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Natural soils often exhibit a significant mechanical anisotropy.
Taking it into account in structure stability analyses requires
defining the procedure and the interpretation of experimental
tests properly, describing the strength-characteristics of the
soil through a mechanically correct criterion, and devising ade-
quate stability analysis methods. Soil mechanical reinforcement
has been developped and is now commonly used : the composite ma-
terial so obtained at the structure level can be modelized as a
homogeneous continuum with an anisotropic yield-strength, allow-
ing anisotropic stability analysis methods to be used.

1 - THE ORIGIN OF A CONCEPT

Since he started to improve his environment, man has come up against the problem
of the stability of the structures he did build on the ground, sometimes with the
very soil of that ground or with borrow material (buildings, bridges, dikes, dams,
«+<). He has also been concerned with the safety of the natural relief (e.g. slo-
pes, embankments, ...) and with that of mines, pits and quarries he did develop in
it. Soil mechanics can therefore be considered as a rather old discipline, but its
historical appearance is usually connected with Coulomb's celebrated memoir [11,
notwithstanding , as pointed out by Chandler [ 2], Morton's early contribution to
the study of slope stability which does not refer to mechanics.

Coulomb's memoir is devoted both to structures and to soil mechanics : it deals
with the stability of pillars and vaults, and with the problem of earth pressure
on a retaining wall. As a matter of fact, the range of problems which were to be
the main concern of soil mechanics for more than 150 years was defined there : ac-
tive and passive earth-pressure calculations, stability analyses of slopes, bea-
ring capacity calculations, through yield-design methods. Though we do not intend
to produce an exhaustive list, let us recall some famous names in that domain of
soil mechanics after Coulomb : Massau, Rankine, Kétter, Caquot, Sokolovski, Mandel.

That approach is based upon some fundamental concepts :

® soil is treated as a continuous medium, in spite of its being both particulate

as clays, or granular as sands, and polyphasic (particles, water, air) ;

¢ this medium is defined through a strength-criterion which corresponds to failure
or yielding when reached ;

® the analysis is performed by investigating if the equilibrium of the studied
structure is possible under the applied loads (dead and active) with the Limitation
of the strength-criterion.

Yield-strength appears then as the first concept introduced by engineers to mode-
lize "soil" as a material through a constitutive law, though incomplete since it
is only a limitation imposed on the internal force intensity derived from the risk
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of failure. The introduction of that concept is certainly to be related to the ve-
ry patterns of the failure mechanisms. As shown in the highly documented papers

by Desrues [ 4] and Habib [ 5], one frequently observes that, when failure occurs,
the deformation of the material seems to be confined in very thin soil layers (fi-
gure 1) which can be treated as surfaces. This localization may be noticed in the
failure mechanisms of structures (e.g. landslides or breakings of earth fills),

or when performing classical laboratory tests.It has induced engineers to apply
intuitive reasoning based on the concept of mobilized strength on a failure plane,
which unfortunately reveal some deficiencies from the mechanical point of view.

Anyhow it must be understood that having retained yield-strength as the working
concept for stability analyses for more than 150 years shows its good adequation
to practical applications.

Figure 1 : Localization of deformation at failure : distorsion map for a plane
strain compression test (from [4]), plane strain punch indentation test {(from[5].

2 - STABILITY ANALYSIS METHODS

As apparent in the title of the memoir, Coulomb's original study is carried out
within the frame of Statics.

Taking as an example the compression of a cylindrical block between the plates of
a press assumed to be perfectly smooth (a more precise definition of these bounda-
ry conditions is not useful for what follows), the following necessary condition
is stated :

Let the specimen be separated in two parts 1 and 2 by an arbitrary plane (P) ;
so that failure of the specimen do not occur it is necessary that, whatever (P),
the global equilibrium of block 1 or 2 (from the Statics of rigid bodies point
of view) be possible under the action of the vertical force Q@ <imposed by the
plate, and of the resisting forces developped by the material along the section
by plane (P).

Figure 2 : Compression test of a
cylindrical specimen.
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The yield-strength of the material being characterized by a cohesion C and a
friction angle ¢, the Coulomb strength condition indicates that, whatever (P) and
whatever the point in (P), the normal stress o and the shear stress T must ve
rify the inequality

2.1 [t] <Cc -0 tany

(tensile stresses are counted positive). It then follows that, whatever a>¢ ,
the equilibrium of block 1 is compatible with (2.1) only if

(2.2) Q@ < SC (1 + tan%a) / (tan o - tany) ,
a condition on Q@ whose minimum is obtained when o = (n/4 + ¢/2) and writes
2.3 Q@ < 2SC tan(m/4 + ¢/2).

So it turns out that an upper bound for the loads @ which can be applied to the
specimen without causing its failure, is obtained through this reasoning and is
given by (2.3).

This example deserves some comments.

® The performed reasoning does not completely make use of the main idea included
in the necessary stability condition, namely the compatibility between the studied
system equilibrium and the material yield-strength. In fact this condition could
be checked within the frame of continuous mechanics instead of restricting the
study to a partition of the specimen into two blocks and checking global equili-
brium. Therefore it will be necessary to adopt continuous mechanics formulations
and to express the Coulomb strength-condition as a criterion on the stress tensor
g(x) at current point x. 0. being the principal values of g(x) Coulomb's cri-
terion is derived from (2.1) ': -

(2.4) f@(x)) = Sup {0.(1 + siny) = 0.(1 - siny) - 2C cosw1 < 0
=" . 1 ] I
i,j=1,2,3

which is equivalent to (2.1) expressed at point x for any orientation of plane
P). -

® Bringing together the schema of figure 2 used for the static reasoning, and the
often observed failure mechanisms where deformation seems to be localized and ri-
gid blocks to slip with respect to one another (figure 1) suggests the introduc-
tion of an intuitive kinematic reasoning : taking the partition of figure 2 again,
it is assumed that failure of the specimen will occur anytime the work of the ex-
ternal forces Q@ exceeds the work of the resisting forces mobilized on (P). Sta-
ted that way, unless the material be purely cohesive (¢ = 0), the method cannot
be accepted for it is not mechanically consistent with the original static ap-
proach. Nevertheless the idea of a kinematic method must be retained, but it
needs being built up by dualizing the static approach through the principle of
virtual work.

This points out the fact that the significance of the yield-strength of the mate-
rial must be clearly defined, especially by indicating the stability analysis me-
thod it is associated with. Moreover it must be recalled that the yield-strength
of a soil is a mechanical characteristic which is to be determined from experi-
mental tests ; therefore the interpretation of those tests must be made in accor-
dance with the method to be used later for the analysis of structures. Asking for
a sound mechanical reasoning may seem nothing but banal, yet practical examples,
dealing with isotropic or anisotropic soils as well, have shown that this demand
has often not been satisfied. Let us add for a fairness' sake that experimental
results do not, as a rule, enjoy the same purity as that given by theoreticians
to their analyses !

From the mechanical point of view, when setting up and using the concept of yield
strength, soil mechanicians can rely on two general theories :
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® the theory of representations of isotropic tensorial functions, for what con-
cerns the strength criterion of the soil (cf. many documented studies by Boehler
such as [6], and also [7]) ;

® the theory of yield design, when devising consistent static and kinematic ap-
proaches for stability analyses.

3 - OUTLINES OF THE YIELD-~DESIGN THEORY
3.1 - Setting of the problem

We shall restrict ourselves to a presentation of the main results of the theory
of yield design ; comments and discussions may be found in [ 8].

Given V and S respectively the volume and the boundary of the studied mechani-
cal system ;

o denotes a stress-field and o(x) its value at point x
v is a velocity-field, v(x) its value at point x ; -
d is the associated strain-rate field ; [v(x)] denotes the jump of field
point x when crossing the discontinuity surface I following its normal

'

v
nix).

The system is loaded according to a loading process depending linearly on n sca-
Llar parameters Q., the components of a loading-vector Q ; g is the kinematic
vector associated’with Q when expressing the work of the external forces in a
velocity field wv. -

The material of the system (which needn't be homogeneous) is only known through
its strength characteristics, given at any point x of V by a domain G(x) in
®® where g(x) must stay. As a rule G(x) contains g(x) = 0 and is star-sha-
ped with respect to O ; it is often convex. G(x) is usually given by means of a
strength-criterion (such as (2.4)) -

(3.1 flx;o(x)] < 0 (resp. > 0) <> g(x) in (resp. out of) G(x)

The problem to be solved is to determine whether the system so defined will be
"stable" under a given load Q@ of &".

3.2 - Static approach "from inside"

As already seen on the example of chapter 2, a necessary stability condition for
the system is the '

equilibrium under Q
3.2 compatibility | material strength capacities

The following definitions are then adopted :
Q is potentially safe system is potentially
<>
for the system

A stable under Q
(3.3 ”
v

3 g S.A. (statically admissible) with Q
such that g(x) € G(x) Vx €V
The set of all potentially admissible loads is denoted by K. As a consequence of
the properties of G(x), it can be shown that : K contains Q = 0 and is star-

shaped with respect to 0 ; K is convex if G(x) is convex Vx € V. The loads
at the boundary of K in BR" are called the extreme loads for the system.

The static approach is just the application of definition (3.3) to construct points
in K. It is clear that this construction can be simplified by taking advantage of
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the star-shape of K, or of its convexity when valid (figure 3). One shall notice
that in the case of a unique positive loading parameter Q, as is fairly often
gpcountered, the static approach will lLead to a lower bound for the extreme value
Q¥ of Q.

3.3 - Kinematic approach "from outside"

The kinematic approach of K from outside is derived by dualizing (3.3) through
the principle of virtual work.

Introducing function mw(.) defining G(x) by duality (more precisely : G's con-
vex envelope)

(3.4) T (x;d(x)) = Sup { g{x) : dx) | alx) € 6(x) 1,

and function

(3.5) T (x, n(x) ; [vGOl) = sup {Tveol. g(x) .ﬂ(_x_)] olx) € G(x)} ,
makes it possiblte to define functional P(x} for any velocity field v

(3.6) P () =J m(x ; dx))dV + J m(x, nG ; [vool) dT .

v z

We then get the following result :
V v kinematically admissible (K.A)

.70 { Ke{a]e.qw -Pw < 0}

and the approach of K from outside as sketched on figure 3. In the case of a

unique positive loading parameter @, this kinematic approach leads to an upper
bound for @*.

Q,

Figure 3 : Approaches from inside and from outside in the theory of yield design.

4 - YIELD-STRENGTH ANISOTROPY OF NATURAL SOILS
4.1 - Introduction
Although most geotechnical materials exhibit anisotropy, be it slight or strong,

classical stability analyses have been performed usually under the assumption of
isotropic soils. This simplifying hypothesis is justified as long as precise ani-
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sotropic yield-strength characteristics cannot be drawn from the identification
tests, and as long as the experimental validation of the corresponding stability
analyses remains good enough.

From a survey of the available experimental results about the anisotropy of natu-
ral soils, Hueckel and Nova [ 9] state that anisotropy has been observed for rocks
(slates, shales, ...), for sands (with elongated grains) and for clays ; yet, as
noticed by Ung Sen [ 10], the anisotropic effects that can be evidenced for the
friction angle of sands are most often of the same order of magnitude as the ac-
curacy of the measures. As a matter of fact, except for the works by Boehler et
al. dealing with rocks, all the studies of anisotropic yield-strength which have
been carried out as far as stability analyses of structures in soil mechanics,
are concerned with purely cohesive soils (i.e. with a zero friction angle) ; we
shall focus our attention on this kind of materials.

4.2 - Inherent and induced anisotropy

The distinction introduced by Casagrande and Carrillo [ 11] between inherent and
induced anisotropy is now usually referred to. Inherent anisotropy pre=-existing
in a soil would be evidenced if it were possible to examine that soil without
alteration ; induced anisotropy is generated by the testing procedures (sampling
and laboratory test conditions ; remoulding for Zn-situ tests). This distinction
is worth keeping, for it points out that much care must be taken when realizing
the tests and interpreting them ; but it is clear that, at the end, soil mechani-
cians have to rely on measured characteristics which retain a part of induced
anisotropy.

Yield-strength anisotropy of soils originates essentially in the existence of pre-
ferential orientations at the fabric level. Those may proceed from the grain or
particle shapes (anisotropy is stronger for soils with elongated particles that
tend to orientate themselves perpendicularly to the direction of the highest tec-
tonic pressures), from the structure (floculated or lLoose structure of clays), or
from thepreferred orientations of heterogeneities (organic matters, change of ma-
terials : cf. [12] for the case of diatomite). These considerations, although the
scales are different, can be compared with those developped in chap. 6 dealing
with reinforced soils where applying the homogenization theory leads to an aniso-
tropic model material (cf. also [13]).

4.3 - Test techniques and experimental results

As far as the principle is concerned, the determination of yield-strength charac-
teristics for an anisotropic soil only requires generating a known and controlled
uniform stress fiels in a sample, with the possibility of any orientations of its
principal directions with respect to that of the sample.

Classical triaxial compression tests can then be performed on samples drilled out
of the ground at various inclinations, but the interpretation of this simple pro-
cedure is not so easy, as recalled in [14], due to the non-coincidence of the
principal directions of stresses and strains during the experiment as a conse-
quence of anisotropy. Broms et al. [15, 16], Saada et al. [ 17, 18], have develop-
ped hollow cylinder test techniques for anisotropic soils ; for other anisotropic
materials Boehler has realized precise experiments evidencing side sway under
hydrostatic pressure, that could be worth adapting in soil mechanics.

As has been said before this paper will be concerned with purely cohesive aniso-
tropic soils : for those, in the common range of pressures, the undrained compres-
sion triaxial test shows that the applied stresses only appear through their dif-
ference (03 - 01) as regards failure. The value of this difference at failure
will be plotted as a function of the sample orientation. Due to the already men-
tioned origin of the anisotropy, such soils are usually transversally isotropic
around the axis of the major tectonic pressures which is often vertical. The test
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results will therefore yield the value of (o3 - 0;) at failure as a function of
o, the inclination of the axis of the sample with respect to the orthotropy axis :

(4.1 O3 =0, = 2C(.

Most often the deformation of the sample at failure is localized in a plane ; the
inclination of that plane may also be measured as a function of a. Duncan and
Seed [ 20] have found this inclination with respect to the sample axis to be prac-
tically constant : Y = 30° (Lo [21] :¢y= 35°).

a5, ?(KPa) g, <0, =03

s

200

Figure 4 : Triaxial
compression test [20].

100

-
60 90 o°

Figure 5 gives examples of the results obtained through such undrained triaxial
compression tests, which are plotted in the form of polar diagrams : the vector
radius with a modutus C(a) is inclined at angle o on the vertical direction
and indicates the orientation of the sample since the transverse isotropy axis is
vertical too.

2103 . 41
5 Figure 5 : Polar diagrams
/e polar representation of C(a)/C_ for
...... D;f ol the results by Duncan and Seed ‘[22] a,
x"' . Bishop [23] b, Lo and Milligan [24] c.
Ch n /

Two types of anisotropy can be distinguished from this picture :

Type I (curve a) : normally consolidated soil whose fabric appears homogeneous ;
the polar diagram has an "elliptic pattern"”

Type II (curves b and c¢) : those soils demonstrate a minimum cohesion for a # 45°,
which is significantly lower than C_ and CV corresponding to the vertical and
horizontal orientations ; the fabric is oriented, due to high overconsolidation

of the soil or to thin layers of stratified materials.

Practically, laboratory tests have produced anisotropy ratios within the ranges
0,6 < Ch/CV <1.6 and 0.4 < Cus/CV <1.2

(actually, in some cases of soils with complex fabrics, one may come across values
of Cus/CV >N,
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The first formula for describing C(a) was proposed by Casagrande and Carrillo
[11] (as it seems, without any experimental support)

4.2) Cl = ¢, cosZo + ¢, sin®a
it may be seen that it only accounts for type I anisotropy. From his own experi-
mental results on London clay, Bishop [ 23] suggested a formula with one parameter

more

Cla) = Cv(cosza + KisinZa) [cos?2a + 2Kpsin?2a/¢1 + Ky) ]
(4.3 with

K; = Ch/CV and Ky = Cu5/CV .

This formula has been found to fit many experimental data fairly well.

5 - STABILITY ANALYSIS OF ANISOTROPIC NATURAL SOIL STRUCTURES
5.1 - Strength-criteria

Yield-design problems of purely cohesive anisotropic soil structures have always
been treated as two-dimensional (Lo, Chen, Menzies), using methods which were
adapted from those for isotropic soils by introducing the anisotropic cohesion
derived from triaxial test experimental data. Therefore the concept of strength
criterion of the soil considered as a three-dimensional continuous medium, had ne-
ver to be referred to in those analyses.

Besides, the studies about strength criteria for anisotropic soils are so numerous
that it would be vain to quote them all. The concept of anisotropy-tensor has been
used by Caquot [25], Goldenblatt [ 26], Sobotka [ 27], and by Boehler and Sawczuk

[ 28] who formulated Mises' and Drucker-Prager's type criteria in the case of ani-
sotropic soils. Nova and Sacchi [ 29] also made use of that concept after having
tried another approach [ 30]. Relying on the studies by Pipkin, Rivlin, Smith,
Spencer, and Wang, about the representations of isotropic tensorial functions,
Boehler [ 31] have produced a most relevant contribution in that field. His three-
dimensional analysis makes it possible to study plane problems on sound mechanical
bases : the obtained equations have been used by Pastor and Turgeman [32] for fi-
nite element calculations.

The data derived from undrained compression triaxial tests, as represented by for-
mula (4.1), are not sufficient to determine a strength criterion valid for any
true triaxial stress state ; Salengon and Tristdn-Lépez [ 33] have suggested to
construct that criterion under the complementary hypothesis that it should not de-
pend on the intermediate principal stress ('): the so-obtaned criterion fulfils the
invariance-conditions established by Boehler (cf. [34]), and writes :

f@x)) =03 —0; =20 < 0

G.1 01 €0, <0, principal stresses,
a = 0y, 01)

(tensile stresses are counted positive)

where Oy is the direction of the transverse isotropy axis. With that strength-
criterion, yield-design of structures in the case of plane strain parallel to the
transverse isotropy axis is proved to reduce to a plane problem the corresponding
two-dimensional strength criterion is nothing but (5.1) applied to the two-dimen-—
sional stress tensor in the plane ; the later result matches the procedure used

in the available methods of stability analysis for anisotropic soils, it confirms
that the assumption explicitly made here on the strength-criterion, was implicitly
formulated by their authors.
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Bishop's formula (4.1) has been retained by Salengon and Tristan-Ldpez to express
Cla) 1in (5.M).

5.2 - m- functions

Two problems of yield design in plane strain conditions for anisotropic soils with
criterion (5.1, 4.3) will be presented. Solving them through the kinematic ap-
proach requires knowing the two-dimensional m - functions for plane strain paral-
lel to the transverse isotropy axis Oy. We get :

¢ for m(d(x)) :

tet di be the major principal value of two-dimensional d(x), and 8= (0y,d;);
then :

tr(d(x)) # 0 == 7(d(x)) = + =
tr(d(x)) = 0 = w(d(x)) = Max (-2C(a) d; cos 2(B-a))
== == o

i.e. m(d(x)) CV d, m(R) .

® for m(n(x), [v(x])

define unit vector t(x) in the plane by (n(x), t(x)) = m/2 ; denote by v

and v, the corresponding components of [v(x)] and let € = (0y, n(x)) ;then:

v, #0 = n(n(x), [vio

v, T 0 == 1(n(x), [vG)]) = Max (C(a) Ve (x) sin2(e=-0a))
—_ =2 o ok

4+ oo

¢ v |m e if v, >0 ,

i.e. TG, veol) =4 vt t
Clv |r e if v, <0 .

vi ot - t

Functions 7(R) and Wt(E) have been computed in the case of criterion (5.1,4.3).
5.3 - Bearing capacity of a footing on an anisotropic cohesive soil

Davis and Christian [ 35] appear to have been the first to investigate the effects
of cohesive soil anisotropy on the bearing capacity of foundations. As a strength-
criterion for the material they adopted a simple polynomial form, depending on
three parameters, that generalizes the one previously written by Hill [36]. Thus,
they could determine the bearing capacity of strip footings by applying the theory
of plane limit equilibriums (method of characteristics) since they remarked that a
simple change of variable reduced the equations to those solved by Hill. In their
paper Davis and Christian also retained the validity of Bishop's formula for a
correct description of the available experimental data, but they noticed that no
structure stability analysis had been performed using it.

The determination of the bearing capacity of strip-footings with Bishop's formula
has been carried out by Salengon and Tristan-Lbpez [ 33] using both approaches of
para. 3.2 & 3.3 ; they constructed static and kinematic solutions depending on se-
veral parameters which were optimized (figure 6).

With the notations of figure 6, the loading parameter for this problem is the
axial force Q applied to the footing (per unit transversal length). The extreme
value of this positive parameter is Q which writes (after a dimensional analy-
sis)

(5.2) < =8 C, @ (Ki,Kp)

where ¢ is a scalar function of K; and K,. For isotropic soils, K; = K, =1
in (4.3), the solution is known : ¢(K;,Ky) = m + 2,
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+
+ 14

t

Figure 6 : Bearing capacity of strip-footings on anisotropic cohesive soils :
static and kinematic solutions [ 33].

Results of this analysis are presented on figure 7, for three values of K;, sho-
wing the thin zones delimited by the upper and lower bounds of the correction fac-
tor :

(5.3) n(Ky,Ka) = oKy ,Kod/(m+2) .

Complete charts are available in [34], and a detailed critical analysis of these
results from the practical point of view may be found in [ 37]. Looking at correc-
tion factor (5.3) immediatly gives an estimation of the error committed on the
bearing capacity of a footing on an anisotropic soil, if it is calculated assuming
the soil to be isotropic from triaxial tests on vertically drilled samples. Al-
though allowing for the usual tolerances in soil mechanics, it appears that the
correction may be important either in the conservative or in the non-conservative
sense ; moreover, simple empirical rules, as that of a mean cohesion suggested by
Meyerhof [ 38], cannot be considered as sufficient (this one is proved to hold only
in the case of Casagrande and Carrillo's soils).

n(Kq. K2) nmn(KLKz) n(Kq,K2)
14 I I m /“m
Ko =(1+Kj4 Ko=10 |,/ / K2 =08] /

12 1.2 A 12 v/

, ’ /
W% Y
4 , ’7' / 4
1,0 10 / 10 .
)37/
| w 2/
L v’

08 08/ 0,8 L

08 12 16 K1 08

v

12 16 K, 08 12 16 Ky

1)

Figure 7 : Bearing capacity of a foundation on a cohesive anisotropic soil [37] ;
K2 = (1+K;)/2 corresponds to Casagrande-Carrillo's soils; n, is the empirical
result obtained assuming the soil to be isotropic with a cohesion (CV + ch)/2.
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Comparing those results with Davis and Christian's ones shows that both strength-
criterion (5.1, 4.3) and Davis and Christian's are convenient for practical appli-
cations.

5.4 - Stability of slopes for anisotropic cohesive soils

Let h and B be the geometrical characteristics of the studied slope (figure 8.
The constitutive soil with voluminal weight <y, is anisotropic with strength-cri-
terion (5.1, 4.3). Dimensional analysis shows that the stability of this structure
is governed by the non-dimensional loading-parameter N = Yh/Cy, ; its extreme va-
Lue is a function of B, Ki , Ko = NY(B, Ki, Ky).

The construction of static solutions in order to apply the yield-design approach
"from inside" has proved difficult and poorly efficient for this kind of problems;
therefore they are usually dealt with by means of the yield-design approach "from
outside".

Such a stability analysis has been carried out by Tristan-Ldpez [34], applying

Eg. (3.7) with the velocity-fields defined by the rigid body rotation of a block
sliding along a circular line. Thus he established the first charts for slope sta-
bility evaluation in the case of an anisotropic cohesive soil whose yield-strength
is defined by three parameters (i.e. two anisotropy ratios). An example is given
at figure 8.

m
N(B.Ky.Ko) - | K2
70 R t14
_ *A./
o \/ B 1,2
p=45 */ﬂc 1’
6.0 - 10
/
/_’// ]
=
50 #‘—::=”’ /s
46 o

08 12 16 20K,

Figure 8 : Slope stability for anisotropic cohesive soil [34] :yh/CvséNm(B,Kl,Kz).

As mentioned before, Bishop's formula reduces to Casagrande and Carrillo's when
Ko = (1+K;)/2 ; stability analyses were already available in that case (Lo [21],
Chen [ 39]) whose results can be compared with those obtained by Tristén—Lépez
(figure 9.

This comparison deserves a few comments from the mechanical point of view. As a
matter of fact, Lo's and Chen's analyses are performed using the same velocity
fields as in Tristan-Ldpez'; nevertheless, though the strength-criterion is the
same for the three authors, the obtained results are different. This discrepancy
which originates in the way the approach from outside is realized, emphasizes the
importance of a sound mechanical reasoning.Tristan-Ldpez' analysis relies on
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Eq. (3.7) and definition (3.5) of function w( ) to calculate P(v) : therefore
it is consistent with the definition of the soil strength—criteridﬁ from the me-
chanical view-point. Lo's analysis is made following the idea mentioned in chap.2:
the work of the external forces is compared with the work of the resisting ones ;
in order to evaluate the later., the slip-circle in the velocity field is conside-
red as an envelope of failure planes in triaxial tests (figure 9) and the mobili-
zed shear stress on any of these planes (inclined at ¥ =35° on the sample axis)
js said to be equal to the corresponding C(a). Since Y # m/4, this reasoning is
indeed not in accordance with the procedure and the interpretation of the triaxial
test (uniform cylindrical stress-field around ¢y). The same ideas have been foll-
owed by Reddy and Srinivasan, Chen, and Menzies, assuming other values fory =0
in some cases). Due to the values of 1 adopted by the authors on the example of
figure 9, the discrepancy between the results obtained that way, and through the
mechanical dualization, is slight and can be considered negligible for practical
applications ; but the guestion should not be discarded.

Yh
Cy
7
B=50/
6 =]
CHE \Nm
5= T°LO

06 08 10 12 14 K,

Figure 9 : Casagrande and Carrillo's soil : comparison between
Tristan-Lbpez', Lo's, and Chen's results.

6 - SOIL REINFORCEMENT AND ANISOTROPY
6.1 - Soil reinforcement

Mechanical soil~reinforcement for building earth-structures has been used since

antiquity, but it has enjoyed an extensive development during the late twenty years

generated by important technical research. A few examples can illustrate typical

techniques :

- spreading of regularly disposed reinforcement in the soil (the principle of
reinforced earth),

- substitution of a better soil for a part of the native soil, following a regular
mesh (the principle of ballast columns and trenches),

- improvement of the strength-characteristics of the native soil, following a re-
gular mesh (the principle of lime columns),

and it may be noticed that the regularity of the set up reinforcing material, and

the existence of preferential orientations, are features common to these processes.

Practical stability analyses for reinforced soil structures (e.g. slope stability,
bearing capacity of surface footings) apply two-dimensional yield-design methods
adapted from those classical in the case of homogeneous isotropic soils ; there-
fore any new development on this topic will be welcome. Here, we intend to give a
first survey of the methods and results that can be derived from the application
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of the yield-design theory to the stability analysis of reinforced soil structures.

The characteristic scale of any of the abovementioned reinforcements, the usual
civil engineering one, appears macroscopic when compared with that of the soil
particles. But it lLooks like a fabric scale when compared with the scale of the
structures themselves. This suggests that it should be possible to analyse the
stability of a reinforced-soil structure by referring to a homogeneous '"reinforced-
soil" material whose definition and use should be clearly specified. From the pre-
ferential orientations of the reinforcement one may expect the '"reinforced-soil"
material to exhibit anisotropic strength properties,

The theoretical developments about homogenization in yield-design and Limit analy-
sis, by Suquet [40,41] and de Buhan [ 42],will not be presented ; the general rea-
soning and an example of the obtained results will be exposed on a typical problem

6.2 - Stability of a reinforced soil slope

The considered slope is made of a purely cohesive isotropic native soil with cohe-
sion C,, reinforced by vertical layers of another purely cohesive anisotropic
soil with cohesion Cy > C;. The stability of this structure will be studied in
plane Oxy (figure 10).

Let e; denote the layer thickness for the material with cohesion C; (i=1,2) ;
let e=e; +e; and A; = ej/e (i=1,2). The contact between the native soil and
the reinforcement one is assumed to be perfectly adhesive. As a simplification,

both soils will be supposed to have the same voluminal weight v.

0 Y
—

¥x

Figure 10 : Stability analysis of a reinforced~soil slope
and associated homogeneous structure.

Dimensional analysis applied to the yield-design of that structure shows that the
non-dimensional factor N = yh/C; acts as the loading parameter for the problem ;
its extreme value is a function of B, C,/Cy, Ay/Xy, e/h

6.1 N =vyh/Ci , N (B, €/Ci, Aa/Ay, e/h) .

*
The value of N is looked for when the thickness of the layers (the scale of the
reinforcement) can be considered small with respect to the height of the slope
(the scale of the structure), i.e. when e/h = 0. For simplicity we introduce :

*
(6.2 NO(B, Co/Cy, X2/X) = Lim N*(B, Co/Cy, Xo/X1, e/h) as e/h > 0.

The determination of Nz through the approaches of yield-design proves rather dif-
ficult. Due to the two lLayered materials present in the system, the stress-or ve-
locity-fields to work with soon become sophisticated, except for the velocity-
fields defined by the rigid body rotation of a block sliding along a circular Lline
(as in para. 5.4) which remain convenient. These ones are used in the classical
methods [ 44] : thus, applying the kinematic approach with this family of velocity-
fields Leads to an upper bound Ng for Ng :
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*
(6.3 NZ(S, C2/Cy, X2/Ny) 2 NO(B, C2/Cy, Aa/X1) .

It may be proved that Ng depends only on R and on the factor
r=11+ /X 1)CC/C101 7/ (1 + Xy /Xy), and writes

(6.4) NZ(B, C2/Ci, Aa/A1) = r N"(B) ,

where Nm(B) is the result obtained for the stability of a cohesive soil slope by
the slip circle method. In other words, the slope with the "composite" soil when
e/h - 0, is perceived through the slip-circle analysis in just the same way as if
it were made of a homogeneous isotropic soil with the cohesion rC; i.e. the pon-
derated mean value of both constitutive soil cohesions.

6.3 - Homogenization and yield-design

Homogenization in yield-design introduces a homogeneous structure associated to
the composite soil structure when e/h = 0, which is geometrically identical and
is submitted to the same loading process as that one (figure 10). The stability of
this associated homogeneous structure is then analysed.

The homogenized material is only defined for this application. A first yield-de-
sign problem is solved on the representative elementary volume of the "composite"
material : it corresponds to the change of scales and produces the strength
criterion to be adopted for the "reinforced-soil" homogenized material from the
characteristics €y, C2/Cy, A2/X;1, through the static and kinematic approaches.

In the present state of the theory it is proved that, with this definition of the
homogenized material, the stability analysis of the associated homogeneous struc-—
ture gives an over-estimation of the stability of the composite one (Suquet [411).
A stronger result would indeed better fit the intuitive conjecture made in para.
6.1, but the value of this already available one will be demonstrated through our
following example.

6.4 - Strength-criterion of reinforced soil

For the reinforced soil structure describe in para. 6.2, the homogenized material
is thus obtained in the form of a purely cohesive soil, transversally isotropic
around Oy. For the two-dimensional problems in plane strain parallel to Oy, its
strength-criterion writes : let o7 and o0; be the principal stresses (o; < 03)
and o = (0y,0;)

(6.5 03 —0; -2 < 0,

(6,6 Cla) = Cy pCa, Co/Cy, A2/Ay) ,

where the non-dimensional factor p can be explicitly calculated [42]. Figure 11
shows p as a function of o.

Figure 11 : Polar diagrams for the
homogenized soil : p(a) = C(a)/Cy.

L]
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It exhibits the following properties :

w4 p =1, Cus = C; ("weak" soil cohesion )

(6.7) g z 2/2}: p=r, Cla) = rC (ponderated mean value of the soil cohesions)
Oo<asmn/2 : pla) = p(w/2 - ) 1<p(w) <r

6.5 - Stability analysis of the associated homogeneous structure

With the results (6.5, 6.6) the stability analysis of the associated homogeneous
slope (figure 10) proves similar to the problem already studied in para. 5.4 for
anisotropic natural soils ; here, formula (6.6) is substituted for Bishop's formu-
la in expressing C(a). The corresponding - functions for plane strain parallel
to Oy have been determined [ 45].

Once again the velocity~-fields defined by the rigid-body rotation of a block sli-
ding along a circular line are used in the kinematic approach. An upper bound
Nmom(B, C2/Cy, Ay/X1) is thus obtained for the extreme value N;om of the loa-
ding parameter +vyh/C, for the associated homogeneous structure :

m *
(6.8 Nhom(B’ C2/Cy, Ap/Ay) = Nhom(B' C2/Cr, Aa/X1) .
Applying Suquet's theorem, the loading parameters being identical for both struc-
tures, we can also state that

*

(6.9) N:Om(B, Co/Cy, Xa/Xy) = NO(B, Ca/Cy, A/XNy)) .
Figure 12 presents the obtained results in the case B = 90°, as functions of pa-
rameters A,/A; and r.

N:om enjoys the following properties whatever B :
¢ for r = 1 (homogeneous soil with cohesion C;), Nm(B) is found again :
m

6.10) r=1,V Ae/Ay o N (B, Co/Ch, Aa/Ay) = N ) ;

® for r>1 /r decreases as r increaseswhen X,/)\; is fixed

m
’ Nhom
m

hom/r increases with A,/X\; when r is fixed,

thence, taking Eq. (6.10) into account, we get :

6.11) NEom(B, C2/Cy, Aa/A1) < r N™(B).

383=N"| | B=90" |
m
N'""n//r N N Figure 12 : Stability analysis of a
\\\‘ \\\‘\¢ reinforced soil slope : yh/C; < N |
374 N - ‘\m hom
| T~ 1 N/N
0
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6.6 - Comments : homogenization and anisotropy
Putting together formulae (6.3, 6.4, 6.9 and 6.11), or looking at figure 12, it is

easy to compare the results obtained through the application of the slip-circle
method : first to the "composite'-soil slope (e/h -~ 0), then to the associate slope
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made of a homogenized soil with anisotropic cohesion. It appears then that, working
on the same class of simple velocity-fields, and applying rigorously the kinematic
approach of yield-design, we get significantly different estimations of the compo-
site-soil slope stability : since it is lower, the value obtained through homogeni-
zation shall be retained. A similar conclusion has been drawn by de Buhan [ 46]

when studying the bearing capacity of surface footings, within the same framework.

The property is general and its explication is close to mechanical intuition. It
was shown in para. 6.2 that the classical method leads to the same evaluation of
the slope stability as if the constitutive soil were homogeneous and isotropic
with the cohesion ponderated mean value ; stability analysis after homogenization,
thanks to the two successive applications of yield-design approaches it implies,
can account for the macroscopic anisotropy of reinforced-soil (and for this one,
cohesion C(a) has been proved to be always smaller than the cohesion ponderated
mean value).

7 - CONCLUSION

Due to techonological incitements and to progresses in computational means, solid
mechanicians have taken increasing interest into the study of anisotropic mate-
rials, during the late decades. General fundamental researches have been carried
out as well as more specific investigations in many disciplines of applied mecha-
nics.

In soil mechanics, constitutive laws are now formulated, based on modelizations
which take anisotropy into account ; numerous papers have been devoted to that
subject (a recent general lecture by Hueckel and Nova [ 9] includes some 250
references !). We have chosen to present here an aspect of the reflexions on soil
anisotropy which is directly connected with practical applications : the yield-
strength of anisotropic soils from the point of view of the stability analysis of
structures.

The necessity of sound mechanical bases to rely on, as well when setting up or in-
terpreting experimental tests, as when devising stability analysis methods, has
been evidenced : ambiguities, which we can remain unaware of in the case of iso-
tropy, may lead to inconsistency when the material is anisotropic. The theory of
representation of isotropic tensorial functions and that of yield-design proved
highly valuable for that purpose. From the practical view point the obtained re-
sults are relevant.

Apart from the anisotropy of natural soils, the macroscopic anisotropy of mecha-
nically reinforced soils can also be taken into account. Applying the homogeniza-
tion process to yield-design makes it possible to formulate efficient methods for
the stability analysis and the design of reinforced-soil structures. New develop-
ments should appear in this field during the next few years, which are more Llikely
to be of an applied character, in order to simulate the real reinforcement techni-
ques better.
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