the time history of motion, i.e. w(t), it is
convenient to apply the principle of virtual work. It implies

that, in a Galilean referential, for any rigid body, virtual
motion @ of the block 8", the work &A(0) of the acceleration

momentum is equal to the work of the external forces acting on the
block. The principle of virtual work is now applied to the
rotational velocity field in the relative motion of B with
reference to the dike which is taken as a particular virtual
motion.

The absolute acceleration y(t) of block B°" writes down:
) = at)+wA(wAQM) +wAaM (20)

and the work of the acceleration momentum p 7 in the relative

motion gr is given by:

gaUu)=uow. QM Apa)dV A aM].le A QM])dV

2 (W) = o j(ﬁcr)( M A p 3) +J'(Bcr)(p [0 A QM].[o A aM])
(21)

or

AW) = oW UJo@-p3@ X_) (22)

where J is the mass moment of inertia of block 8" around the axis
Q.

z
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The work of the gravity forces, of the water pressure and of the
contact forces along the arc Mle in the relative rotational

motion of block B is equal to the scalar product: w (t) . (5_11g +

Finally, the principle of virtual work yields the following
equality: ‘

Jw(t)=pa(t)Xa+ngz+pngw-RI T()de (23)

—~~
MM
12

or, from equation (8):

Jo ) =pX GO -5+ cR? (6,- 6,) —RJ. T (1) de

M M
12

(24)

The situation w < 0 would correspond to an upstream. ("up the
slope") movement of the block, in which the gravity forces and the
upstream water pressure would be resisting forces. Although that
situation could be treated without any additional difficulty, it
is not considered in the following and the angular velocity is
consequently greater or equal to O. Introducing (19a) in (24), it
follows that;:

w>0=>J(:)(t)=an(§(t)-gcr) (25)

According to the sign of (5 (t) - gcr), the block movement is
either acceleratgd or decelerated. If w= 0, the result depends
on the value of a (t).

if at) 2z 2%, J (1) = p X (alt) - 3°") (26)
w = 0: . . 2
if alt) <a, v (1) =0

Equations (25) and (26) are used to numerically integrate the
time history of motion (24) with a time discretization of the
input motion.
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S Examples

An interesting question to answer is: given a sufficiently
conservative static design of the dam (with respect to the two
loading parameters: the dead load and the upstream water
pressure), is it possible to prevent excessive seismic permanent
displacements from occurring? The results presented hereafter
throw some light on this question although without bringing a
definite answer.

The idea consists in plotting the horizontal displacement of
point A (figure 1) as a function of the static confidence factor
F. More precisely, given the geometry of the dike and the static
loads, the confidence factor is varied by altering the undrained
shear strength of the material. For a given seismic input motion,
the maximum amplitude of the horizontal displacement Ex(A) is

computed for each shear strength value. The variations of &x(A),

as a function of F, are given on figure 6 for the data gathered in
table I.  The seismic input motion is the N2IE component of the
Kern County California earthquake of July 1952 (magnitude

M = 7.6), recorded at Taft and scaled to a maximum acceleration of
0.3 'g (duration 30 s).

Geometry Material properties
H = 45m V. = 285 m.s”!
d = 10°m B 0.2
a = 20 = 3 10—4
h = 45 m 71‘

w

TABLE 1

The graph exhibits a hyperbolic shape which could be
anticipated. The displacements take large values, associated with
an almost complete failure of the dam, when F tends to 1. On the
other hand, the displacements are equal to zero for a confidence
factor above 1.7 and do not exceed S cm when the confidence factor
is larger than 1.5. Care must however be taken not to generalize
these results to other geometries.

Figure 7 gives the variation of the horizontal displacement at
point A versus the water height in the reservoir. The
displacement amplitude is insensitive to the water height as long
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as the latter remains smaller than 2/3 of the total dam height; it
then increases to reach a value equal to 3 times the initial
value. The existence of this threshold can be explained by
looking at the geometry of the critical block 8%: for
sufficiently low water levels in the reservoir, the location of
the exit point M1 of the potentially unstable block is located

above the reservoir free surface so that the water pressure does
not contribute to the motion.
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Fig. 3: Dam cross section - -Shear beam model
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v F = p alt) Ve = I paly,t) dV

[ABC ]

Fig. 4: Computation of average accelerations
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Fig. S: Beginning of sliding
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