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ABSTRACT A new comprehensive approach to the overall strength of reinforced soils as
anisotropic media is outlined within the framework of the yield design homogenization method.
Starting from the general definition of the macroscopic strength condition for a periodically
reinforced soil, the particular case of a purely cohesive soil reinforced with strips is more
thoroughly studied. The corresponding criterion, which proves to be of the cohesive anisotropic

type, is explicitly formulated and then applied to the exact calculation of the bearing capacity of a
footing on a reinforced half-space.

Introduction

Most classical engineering methods devised for analysing the stability of
reinforced earthworks come up against difficulties taking the composite nature
of the constitutive soil into account. Indeed, the direct implementation of these
methods in order to evaluate the failure loads for this kind of structure usually
requires assumptions to be made about the way the reinforcing inclusions
behave when interacting with the surrounging native soil. In any case much
more complex computational methods than those commonly used for homo-
geneous structures are needed to deal with the strong heterogeneity of the soil.

The purpose of the following contribution is to present a yield design
homogenization method aimed at building up an alternative simplified
approach to solve such a problem. This method proceeds from the intuitive
idea that, from a macroscopic point of view — that is, as far as overall properties
of the reinforced soil structure such as its collapse load are concerned — the
reinforced soil is likely to be perceived as a homogeneous medium. It seems
obvious that, on account of the existence of preferential orientations due to the
introduction of the reinforcements, one may expect such a homogenized
material to exhibit anisotropic strength characteristics.

Macroscopic strength criterion of a reinforced soil: a theoretical approach

If we assume that the reinforcing inclusions are distributed throughout the
mass of the soil following a regular pattern (as is frequently the case in
practice), the reinforced soil may be modelled as a two phase composite
periodic medium. It can be shown in that case (14)(4)(8) that the determination
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Fig 1 Representative cell for a periodically reinforced soil

of the macroscopic strength criterion of the reinforced soil reduces to the
solution of a yield design problem defined over the representative cell which
describes the internal structure of the composite soil (Fig. 1).

Denoting by G; (respectively G,) the strength domain of the soil (respect-
ively, of the reinforcing material), that is, the convex set of the allowable stress
tensors, and assuming perfect bonding between the soil and the inclusion, the
macroscopic strength domain G"™ is defined as the set of the ‘macroscopic’
stresses X such that one could display all over the representative cell a stress
field o satisfying the following requirements:

2 = (o), where (- ) stands for volume average over the cell;
o is periodic;
dive = 0 and [o] - n = 0 in the case of stress discontinuities;

o(x) belongs to the domain G, or G, depending on whether point x is located
in the soil or in the reinforcing inclusion.

According to the general definition, it appears that a lower bound approxi-

mation of G"™ will be obtained through restricting o to piecewise constant
stress field, that is

o’ in the soil
o(x) = . . :
o’ in the inclusion
Consequently, any macroscopic stress 3 which can be written in the form

2=(1-n)o*+no ‘ (1)
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(5 is the voluminal fraction of the reinforcing material). with
oceG,. o eC, (2)

and, referring to an Oxyz co-ordinate system where the Ox axis is taken parallel
to the direction of the inclusion

oy = o for every (i,j) # (x, x) (3)
will satisfy the macroscopic strength criterion of the reinforced soil. The
conditions (3) are necessary to ensure the continuity of the stress vector acting
upon the interface between the soil and the inclusion, since this interface is a
cylindrical surface parallel to the Ox axis.

From now on, the analysis will be focused on the case when the cross
sectional area of the inclusion is becoming small in comparison with that of the
representative cell, so that # <1, while the strength characteristics of the
constitutive reinforcing material are considerably greater than those of the
surrounding soil. Mathematically, this particular configuration which corre-
sponds, for instance, to soil reinforcement by metallic strips, can be obtained

by making the parameter » tend to zero, while the strength domain G, increases
according to

G, =Gy/n

where G, is a fixed domain in the stress space.

Performing the same reasoning as in the case of a two-dimensional multi-
layered reinforced soil (3), it can be easily shown that the lower bound estimate
of G"™ defined by equations (1), (2), and (3) reduces to

[E=a‘+aex®ex

_ +} C Ghom (4)
ocg’eG, 0, <0<o0,

where the parameter
ol (respectively, o5 ) = Max (respectively, Min){o; o e, ® e, € G, }

represents the tensile (respectively, compressive) strength of the reinforcing
strips per unit transverse area.

As a matter of fact, it can be proved, by making use of the yield design
kinematic approach, that this lower bound estimate of the macroscopic
strength domain G"™ amounts to the exact solution when 7 becomes small. So
that finally the macroscopic strength criterion of a unidirectionally strip-

reinforced soil, which may be conveniently expressed by means of a convex
yield function fhom can be written as follows

fhom(z) < 0¢>2 € Ghom
where ™ is defined from f;, the yield function of the soil alone, by

fhlomZ)= Min (2 —oe,®e) (5)

- +
a, SOSO"
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Fig 2 Geometrical representation of the macroscopic strength domain G™™
This result deserves some comments.

(1) The overall increase in strength of the soil due to the incorporation of the

reinforcements is clearly evidenced from equation (5), since, taking o = 0, we
get

fom(2) < f,(2)
and then

Gs C Ghom

(2) Theyield design homogenization method which has been chosen here as a
theoretical framework, leads to the same formulation of the macroscopic
strength criterion as those previously obtained in (7) and more recently in (12)
and (13) through heuristic considerations. The investigation of these authors
was mainly based on the assumption that the reinforcing strips (or fibres) are
just behaving as uniaxial carrying elements inside the soil (or the matrix).

In the six-dimensional space of stresses X, the parametric equation

f(X-o0e,®e) =0, witho, <o<o} ' (6)

is represented by the boundary surface of G, moved along the 3, -axis by the
distance 0. Therefore the macroscopic yield locus, i.e., the boundary surface
delimiting G™™, can be easily constructed as the convex envelope of the family
of surfaces defined by equation (6) (Fig. 2).

Three possible failure modes of the reinforced soil can be seen from this
geometrical representation, the boundary surface of G"™ being divided into
three different regions, denoted by A, B, and C as depicted in Fig. 2.
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Region A corresponds to the set of macroscopic solicitations X for which both
constituents come up to failure, the strips undergoing their maximum tensile
load 0 =0,. Its equation writes f (2 — o0Je, ®e,) =0 together with the
condition of /0%, = 0.

The second failure mode occurs when the strips reach their ultimate compres-
sive strength: 0 = ¢, . It is represented by region B whose equation is

f(X—0,e,®e)=0, withof/62,, <0

The last failure mode (region C, which is a cylindrical surface parallel to the
3.,x-axis) is obtained for the macroscopic stresses, %, verifying

f(X—-0e,®e,)=0
with

o, <os<o
and

of/92,, =0

It corresponds to the yielding of the soil alone, while the strips remain within
failure.

Moreover, since failure by buckling of the strips is likely to occur for a
compression —o significantly lower than the compressive strength of the strips
derived from that of the constitutive material, it seems advisable to adopt ko,
as a lower limit for o, where k is a scalar factor lying between k = 0 (compres-
sive strength equal to zero) and k = 1.

Strip reinforced soils as artificially orthotropic media

From now on the soil will be supposed to obey an isotropic strength criterion.
In that case the corresponding macroscopic strength criterion appears to be
transversely isotropic around the direction Ox of the reinforcement. Indeed, it
follows from definition (5) that the macroscopic yield function may be written
in the form of an isotropic function of the arguments X and e, ® e,, which,
referring to a classical result, clearly accounts for the macroscopic transverse
isotropy of the reinforced soil.

As an illustrative example of this property, it may be worth deriving the
macroscopic uniaxial tensile strength 3% of the reinforced soil defined from

fPom(Z%es @ eg) =0

(egis a unit vector inclined at an angle 6 with respect to the Ox axis; Fig. 3) in the
particular case when the soil obeys a Tresca yield condition

f(o’)Y=0]—05-2C,<0
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Fig 3 Yield strength anisotropy in simple tension for a purely cohesive reinforced soil

(01 = 05 = maximum and minimum principal stresses; C; = cohesion of the
soil).
The following analytical expressions are obtained

o5 c0s26 + V{4C? - (o sin20)*>) 0<6<4,

27(0) = 42C,/sin 26 0, <0</ @)
2C, T4 <0<z
where 6, is defined by

cot 20, = 02 2C,
together with the obvious relations
2TO) =2 (-0)=3" (- 0)

Figure 3 displays a typical curve in the form of a polar diagram giving the
variation of 3% as a function of the orientation 6. One may notice first that, for
a given value of the dimensionless ratio o5 /2C; which characterizes the degree
of reinforcement, 3" decreases from (¢ + 2C,) when 6 = 0 to 2C, when
0 = n/4, i.e., the tensile strength of the reinforced soil reduces to that of the
original soil. This last result is mainly due to the particular form of the Tresca
strength condition which has been adopted for the soil. As a matter of factit can
be easily seen that for 6 = n/4 one can always exhibit in the three-dimensional
space a failure plane parallel to the reinforcing strips and making an angle of
n/4 with the direction of the tensile solicitation. Of course, the conclusion
would have been different in the case of a von Mises criterion (7).

Conversely, if the orientation 6 is kept fixed, X * increases with the degree of
reinforcement 0J/2C; until it reaches its maximum value 2C,/sin 20 and then
remains constant for 0J/2C, = cot 20 unless 6 = 0. In the limit case of ‘infi-

nitely strong’ reinforcement (i.e., 0J/2C,— +), the macroscopic tensile
strength simply gives
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2C/sin260 if 0=<60<n/4
2C, otherwise

5%(6) =[

(Dashed line in Fig. 3.)
Similar conclusions can be drawn for the uniaxial compressive strength,
replacing o by g in equation (7).

A two dimensional anisotropic strength criterion

As we intend to apply the yield design homogenization procedure to reinforced
soil structures subjected to ‘plane strain’ loading conditions in a parallel
direction to the reinforcing inclusions (namely in the Oxy plane), more
particular attention will be paid by now to the investigation of the correspond-
ing two-dimensional macroscopic strength criterion.

Description of the strength criterion

Starting from the definition of the fully three-dimensional macroscopic
strength condition, it can be easily shown that the associated ‘plane strain’ yield
function writes in just the same form as (5) with, for a purely cohesive soil

T=V21,

)

b3

V2%,))

Fig 4 Representation of the strength domain G"*™ in the space of stresses (2,,, Xy,
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(S - oe,®e) = (S — S+ 0)2+ 255 - 2C; (8)

where X,,. 2,,. and X, are the three independent components of the
two-dimensional stress in the (x, y) plane which will be denoted by X from now
on. '

This expression shows that the macroscopic strength criterion does not
involve the hydrostatic component of the stress X (i.e.. trX =3, + X)), so
that the boundary of G"*™ is a cylindrical surface parallel to the straight line A
which represents the isotropic states of stress (S = T = 0) (Fig. 4).

Assuming, for simplicity’s sake, that 6} = —0 = 0,, the computation of
the minimum of function f; with respect to the parameter o as indicated by

equation (5), leads to the following analytical expressions for the yield function
fhom

0 if |S|=<o0,/V2
fh " = T2 —2C2+ (S - 0/V2)? if S=0,/V2 9
S+ 0,/V2)? if S<-g,/V2
where
S= (2, —Zx)/V2
and
T=V23,,

The cross-section of the boundary of G"™ by any deviatoric plane ortho-
gonal to the line A may be constructed as the convex envelope of two circles
with a radius equal to V2C, and centred, respectively, at points (S = *+0,/V?2,
T=0).

That strength criterion can be conveniently expressed in terms of the
principal stresses 3, = X, of X, in the Oxy plane together with the inclination a of
major principal stress 2, to the Oy axis (Fig. 4).

Indeed, substituting the classical expressions

S=(2; - 2,)cos2a/V2
T= (21 - 22) sin 2a/\/2

into the different expressions of function f"*™ given by equation (9), we get
after some calculations

fZ) <03, - 3, <2C"™(q) (10)

with, for0 < a < 7/4

2
%o cos 2a + \/(CE — Zogin? 2a) if tan2a =< 2C,
Cho™(a) = 2 4 % (11)

Cs/sin 2a  otherwise
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CS Cs’oﬁ/z

Fig § Polar diagram for the anisotropic cohesion C"™(a) of the reinforced soil

and
Chom(a) = Chom(_a) — Ch°“‘(:r/2 - a)

Figure 5 shows the variations of the ‘anisotropic cohesion’ C"™ as a function
of the angle a in the form of a polar diagram. This cohesion proves to be
maximum for a = 0 or /2, that is when the principal stresses are coinciding
with the privileged directions of orthotropy for the homogenized reinforced
soil. It decreases to a minimum value equal to the cohesion C of the
unreinforced soil itself when a = 7/4. As can be seen in Fig. 4, it is worth
pointing out that, referring to polar coordinates (p, 8) in a deviatoric plane, the
equation of the macroscopic yield locus reduces to

p(8) = C"™(612)

Comparison with other proposed criteria

The preceding formulation of the macroscopic strength condition makes the
comparison with analogous anisotropic strength criteria previously proposed
by several authors possible, provided they can be expressed in terms of an
anisotropic cohesion. Indeed, in that case, the corresponding yield curves may
be plotted in the (S, T) deviatoric plane, as shown in Fig. 6, where three
different strength criteria have thus been compared with the macroscopic
criterion. In each case, the parameters which define the proposed criterion

have been adjusted in such a way that all the curves intersect the axes at the
same points.

Curve No. 1 refers to the analytical formula suggested by Bishop (1) and
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Fig 6 Comparison with other strength criteria proposed for anisotropic materials

Salengon (11) in order to describe the natural anisotropy of clayey soils. This
formula reduces here to

Ci(a) = C, + (0,/2) cos* 2a

Curve No. 2, which proves to be elliptic, is derived from the criterion proposed
by Boehler and Sawczuk (2) as a generalization of the ‘plane strain’ Tresca or
von Mises criterion based on the concept of anisotropy tensor.

Curve No. 3, which is an arc of a circle centred on the T axis, has been drawn

according to the ‘maximum shear stress’ criterion formulated by Nova and
Sacchi (9) for orthotropic media.

Bearing capacity of a footing lying on a reinforced soil

As an application of the theoretical approach presented here, this last section is
devoted to the problem of the bearing capacity of a strip footing (width B) lying
on a purely cohesive soil (cohesion C,) reinforced by uniformly distributed
reinforcements perpendicular to the axis of the footing (Fig. 7(a)). Provided
that the characteristic length of the reinforcement (e.g., the horizontal or
vertical spacing between the strips) is small enough when compared with the
overall size of the structure (the width of the footing), the yield design
homogenization theory states that such a problem, which is a priori fully three
dimensional, since the strength properties of the constitutive soil vary with z,
reduces to the solution of a two dimensional homogenized problem defined in
the Oxy plane (Fig. 7(b)). Dimensional analysis applied to the yield design
solution of that latter problem, when the strength criterion of the constitutive
material is the one investigated in the preceding section, shows that the

extreme value of the loading parameter Q (axial force per unit length along 0z)
denoted by Q* gives the form
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Fig7 (a) Bearing capacity of a footing on a strip reinforced half-space
(b) Two dimensional homogenized problem

Q* = BCN*(0,/Cy) (12)

where N* is a dimensionless factor depending on the ratio ¢ /C..

The exact determination of N* is then carried out by performing both yield
design approaches (10). Leaving aside all intermediate computational develop-
ments which may be found in (4), the obtained result will be presented below.

Using the velocity field associated with the classical Prandt!’s failure mechan-
ism (Fig. 8(a)) the implementation of the kinematic yield design approach
leads to the following upper bound estimate for N*

N*<(n+2)+ 20,/C,

Likewise, superimposing the stress field sketched in Fig. 8(b) upon any
allowable stress field (i.e., satisfying the equilibrium equations together with
the strength condition at any point) equilibrating the value of N corresponding

to a purely cohesive unreinforced soil (N* = 7t + 2), the following lower bound
estimate is derived

N*= (7 +2) + 20,/C,

Fig 8 (a) Prandtl’s kinematic field
(b) Stress field
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from which one gets the very simple formula
N*= (1 + 2) + 20,/C

Furthermore, it can be easily established that when the compressive strength
of the strips is taken equal to —ko,, the exact value of N* becomes

N*= (1 +2) + (1 + k)o /C.

The increase of the bearing capacity induced by the reinforcement of the soil
is thus shown to be directly proportional to the ratio 0,/C,. It may be worth
pointing out that the proportionality factor is significantly lower than what
would have been obtained from crude approximation of the reinforced soil as a
purely cohesive isotropic medium with cohesion (0,/2 + C;)

(1 + k) compared with (1 + 7/2)

Concluding remarks

The homogenization method has been shown an appropriate theoretical
framework for the collapse design of reinforced soil structures, since it makes
possible to account for the macroscopic strength anisotropy of the constitutive
composite soil explicitly. Besides, this method proves to be fully applicable
when failure by lack of adhesion between the soil and the reinforced inclusions
has to be considered (4).

Concerning the specific, though important, case of strip reinforced soils, a
similar investigation has been performed for a cohesionless soil obeying a
Coulomb failure condition, thus leading to a fairly adequate model for
‘reinforced earth’ (§). The theoretical results obtained through this model have
proved to be in good agreement with available experimental data.
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