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A comprehensive stability analysis of soil nailed structures

Patrick de BUHAN * and Jean SALENCON *

ABSTRACT. — The stability analysis of earth retaining structures reinforced by nails can be properly
investigated through the use of the yield design theory. The theory gives a consistent mechanical framework,
making it possible to deal simultaneously with the constitutive soil, modelled as a classical continuous medium,
and with the reinforcing nails modelled as beams. The way the shear- and bending resistances of the nails
must be taken into account in design calculations is thus clearly assessed. The magnitude of the contribution
of those resistances to the stability of the structures under consideration can then be examined. The kinematic
approach of the yield design theory appears, as usual, to be the most convenient for that purpose. It is
implemented by using failure mechanisms with a velocity discontinuity surface which are the common tools of
such analyses, but also by introducing other failure patterns where both the soil and the nails undergo
continuous deformation within a shear zone of finite thickness. Looking for the lowest estimate so obtained
for the stability factor of the structure shows that the second kind of mechanisms, which favour flexional
deformation modes of the nails yields significantly better results than the first one where shear deformation
modes of the nails are only acting. It is also proved that neglecting the shear —and bending resistances of the
nails always results in a conservative approach compared with the complete analysis, and that the difference
between the values so obtained remains slight in most cases encountered in common practice. The latter result
is quite significant from the geotechnical engineering standpoint since most design calculations are actually
performed under the simplifying assumption that the reinforcing nails exhibit resistance only to axial tensile
forces.

1. Yield design methods applied to stability analyses

The engineering design methods specifically developed for nailed soil structures are
mostly derived from the classical stability analyses of homogeneous slopes by means of
failure surfaces. They must face the necessity of accounting for the strength developed
by the nails across such surfaces. As a first approach, it is often acknowledged that the
nails display no significant resistance apart from that due to axial tensile forces, thus
assuming they behave like perfectly flexible reinforcements with no resistance to compres-
sive force, shearing or bending. While, for example, metallic strips in the reinforced earth
technique or geotextile sheets do fall into this category, such a simplifying assumption
may seem questionable for soil nailing reinforcements.

However, trying to take the shear and bending strengths of nails into account leads to
the problem of evaluating their specific contribution to the stability of a structure as a
whole. This question has recently prompted a debate in the technical literature in order
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326 P. DE BUHAN AND J. SALENGON

to assess how far this contribution could be neglected with respect to that due to axial
forces. Schiosser [1983], Blondeau et al. [1984], then lately Jewell and Pedley [1990],
Schlosser [1991], Jewell [1991], have dealt with the problem by closely examining the
interactions between the nail and the surrounding soil on both sides of the failure surface,
under the assumption of an elastic or elastic-plastic behaviour of the constituent materials.
Nevertheless, it should be pointed out that up to now no systematic investigation of the
influence of shear and bending strengths on the results of stability calculations of
structures has been carried out, so that it remains difficult to assess the validity of the
somewhat different conclusions drawn by the above mentioned authors.

The yield design theory (Salengon, 1983, 1990 a) applied to geotechnical problems
stands as a mechanically consistent framework for handling such a question: it is only
derived from the expression of the necessary compatibility between the equilibrium
equations of the structure under consideration (from the statics standpoint) and the
strength requirements of its constituent materials (soil, inclusions) and does not rely on
a determination of the internal forces actually developed in the structure based upon
complementary assumptions, as is the case for most ‘“classical” approaches (c.g. the
“method of slices”).

In this paper the presentation starts with a with a simple case where the static reasoning
“from outside” is applied to the global equilibrium of triangular-shaped volumes of
reinforced soil described through the “mixed modelling™ of the soil as a continuum and
of the nails as beams. This analysis is proved to be equivalent to the kinematic approach
“from outside” of the theory of yield design, applied with rigid body translation motion
failure mechanisms, and yields upper bound estimates for the non dimensional factor
which governs the stability of the structure.

The kinematic approach is then generalized to rotational failure mechanisms involving
either velocity discontinuity surfaces, or deformation zones where the velocity of both
the soil and the nails remain continuous. Attention is particularly focused on this second
type of failure mechanisms which favours a flexional deformation mode of the nails and
.therefore refers to their bending strength characteristics instead of their shearing resistance
as in the case of velocity discontinuities. They are shown to yield better estimates for the
stability factor of the structure and lead to the conclusion that only a small, often
negligible, proportion of the shear strength of the nails is actually mobilized and should
therefore be taken into account in stability analyses.

2. Stability analysis of a structure reinforced by nails

2.1. STATEMENT OF THE PROBLEM
Consider for illustrative purposes the example of a vertical cut in a homogeneous soil
reinforced by one single layer of infinitely long nails, regularly spaced in a horizontal

plane (Fig. 1).
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Fig. 1. — Stability analysis of a reinforced vertical cut.

According to the yield design theory, performing the stability analysis of such a
structure requires three sets of data:

o the geometry of the structure, i.e. the depth 4 of the excavation,

o its loading conditions, reduced here to the specific weight vy of the soil, since it will
be assumed that no surcharge is applied,

e and finally the strength properties of the constituent materials.
A mixed modelling of the structure will be adopted for this study.

The soil is modelled as a classical 3D continuum where the stress tensor is denoted
by ¢ (tensile normal stresses positive). The stress vector upon any material surface
element of outward unit normal » within the soil is given by T (n)=g.n (Fig. 2-a).

The reinforcing nails are modelled as beams, 1 D continuous media. A positive orienta-
tion along any nail is chosen, defining the unit tangent vector e, and the right handed
frame (e, ¢,, €,) at each point P. It is assumed that the cross section of the nail at point
P admits ¢, and e, as symmetry axes. Since it will be stated later on that the problem
may be studied as a two dimensional one, the internal efforts to be considered in the
beam reduce to the axial force N, the shear force V and the bending moment M which
are the components of the resultant force and moment acting at point P on the
“upstream’ part of the nail due to the “downstream” part (Fig. 2-b).

120 V>0

Fig. 2. — Sign convention for the internal forces:
a) within the soil. b) along the nails.
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328 P. DE BUHAN AND J. SALENCON

The strength of the homogeneous constituent soil is defined by Coulomb’s isotropic
strength condition with a cohesion C and a friction angle ¢:

M fs(g)=S.u_p{cri(l+sin(p)—cj(l—sin(p)—2Cc05(p}§0

(o, o; principal stresses).

Due to the very large dimension of the considered structure along Oz, to the regular
spacing of the nails along Oz, to the uniform loading conditions, to the homogeneity
and isotropy of the soil and to the symmetry hypothesis regarding the cross section of
the nails, it may be shown that the 3D problem can be conveniently dealt with in the
Oxy plane as a dimensional plane strain yield design problem (cf. [Salengon, 1983] for
the rigourous definition of this intuitive concept).

It follows that the strength criterion for the nails needs only to refer to the above
defined N, V, M considered from now on as forces and moment per unit transverse
length along Oz. The following expression may be adopted (Anthoine, 1987):

) SN, V, M)=(N/No)> +(V/Vo)* +|M/M, |- 10

where N,, V,, M, denote the ultimate values of N, V and M.

It is worth pointing out that such a formula, which proves slightly conservative when
compared with those proposed by several authors [Neal, 1961] [Sobotka, 1954, 1955] is
far easier to handle.

For simplicity’s sake, perfect bonding will be assumed between the soil and the
inclusions.

Generally speaking, for this structure to be safe, it is necessary to exhibit a system of
internal forces (stress field g within the bulk of soil, distributions of N, V and M along
the nails) in equilibrium with the loading (weight of the soil) while complying with the
strength conditions of the constituents at every point. It can be shown from dimensional
analysis arguments that the stability of the structure is governed by the dimensionless
parameters y h/C, Ny/Ch, Vo/N,, My/N,h and o, so that the following equivalence may
be written:

3) Stability of the structure <> yh/C<K*

where K* appears as a function of No/Ch, Vo/Ny, My/Nyh and o.

2.2. STATIC ANALYSIS OF TRIANGULAR VOLUMES

Referring to Coulomb’s original reasoning in the case of a homogeneous soil (which
is extensively analysed in [Salengon, 1990-a}), the overall equilibrium of a volume of
reinforced soil bounded by any arbitrary line AB passing through the toe and inclined
at an angle o with respect to the vertical direction (Fig. 3) will now be considered.
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Fig. 3. — Global equilibrium
of a triangular volume of reinforced soil.

It clearly appears that a necessary condition for the structure to be safe, is that the
global equilibrium of any such volume OAB be possible under its own weight and the
resisting forces developed by the soil and the nails along AB, on account of their
respective strength capacities; that is:

@ yh/CSK*
Y

Equilibrium of volume OAB when subjected to:
— its weight W,
— the stress distribution (o, 1) along AB,

— the solicitations (N, V, M) developed by the layer of nails at its intersecting point
with AB

under the following strength conditions derived from Ineq. (1) and (2):

(5-a) |t|£C-octan @
(5-b) f(N, V, M)<0.

Expressing the resultant equilibrium of the volume projected onto the Ou-axis inclined
at angle ¢ with AB, it takes the form

6) W cos (cx+(p)=f (osin @+1 cos @) ds+N sin (2 +@)+V cos (a+ @)
AB
with W= (1/2) y k2 tan a.

Now, at any point P of AB

G sin @+71 cos p<sup{oc sin ¢+1 cos ¢;|t|SC—o0 tan ¢}

(e, 7)
that is:
N G sin ¢ +1 cos p=<C cos .
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The latter inequality can be given a geometrical interpretation from Figure 4. It
results from the fact that at any point P of AB the algebraic value (equal to
— (o sin @ +1 cos @)) of the projection onto the oriented axis Ou (or Pu) of the stress
vector T is bounded by —C cos ¢, due to the limitation imposed on T by the strength
criterion of the soil. Such a limitation is classically expressed in the Mohr plane (o, 1)
through a convex domain, the boundary of which (called the intrinsic curve) is made up
of two semi-lines inclined at angle ¢ with the o-axis.

B
3
T
T
C
P c
)/
2
A

Fig. 4. — Limitation imposed by the Coulomb strength condition
on the resisting contribution of the soil.

Likewise, the strength condition (5-b) expressed in the form of inequality (2) allows us
to derive an upper bound for the last two terms of Eq. (6), without resorting to any
further assumption concerning N and/or V:

N sin (¢ +9)+V cos (a+ @) < sup { N sin (x+ @)+ V cos (a+9); f(N, V, M)<0}
N, V)

that is:
® N sin (a+ @)+ V cos(a+ @) < [NZ sin? (a+ @)+ V3 cos? (a+ )] /2

The geometrical interpretation of this inequality is quite similar to that given for
inequality (7). The strength condition (2) implies that the force of components (N, V)
which is developed by the nail is always bounded by the elliptical domain of equation
(N/Ny)>+(V/Vy)? <1, obtained in the most favourable case, that is when the moment M
reduces to zero. The right hand member of (8) is but the maximum value PH of the
projection onto the Pu-axis (counted positive in the sense opposite to u) of the resisting
force mobilized by the nail, on account of its strength capacities, as illustrated in Figure 5.

Combining the equilibrium equation (6) with the limitations imposed by inequality (7)
and (8) on the resisting constructions of the soil and the inclusion respectively yields:

&) W cos (au+ (p)g—h——C cos @ +[NZ sin? (a+ @) + V2 cos? (a+ )] /.
Ccos o
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AB

Fig. 5. — Limitation induced by the strength criterion
of the nail on its resisting force mobilized at angle ¢ with AB.

It should be emphasized that, relying exclusively upon the datum of strength conditions,
it has been possible to determine the maximum resisting contribution in the equilibrium
equation (6) available from both the soil and the reinforcements, thereby leading to the
above inequality. Assuming 0 <a<m/2— ¢, inequality (9) becomes:

(9-a) Y h/C<2 cos ¢/(sin & cos (a+ @)+ 4r (tana) ™! [v? + tan? (o + )] /2

with v=N,/V, and r=N,/2Ch.

The meaning of this inequality is obvious: derived from the global equilibrium check
of volume OAB on account of the strength criteria, it expresses a necessary condition
for the structure to be safe. Otherwise stated, it means that the structure is certainly
unsafe as soon as the actual value of the non dimensional factor y 4/C exceeds the value
of the right hand member of inequality (9-a).

Consequently, inequality (9-a) provides, for any value of o ranging between 0 and
n/2— @, an upper bound estimate for the critical value K* of the stability factor. It can
be noticed that for the particular value o =nr/4 — ¢/2, one obtains:

(10) K*<4KY2[1+r(@?+K,)"]

where K,=tan?((n/4)+(¢/2)) is the passive earth pressure coefficient, reducing to the
classical result in the non-reinforced case (r=0):

K*§4tan<f+9 .
4 2

Minimizing the right hand member of (9-a) with respect to o (0 <a<n/2— ¢) makes it
possible to determine, for any set of parameters r and v characterizing the reinforcement,
the best possible upper bound estimate of K* to be expected from such an analysis.
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2.3. COMMENTS

2.3.1. The same kind of reasoning would apply when projecting the resultant equili-
brium condition onto any Ouw-axis inclined at angle ¢ with AB. The corresponding
equation becomes:

W cos (<x+¢)=f (o sin y+1 cos ) ds+ N sin (e +¥)+V cos (a+ )
AB

where upper bounds for the different terms of the right hand member can again be
derived. For the last two terms corresponding to the contribution of the nails, formula
(8), where @ is to replaced by V, still applies, whereas one may write for the expression
placed under the integral sign:

o sin Y+ 1 cos Y<sup { o sin y+1 cos ;|t|SC~o tan ¢ }

(o, 7)
which can be written explicitly as

C(tano) '.siny if osy<n—o

o sin Y+1 cos < }
+ o0 otherwise,

as can be seen from Figure 4.

Assuming ¢ £y <n/2 and 0 <a<m/2—¢@, the following inequality is eventually obtai-
ned:

YHIC=K (o, ¥) whence K*<K (o, §)
with
K (o, ¥)=2 (tan @) ™' sin y/(sin a.cos (a+{))+4r(tan o)~ [v2 + tan? (o + )] /2.

Minimizing the upper bound estimate K (a, ¥) with respect to angular parameters o
and V :

K*<Min {K(a, ¥); 0S¥ <n/2, 0<a<m/2— Y}
(@ V)

would lead to an improvement of the upperbound estimate given by inequality (9-a).

2.3.2. In order to determine the resisting forces mobilized in the nails as they are to
be taken into account in “classical” stability analysis methods, some authors ([Schlosser,
1983}, [Blondeau et al., 1984]) refer to a “maximum work principle”. It follows from the
preceding analysis that in actual fact the only relevant problem consists in searching for
the limitation imposed by the strength capacities on the contribution due to the resisting
forces developed by the reinforcements. Solving this problem only relies on equilibrium
considerations involving a maximization procedure with constraints which turns out to
be of the same kind as that used for determining the maximum resisting contribution of ‘
the soil.
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3. Yield design kinematic approach to the problem

3.1. FUNDAMENTALS OF THE KINEMATIC METHOD

The yield design kinematic approach proceeds from the mathematical dualization of
the static reasoning by means of the principle of virtual work [Salengon, 1983]. The
principle first requires a definition of the virtual motions to be considered in the
mechanical description of the system. Within the context of a mixed modelling for the
reinforced soil, such a virtual motion is defined in the following way.

e The virtual motion of the soil, modelled as a 2D continuum, is described by a
vector field U throughout its volume ¥".

e The construction of the virtual motions of the nail, modelled as a beam loaded
within the plane of the figure, consists in assigning a couple of independent vectors
U (), Q(5) to any point P(s) along the line % .U (s) is defined by continuity with the
virtual motion in the soil and represents the virtual velocity of the “neutral axis” of the
nail at point P (s), while Q(s)=Q(s)e, is the virtual rotation of the “transverse section”
at the same point (Fig. 6).

Q) U(s)

L Y1,
— —— = —
€n

P(s) s

Fig. 6. — Virtual motions of the nail schematized as a beam.

The principle of virtual work states that, given any system of internal forces (stress
field g in ¥, distribution of N, V, M along %) in equilibrium with the loading of the
structure, the following equality is satisfied

(1) %, {UD+#,((UD=0 whatever {U}

where {I_J} denotes any virtual motion as previously defined.

#,({U}) is the virtual work of the external forces, that is, in the present case, the
work of the gravity forces

(12) We({U})=j —yU.e,dxdy
v
and #°,({ U}) represents the virtual work of the internal forces. Its expression is:

a3 %({U})=—f(g:c_odvf—f wi(s) ds
v ¥
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where d=1/2 (grad U+'grad U) is the strain rate field associated with U, and [Salengon,
1988]:

du (s)

.g..+V(s)< - A2(s)

.gv—Q(s)>+M(s) .

(14 w;(5)=N(s) 7

du (s)
ds

U and/or Q may be discontinuous across surfaces T in the soil and/or across several
points P, (s,) along &. In such a case, one must add to the right hand side of Eq. (13)
the discontinuity terms:

(15) —f (g.m[U]dz

for the soil and

(16) LN IUGID- e+ V(s) [U o] e, + M (s [Q (0]
k

for the nail where [ ] denotes the jump across £ following its unit normal n or across
point P following e,.

Introducing then:

a7 n(d=Sup{g:d f(9)=0}
where f*(g) is the Coulomb strength condition of the soil introduced in Eq. (11), and

du 40
(18) - n(—, —,Q>= Sup {w;():f (N, V, M)<0}
ds ds N, V, M)

where function f is defined by Eq. (2), it turns out that a necessary condition for the
structure to be safe is given by

(19) #.((UP=#,({U}) whatever {U}
with:
du 4
(20) "IV,({I_J})=J n(:_i)d"/f+f n(—,—,Q)ds.
v e s ds

The functional #°,({ U }) is called the maximum resisting work in the virtual motion
{I_J'}. In the case of discontinuities of U and Q the following additional terms must be
introduced:

@n J n(; [UD dZ+ 3 m (TU (5], [Q (0]
z k
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with

(22) n(n; [UD)=Sup{(g.n).[UL; f*(g)<0}
and

(23) m UYL, [Q6sID= Sup {N[U(s)].e,

N, V., M)

+VIUGI].e,+ M[Q(spl; f (N, V, M)<0}.

The implementation of the yield design kinematic approach relies upon the fundamental
inequality (19). The virtual motions {U} will be called “failure mechanisms” of the
reinforced soil structure.

3.2. KINEMATIC APPROACH USING UNIFORM TRANSLATION MOTIONS

Consider a failure mechanism in which the same triangular volume OAB as that
defined in 2.2 is given a downwards uniform translation motion with the velocity U
inclined at angle @ with respect to AB, while the remaining part of the structure is kept
motionless (Fig. 7).

O B

Fig. 7. — Virtual translation motion of OAB.

The work performed by the external forces (gravity forces) in such a failure mechanism
is easily derived from Eq. (12), as

(24) #.((UD=WU cos (a+¢)  (U=|U}.

On the other hand, the maximum resisting work is equal to the sum of two terms.
The first term, relating to the resisting contribution of the soil, reduces to

(U })=f n(m [UDdl
AB

since no (virtual) deformation occurs outside the discontinuity line AB, where [U]=U.
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Hence from Eq. (21)

h
cos o

(25) #we({Uh=CuU

cos .

The second term represents the maximum resisting work developed by the nail in the
failure mechanism under consideration. Denoting by P, (s,) the intersecting point between
AB and the nail, and having oriented the latter from the left hand side to the right hand

Fig. 8. = Virtual motion of the nail
induced by a uniform translation motion of volume OAB.

side of the figure, the virtual motion of the nail is defined as follows (Fig. 8)
U)=1, Q(s)=0 for s<s,
U(s)=0, Qs)=0 for s>s,

hence

[UGo)=—-U and  [Q(so)]=0.

It follows that the maximum resisting work developed by the nail, computed from
Eqgs. (21) and (23), reduces to

(26) w7 ({U})=U Max {N sin(a+9)+V cos(a+¢); f (N, V, M)<0}
or, taking into account the expression (2) of the strength condition for the nail,
27N W ({UD=U[N sin (x+ @)+ V3 cos? (o + @)]'/2.

Putting Egs. (24), (25) and (27) into the fundamental inequality (19) yields

WU cos (a+q)<CU %5 @
COos O

+[N3 sin? (¢ + @)+ V2 cos? (a+ ¢)]/2 U

that is, after dividing both members by the positive factor U, the same inequation as
(9). This should be no surprise since it is to be reminded that the kinematic approach is
but the dualization of the static approach by means of the virtual work principle. More
particularly, in the present case, implementing the kinematic approach through the use
of a translating block failure mechanism is strictly equivalent to the static reasoning
performed in section 2.2.
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3.3. KINEMATIC APPROACH WITH ROTATIONAL FAILURE MECHANISMS

The kinematic approach can be extended to considering virtual velocity fields in which
a volume such as OAB (Fig. 9) rotates about a point F, thereby inducing a velocity
jump across the boundary line AB which separates the volume from the rest of the
structure.

‘F

®>0

Fig. 9. — Rotational failure mechanism.

The expression of the work done by the external forces may be written in the form:
(28) ¥ (UD=,.0

where @ represents the angular velocity of the rotating volume OAB (clockwise positive),
and .#,, the moment of the gravity forces applied to OAB with respect to F.

Likewise, it can be seen that the maximum resisting work becomes
29 W, {UD=w7"{UH+» (U}
with

#et(UD=s 0
and
W (U= 0

where 45" (resp. 4™ denotes the maximum resisting moment about point F developed
by the distribution of normal and shear stresses (o, T) acting upon OAB along AB (resp.
by N, V, M in the nail at its intersecting point P, (s,) with AB) on account of the strenth
condition (5-a) (resp. (5-b)). Therefore, taking ® as positive, inequality (19) reduces to

(30) M S M+ M,
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Once again, this result shows that the yield design kinematic approach using rotational
failure mechanisms may be interpreted as the dualization through the principle of virtual
work of the same kind of reasoning as that performed in section 2.2, which would
consist in checking the moment equilibrium of volume OAB with respect to F. The
computation of .#%" (see for example [Salengon, 1983] or [Salengon, 1990-a]) shows that
for its value to remain finite, and thus to lead to a non-trivial upper bound estimate for
K*, it is necessary that the angle ¥ between the velocity at any point of AB and the
tangent at the same point be comprised between @ and n— ¢ (see also para. 2.3.a). In
the particular case when =, the corresponding curve AB is an arc of logspiral of
angle ¢ and focus F. A computational software based upon the use of such logspirals
has been devised for dealing with the stability analysis of reinforced retaining structures
([Anthoine and Salengon, 1989] [Anthoine, 1990] {de Buhan et al., 1992]).

4. Failure mechanisms involving continuous deformation patterns of the nails
The yield design kinematic approach may be generalized to failure mechanisms in

which both the soil and the nails undergo continuous deformations. For example the
velocity jump line of Figure 9 may be replaced by a narrow “shear zone” inside which

ST

Fig. 10. — Rotational failure mechanism with *“shear zone”.

F

the velocity remains continuous as sketched in Figure 10. Such (virtual) deformation
modes are suggested by the observation of (actual) failure patterns of reinforced soil
structures in full-scale experiments [Plumelle, 1987] (Fig. 11). As it will appear below, the
main difference between such failure mechanisms and those with velocity discontinuities
examined in the previous section lies in the way the strength capacities of the nail are
mobilized.

4.1. STRENGTH MOBILIZATION OF A NAIL IN A “SHEAR ZONE”

Let us consider for illustrative purpose, a thin layer of soil of constant thickness
intersecting a nail over a distance & (Fig. 12). Assuming for instance that the velocity in
the soil (and therefore along the nail) varies linearly from Pg(so) to Py (s), the virtual
motion of the nail may be defined as follows:

5<so: U@E=U, Q(s)=0

EUROPEAN JOURNAL OF MECHANICS, A/SOLIDS, VOL. 12, N° 3, 1993



A COMPREHENSIVE STABILITY ANALYSIS OF SOIL NAILED STRUCTURES 339

5,8

So<8§<s§;=8,+0: U()=U , Q(s)=Q constant

s>s5,: U()=0,Q(s)=0

whence
du(s) .
.¢,=(U/8) sin (a+9),
du(s)
7 .e,— Q)=(U/d) cos (a+¢p)—Q, for so<s<s,
s
dQ
—(5)=0
i (s)
and

[UGd]=[UGI=0, [Q(so)]=—[Q(s)]=Q.

5m /Observed crack

Fig. 11. — Experimental evidence
of a “shear zone” failure pattern [Plumelle, 1987).

Fig. 12. — Sketch of the virtual deformation pattern
of a nail in a shear zone.
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The maximum resisting work developed by the nail in such a failure mechanism may
be computed from Egs. (14), (16), (18) and (23) which leads to the following results:

dU
. <_—_, “© Q>
ds ds

~ Max {%[—Jsin (a+¢)+v<p—‘:ﬁ%’i“’—)—a>;f(N, v, M)go}

(N, V, M)

§p<S< S

BQ 27172
=N, U/d |:sin2 (a+¢@)+? (cos (o+ <p)——U—> ]

where v=Vy/N; and
7o ([U (501, [Q(s0) D)=, ([U (51, [Q(s)]) =M, | Q.

It follows that
_ S\ ]2
W:“"({I_J})=N0U[sin2 (o + @) +v? (cos(a+¢)—ﬁ> } +2M, | Q|

or, introducing the following dimensionless parameters
p=2My/N,d and A=8Q/U
3D W ({U})=N, U({sin® (o + @)+ 2% (cos (o + 9) —A)*]'2 + p| A ).

b

Fig. 13. — (a) Q=0. (b) Q=(U sin (a+©)/5) (=0 + ).
Q=(U/8) sin(a+ o), 0=a+0o.
Two extreme cases are now more particularly examined.

U sin (a+ @)

(a) Q=0, b) Q= O=a+0o).

4.1.1. A=0, that is Q=0 (Fig. 13-a). There is no virtual rotation of the transverse
sections of the nail, and therefore no concentrated rotations (hinges) appear at points
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P, and P,. Eq. (31) yields then:

s { U } =N, U [sin? (a+ @)+ v* cos? (a+ ¢)]"/2.

This expression is exactly the same as the one obtained in the case of a velocity jump
surface [Eq. (27)]. It shows that such mechanisms do not mobilize any resisting contribu-
tion of the nails from their resistance to bending since they do not imply any bending at
all. The maximum resisting work comes only from the resistance to normal and shear
forces.

4.1.2. A=cos(a+ @), that is Q=U cos (a+¢)/d (Fig. 13-b). The virtual motion of
the nail is such that the “cross sections” of the nail remain normal to its ‘“‘neutral axis”
(Navier Bernoulli condition), thus inducing hinges (rotation discontinuities) at points P,
and P,. The maximum resisting work for such “double hinge” mechanisms becomes:

32 et ({U D=Ny U(|sin(a+ @) |+ p|cos(a+ )|

It could be said that the shearing resistance of the nail is not mobilized in such
mechanisms since Eq. (32) displays only the normal and bending strength characteristics.

4.2. PRACTICAL CONSEQUENCES FOR THE STABILITY ANALYSIS OF STRUCTURES

A comprehensive study, aimed at comparing the results obtained by using either
velocity discontinuity surfaces, or mechanisms involving deformation patterns of the nail
complying with the Navier Bernoulli condition (case 4.1.2. of the previous paragraph)
has been carried out on the example of a vertical cut made of a purely cohesive soil
(p=0) and reinforced by a network of uniformly distributed nails [Anthoine, 1987]. In
such a case, the velocity jump lines AB reduce to arcs of circles across which the velocity
discontinuity remains purely tangential (“slip circles”) while the deformation zones are
circular rings where the soil undergoes pure shear deformation. The computations show
that the maximum resisting work developed by the nails in the mechanisms of the first
type (analogous to that displayed in Figure 9) is mainly due to the normal and shear
resistance of the nails, the contribution of their bending resistance mobilized through the
virtual rotation of volumes OAB being in most cases negligible. On the other hand, in
the second type of mechanisms similar to those represented in Figure 10 the maximum
resisting work of the nails can only be attributed to their normal and bending resistance.

An example taken from this study will help drawing conclusions from such an analysis.
Figure 14 represents the variations of different upper bound estimates of the ratio
~K*/(1+7r) as a function of the reinforcement factor defined as r=nN,/2 Ch, where n is
the number of reinforcement layers.

e Curve n° 1 corresponds to a “slip circle”’ analysis in which both shear and bending
strengths are neglected (v=Vy/Ny=0, m=M,/N,h=0).

e Curve n° 2 relates to the same analysis where v is set equal to 0.5 and m to 5x 1074,
This value of m corresponds to a 10 meter high vertical cut reinforced by circular bars
of diameter d~2.3 x 10~ 2 meter.
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® Curve n° 3 refers to an analysis by failure mechanisms of the second type (circular
shear zones) with the same data as for curve n° 2 (v=0.5; m=5x10"%). It should be
noted that in the latter calculation, the thickness of the shear zone is an additional
parameter in the minimization process for deriving the best upperbound estimate for
K*/(1+7).

 K*/(1+1)
4.0 @
3.83
\\ L]
: \
3

0 1 2 3 4 !

Fig. 14. — Yield design kinematic analysis of the stability of a nailed vertical cut using different kinds of
failure mechanisms: 1 “slip circle” analysis (v=0; m=0); 2 “slip circle” analysis (v=0.5; m=5x10"%); 3
analysis by mechanisms with shear zones (v=0.5; m=5x10"4),

The following observations can be made, for significant values of the reinforcement
coefficient r.

e The results of the comparison between curves n° 1 and n° 2 confirm what could be
foreseen from the theory (and from common sense): using the same kind of mechanisms
(implying only velocity discontinuities) and taking the shear and bending strengths of
the nails into account leads to an increase of the upperbound estimate obtained for the
stability factor.

o Comparing curves n° 2 and n° 3 is more interesting: it shows how the evaluation of
the stability factor is significantly improved by the consideration of “failure mechanisms”
with shear zones once the shear and bending strengths of the nails are taken into account.
Furthermore it appears that after the drop induced by these failure mechanisms the
estimate obtained for the stability factor remains but slightly superior to that obtained
when the reinforcing nails are considered perfectly flexible (v=0, m=0 : curve n° 1).

4.3. COMMENTS

Looking forward to the practical implications of such an analysis it may be convenient
to present the results of this study in the same way as in [Blondeau et al., 1984] and
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[Jewell and Pedley, 1990], that is, by determining in the plane (N, V) a domain of the
allowable forces in the nails (“multicriteria analysis”).

It can be noticed that the maximum resisting work developed by a nail in a “double
hinge” mechanism, given by formula (32), is equal to that which could be computed in
the corresponding mechanism with a velocity discontinuity, given by formula (26), pro-
vided that a modified strength condition f*(N, V)<0 be adopted for the nail. Such a
condition is simply derived from the identification of formulas (26) and (32), expressed
for any orientation 8 of the velocity discontinuity with respect to the normal to the nail,
namely

UMax { N sin 8+V cos 6; /*(N, V)<0}=UN,(|sin 6|+u]| cos ).

(N, V)

This relation shows that the curve of equation f* (N, V)=0 in the plane (N, V) may be
constructed as the convex envelope of a family of straight lines, whose parametric
equation writes

N sin 6+V cos 8=N,(|sin 6|+ p|cos 0])

f(N,V,M)x<0

o

Fig. 15. — Construction of the modified strength condition f* (N, V) £0.

thus defining the following rectangular domain (Fig. 15)

IN|<N,

TN, V)=S0 - {
|VI§HN0

It is to be reminded that the dimensionless factor p=2M,/N, & which is involved in
this analysis, compares a characteristic dimension of the cross-section of the nail with
the length of nail & intersected by the shear zone. As an example, for a nail with a
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circular cross-section of diameter d, one gets:
4

p=—d/s.
In

It follows that, the greater 8 with respect to such a transversal dimension of the nail,
the smaller the value of pu. A typical value of p is of the order of 1/10.

5. Concluding remarks

Thanks to the use of rotational failure mechanisms involving deformation zones instead
of velocity discontinuity surfaces, the yield design kinematic approach results in a more
reliable assessment of the stability of soil nailed structures for which shear and bending
resistances of the reinforcements are to be considered. More specifically, relying upon
clear mechanical arguments, it provides an unambiguous answer to the question of
whether and to what extent the contribution due to the shear strength of nails should be
taken into account. As an example, a parametric study performed in the case of a
purely cohesive soil has shown that stability calculations based upon the use of velocity
discontinuity surfaces, which integrate the full amount of the shear strength of nails
(curve n° 2 of Figure 14), may significantly overestimate the stability of the structure,
since they implicitly disregard any failure mode of the nails by flexion.

On the other hand, such an analysis outlines the possibility of setting up a simplified
stability analysis method, in which failure mechanisms with discontinuity surfaces could
still be used, provided that sharply reduced shear strength capacities (W N, instead of V)
be taken into account in the computation of the maximum resisting work for the nails.
The initial strength condition of the nail shall then be altered to:

F(N,V,M)<0 along with |V|<pN,.

Anyhow, leaving aside the particular case of reinforcements having large cross sectional
dimensions (such as in the micropiling technique) which would need a specific investiga-
tion, it turns out that the maximum resisting contribution to the stability of structures
which could be expected from the shear component developed in the reinforcements
remains quite limited, so that in most cases neglecting such a contribution only reduces
the estimate of the stability factor very slightly, i.e. leads to a slightly conservative
estimate.
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