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Abstract : The forimilation of a hamogenization procedure within the frame-
work of the yield design theory makes it possible to derive a strength
criterion for a fiber camposite material in a rigorous way, from the

only definitions of the strength properties of the constituents (matrix
and fibers) and of their gecmetrical, structural and voluminal arrangement.
Making use of both yield design static and kinematic approaches, quite
simple analytical lower and upper bound estimates are cbtained for a
unidirectional fiber camposite. A detajiled analysis of those estimates

is carried through in the specific case when the camposite is subjected
to a uniaxial solicitation or to plane strain conditions parallel to

the fibers direction .

1. Introduction

Among the various theoretical investigations being carried out
for analysing the inelastic behaviour of fiber composite materials, same
are more specifically concerned with the determination of their ultimate
strength oroperties. They are cenerally based on a "micro-macro" approach
which aims at relating the overall behaviour of the composite to the
strength properties of its constituents taking into account their struc-
tural arrangement (e.g. respective voluminal proportions, geametry of
the fibers etc.) (Saurindranath and Mc Laughlin, 1975 ; Sawicki, 1981 ;
Dvorak and Bahei-el-Din, 1982). When the fibers are laid out throughout
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the matrix material following a regular pattern, a hamogenization method
formulated within the yield design theory- (de Buhan and Salengon, 1987)
provides a rigorous mechanical framework for solving such a problem.

This paper is devoted to the application of that method to a
unidirectional fiber composite material. The general static and kinematic
definitions of the corresponding macroscopic strength criterion are given,
and lower and upper bounds are derived fram the implementation of the
yield design static and kinematic approaches respectively. These bounds
can be expressed by means of explicit analytical formulae in case of
simple solicitations such as uniaxial or plane strain loading conditions.
Their major interest lies in providing easily usable estimates for the
overall strength of the camposite, which remain valid for any voluminal
proportion of the fibers.

2. General definitions of the strength eriterion
2.1. Working hypotheses and notations

Consider a camposite material made of one single array of long
parallel fibers (unidirectional camposite) periodically distributed
throughout a hamogeneous matrix material in such a way that a rectangular
parallepiped of dimensions aj; , a; , a; along three orthogonal direc-
tions of a Ox)x;X3 coordinate system may be exhibited as a representa-
tive volume (Fig. 1), called a"unit cell" and denoted by (1 . This unit
cell consists of a cylindrical, not necessarily circular, volume Q £
of fiber material embedded in the matrix material which occupies the
remaining part Gm of the cell.

The constituents are supposed to cbey von Mises strength condi-
tions, namely :

1
@ =[3@172 -k /5<0 )
for the matrix, and

1
Felo) =[J2(g)]/2—1<f//§<0 (2)



Fig. 1 : Representative unit cell for a unidirectional §iber composite.

for the fiber material, where J,(g) denotes the second invariant of
the deviatoric stress (J,(g) = 1/2 s : _s_=(*)) , with L (resp. Kf)
representing the uniaxial strength of the matrix (resp. fiber) material.

Furthermore, failure by lack of adherence between the fiber

ard the surrounding matrix will be discarded in the present analysis,
thereby assuming perfect bonding between the constituents.

scripts.
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2.2. Static definition

According to the yield deéign hamogenization theory (Suquet,
1985) the macroscopic strength condition of the above described campo-
site, considered as a hamogeneous material, writes :

F, _(£) <0 ( 3)

where the macroscopic stress I is camputed as the volume average over

Q of a stress field g which must comply with the following condi-
tions :

a) boundary periodicity, i.e. the origin O being taken at the center
of the parallelepiped

(v = 2

2 L
5\ 772 “*7) el

Voo, f
) cij\xj
whatever i and jJ ;

b) equilibrium :

divg =0 (and [gl.n across possible stress discontinuity
surfaces) ; (4-b)

c) strength nequinements :
Fol@) <0 (resp. Fg(g(x)) <O0) (4-c)
whatever X belonging to Qm (resp. Qf)_

2.3. Kinematic definition

Introducing the support function = ham of the macroscopic
strength criterion, defined as (Salengon, 1983) :

nhm(g) = S;-p {£ :D; Fhm(;) < 0} (5)
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where D represents any symmetric second order tensor, it can be proved
(Suquet, 1985 ; de Buhan, 1986) that

D) = Inf {<n(d)> ; <d>= D) (6)
v

where :

« v denotes any velocity field giving a strain rate field d
periodic over Q

— 1 [
e <d>= n®v+v®ndS
Q 2a1 ajz as JBO(_ - - —)

defines the mean value of the strain rate field d camputed over the
cell

« and <m(d)> is defined by

O S| [
<n(@)> = T \JQ nm(g)d(1+

7.(@dQ + 7 (n; [vl)ds
JG £ & Jg m=""=
m £ m
+ m.(n ; IIV]])dS\
Jg £= - /
£
where
ﬂm(g) = Sl;p {g:d4d , Fm(g__) <0},
Te (d) has the same definition with Fe '
S denotes any jump surface for v ,
S, is the portion of S 1lying in (Om) '
S

£ has the same definition with ( Of)

7

fv]l is the jump of v when crossing S following its normal n

n.ni [vD = S\;p {n.g.lvl , F_ (9 <o} ,
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7. ; [vl) has the same definition with F. .

Generally speaking, the detemmination of the strength condition
(3) would require the use of heavy numerical methods implementing either
of the two above definitions. Fortunately the specific geametry of the
unit cell in the case of a unidirectional camposite will be exploited
to derive relevant, though simple, analytical estimates for the actual

macroscopic condition.

3. Lower bound estimate

Referring to the static definition given by Eq. (3) and (4-a)
to (4-c), it is possible to exhibit piecewise constant stress fields

satisfying all the above prescribed conditions :

(#)

with
Fm(gm) €0 and Ff(gm + of e @ 21) <0 (&)

(e; : unit vector of Ox; , parallel to the fiber).

This particular form of stress fields autamatically complies
with the periodicity condition (4-a) and the equilibrium equation as
well since it ensures the continuity of the stress vector acting at
any point upon the interface between the matrix and the fiber.

-~ As a matter of fact, whatever n such that n.e; =0
f f
[glin=1("e®e).n=0"ei(ey.n =0.

Denoting by n the voluminal percentage of the fibers the
macroscopic stress I defined as the volume average of such a piece-

wise constant stress field writes :
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_E_==gm+nof__e_1®_e_1.., (9)

It can be easily shown (see Appendix) that sufficient conditions
for I to satisfy the macroscopic criterion (3) are :

Fm(g__m) <o ad o] < Ke = K - (10)
It follows immediately that the condition :
F () <O
with :

- K} (17)

vy = _ £ £
F(;)—Irjx:_f{Fm(; no EIQEI),|0|<Kf

[¢)

constitutes a safe lower bound approximation to the actual macroscopic
condition :

F@<o = F_(<o.

4. Upper bound estimates
4.1. A first upper bound estimate can immediately be deduced fraom the
kinematic definition (6). Considering the homogeneous strain rate field

d(x) =D vx € Q derived fram a velocity field in the form

X:

o

« X
one gets :

<r(@>=(@1-n) n @ +n7D
with

K (% D : 2)1/2 if tr

o
I
o

+ o otherwise

(analogous formulae for e D).
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Hence for any D

1
mon® < [1-n K +nK] (2/3R:D /2,

This proves that the strength capacities of the homogenized
camosite are inferior to those that would be exhibited by an isotropic
von Mises material obtained by averaging the strength characteristics
of the constituents.

In other words :.
+
icm(;) <0 = Fi(f) <0 (12-a)
with
.1
FHD) =13, /2 -<k>//3 (12-b)

<K>= (1 - n) Km+an .

4.2. Other upper bound estimates can be obtained by considering piece-
wise constant velocity fields in which a discontinuity plane parallel
to the fibers and running across the matrix divides the unit cell into
two blocks. Due to the periodicity condition, such a plane is pres-
cribed to be perpendicular to t‘neri axis, i = 2 or 3 (Fig. 2).
Denoting by V the velocity jump across this plane, one gets :

- — 1 i =
Q—<g>————2ai (_gi@y_-i-y@g_i) i=2,3
and
a@> =1 (e, i V)
= a; m=i ' -

with, as the matrix obeys a von Mises criterion :

K IV|//3 if V.e =0

LTI )

+ oo otherwise.
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Fig. 2 : lUlocity field involving a jump plane passing through the matnix.

The kinematic definition of the macroscopic criterion expressed

by Eq. (5) and (4) leads to the following implication
icm(;) O =» I :<d><<n(d)>
and therefore
F_(3) <O = F. (D) <O
ham 2 i

where for i =2,3

K
-+ m
. < — |V
Fi(D) SO e (Z.g).V /371_!
whatever V such that V e =0 *)
+
(*) Fi (£) may be expressed by
+
Fi@ =sw {(z.¢,) .y-ﬁ“-'lyl i V.oe, =0} .

v /3 -1

(13-a)

(13-b)

-—— o o ——— - -
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5. Application to simple loading conditions
5.1. "Plane strain" criteria

The concept of a "strength criterion under plane strain condi-
tions" within the strict framework of the yield design theory, i.e.
without any explicit reference to a constitutive law, has been intro-
duced and throroughly discussed in (Salengon, 1983). It can be briefly
exposed as follows in the present case.

The support function m defined by Eq. (5) makes it pos-
sible to determine the macroscopic strength criterion through the dual
formulation :

Frp@ <O = SEp {£:D- nhm(g)} <0 (14)

(cf. Frémond and Friad, 1978).

If the latter formula is used with the considered D being
restricted to plane strain rate tensors parallel to Ox;x; , i.e.
satisfying the conditions :

D.=D,_=0 , i=1,2,3 (15)

it cames out that explicitating Eq. (76)

Sup {£ : D-m (D ;D satisf. Bq. (15)} <0 (16)
D _

will provide an upper bound estimate for F, (L) where only the
camponents Iy , Ij; = Ipy , and Iy, of I are concerned.

As a matter of fact, Eq. (16) gives the exact restrictions
imposed to those components when generated by any I under the
condition Fhm(_z___) < 0. Eq. (16) can also be seen as the projection
of the strength damain defined by Eq. (3) onto the subspace of the

zij (1,j3=1,2) ocomponents of L .
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It can (rather abusively) be named the "plane strain strength
criterion" of the camposite material.

The purpose of the present section is to derive lower and
upper bound estimates for the "plane strain strength criterion" from
the results obtained before.

Let then Iy and Ir1 with I, > Loy be defined as the
principal values of the two-dimensional "stress tensor" generated by
the camponents I;; , Iy, = I , I3, in plane Ox3X; , and 6 the
inclination of the major principal axis ZI to the fibers direction
x; . After same calculations it turns out that the previously obtained
lower and upper bounds write as follows.

® Lower bound estimate (11)
- K (8) <0 (17)

B @p o Tpp s 8) =Ip-Ipg

with putting k =<K>/Km> 1

(k - 1) |cos28] + ¥ 4/3 - [(k - 1)2 sin2 2 6)
K () =K if |tan26] <2/[(k - 1) V3]
2/(¥3 sin286) otherwise .
® Upperbound estimate (12)
+ _ - - +
where X (8) = 2kx //3 .
® Upperbound estimate (1 3)
For i =2 , V=Ve; and taking Eq. (74) into account (I 3-b) becomes

Km
I, V=2 |v
12 /37"



574

that is
| <
|212] €—
/3
or
+ _ _ ot
FZ(ZI ’ zII , 8) = 21 EII K,(8) <0 (19)
where

K3(6) = 2K_/ (/3 sin26)

0)

. . -0
0 30 60 Q0

Fig. 3 : Uopern and Lower bound estimates fon the strength
04 a unidirectional fiben composite unden plane strain conditions.
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The variations of K and K = Min {KT ' K;} as functions
of the orientation 6 are plotted in Fig. 3 where the numerical value
of k =3 has been taken by way of illustration. It appears that the
relative difference between the two bounds remains lower than 20 % and
even decreases to zero for 6 ranging between 15° and 75°. It is
worth noting in particular that the overall strength of the camposite
reduces to that of the matrix alone when the principal stresses are
inclined at 6 = 45° to the fibers direction.

5.2. Bounds on the uniaxial strength

The macroscopic solicitation writes in this case :

with €qg=Cos 8 e +sinbe .

Denoting by ™ (0) the uniaxial tensile strength in the direc-
tion e, - defined by :
* -
icm(* 1°(6) e, @e) =0

the strength condition for this particular type of solicitation can be
written

o L=2g ®e) <O = lz] < *(e) .

The following lower and upper bound estimates can be derived
fram the preceding results.

® Lowen bound
Fram Eq. (11) one gets

T (8) < £*(6) (20

where :
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(k- 1)(1 - % sin26) + /1 - 3(k - 1)2sin?%s (1 - % sinze)

- *
2(6)=Km if 0<@8<68

1 //3 1-§sinze) if ¥ <8< 9°
sin 6 4

where 6* 4is the value of 6 for which the two above expressions
give the same result.

This lower bound estimate decreases continuously fram
I =k K for 6= 0° to its minimum value I = K reached for
8 ~ 57°,2 (sin 6 = v2/3), then increases again slightly up to
I" =2K /Y3 when & =90° (transverse loading) : see fig. 4.

2" femt
Ll 0

ka3

2/

9( 0)

0 30 60 S0

Fig. 4 : Uopern and Lowen bounds 4on the uniaxial strength
04 a wuldinectional composite.
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® Uppen bounds

A first upper bound estimate of t* (8) derived from Eq.(12)
is simply :

©*(8) <11 =k K_ (21)

Making use of Eq. (13) with i =2 and V=Ve yields
immediately :

| <2
z < —
l 12 /5
and the upper bound Ij(8) :
+ 2Km
() <I,(0) =—mm . (22)
/3 sin26

The corresponding curves are drawn in Fig. 4 for k = 3.
Unlike the case of plane strain conditions the gap between the two
bounds widens considerably as soon as 8 > 60°. The actual value of
the transverse strength for instance is bounded by I (90°) =2K m//fi_
and 17(90°) =kK_.

However it can be proved (de Buhan and Taliercio, 1988 ;
Taliercio, 1989) that these bounds turn out to be the exact value
of the uniaxial strength of the camposite for n €1 (reinforcement
by thin fibers) and n =1 (matrix voluminal proportion reduced to
zero) respectively. Therefore as a first approach, the uniaxial
strength of the camposite could be reascnably well approximated by
the following interpolation formula :

T*(8) = (L-n) £ (8) +nI(e) .

The validity of such a heuristic formula should be confirmed
by a more elaborate analysis of the problem resorting for instance to
numerical methods in order to solve the yield design problem defined
over the unit cell and thereby to determine the macroscopic strength
condition (Marigo and al., 1987 ; case of periodic porous media).
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6. Conclusion

’ The yield design hamogenization method has been successfully

| applied to the determination of upper and lower bounds for the macro-
scopic strength of a unidirectional fiber composite material. These
bounds may be expressed by means of explicit analytical formulae in
two circumstances : plane strain loading of the composite in a direc—
tion parallel to the fibers on the one hand and uniaxial solicitation
on the other hand. The two bounds remain close to each other in the
first case, thus providing a good estimate for the actual strength
of the camposite, whereas they diverge considerably in the second
case when the composite is subjected to transverse loading. Such a
drawback could be partially overcame by proposing a semi-empirical
formula which linearly interpolates between the two bounds.

Appendiz

Let § be a macroscopic stress such that

23_,=g.m+ﬂ°f§1®_e_1 (9)
with
1
F (@M = (3N /2 - Ky/3<0 (10-a)
and
]ofl <K - K - (10-b)

It cames out immediately :
Ff(gm + ot e ®e)
1

1 1
< 3@™ 72+ 13,00F e @ e) /2 -k
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1
since [J2(g9)] /2 can be regarded as a norm for the deviatoric
stress s .

Consequently on account of {10) :

Ff(gm +of e ®e) < lil T <0
3 /3
This last inequation shows that conditions (9) and (10) are
sufficient to exhibit a piecewise constant stress field such as (7)
in equilibrium with I and satisfying the strength conditions
defined by (§).
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