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Determination of a macroscopic yield criterion for a multi-layered material

P.de Buhan & J.Salengon
Ecole Polytechnique, Palaiseau, France

ABSTRACT : A macroscopic yield criterion for a multi-layered material is defined as the
solution of an asymptotic yield design problem on representative elementary volumes of
this material. In the case of the two-dimensional multi-layered medium with Tresca cons-
tituents, a purely cohesive anisotropic criterion is obtained. It is applied to the sta-
bility analysis of a multi-layered vertical cut.

RESUME : On définit le critére de rupture & 1'échelle macroscopique d'un matériau multi-
couche & partir de la solution d'un probléme asymptotique de calcul & la rupture sur des
volumes élémentaires représentatifs de ce matériau. On établit alors dans 1'hypothése du
matériau multicouche bidimensionnel & constituants de Tresca, que le critére obtenu est
du type cohérent anisotrope. Un tel critére est utilisé pour analyser la stabilité d'un

talus vertical multicouche.

This paper is based on the theory of yield
design (Salengon, 1983), which allows the
determination of the potentially safe
loads of a structure, taking into account
its geometry, loading conditions, and with
the knowledge of a yield criterion in each
point of the constitutive material, as
sole information concerning its mechanical
behaviour. The problem will be studied
within the framework of three-~dimensional
continuum mechanics in sections 1 and 2,
and of two-dimensional continuum mechanics
in sections 3 to 6.

1 A FIRST APPROACH TO THE CONCEPT. OF
MACROSCOPIC YIELD CRITERION

A multi-layered vertical cut with a depth
h (fig.l) is taken as an example. The two
homogeneous constitutive materials are
denoted by 1 (i = 1,2), any quantity re-
lative to them being characterized by the
corresponding subscript. The layer thick-
ness is e; and we introduce :

A, = ei/e, where

4 e=¢e, +e, . (1)

1 2

The strength capacities of each material
are defined through a convex domain G,
determining the set of allowable stress
tensors g .

Interfaces between layers will be assu-
med in a first step to be perfectly adhe~
sive.

The specific weights of the two mate-
rials are assumed to be equal to Y. Y is
the only loading parameter for the problem,

The stability of such a structure is
determined by finding the extreme value
Yt defined as follows :

3 g statically admissible
(S.A.) with vy ,

o<y<yt = (2)

such that :
ox) € Gi(i =1or2),V x

As many difficulties arise when trying
to solve this problem directly (due to the
complexity of the stress fields g in the
static approach, and of the velocity
fields v in the kinematic approach), it
seems reasonable to look for the solution
of a homogenized problem, obtained through
the assimilation of the multi-layered ma-
terial to a homogeneous one, in every
point of which a macroscopic yield crite-
rion with a domain G_ will be defined. This
latter problem is so?ved by determining
the extreme value Yg, thus defined :
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Fig. 1 : Multi-layered vertical cut.
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Fig. 2 : A definition of the equivalent homogenized problem.

. 3 g S.A. with Y
0 YK ° ==
SR € Gy, Vi

(see fig.2)

(3)

Two questions will be successively con-

sidered :

a) How to define and calculate such a ma-
croscopic yield criterion (sections 2 to

4) 2

b) To what extent does the solution of the

homogenized problem (3) approximate that
of the initial problem (2), thus justi-
fying the homogenization process (section

5) 2

2 DEFINITION OF THE MACROSCOPIC YIELD
CRITERION

2.1 Representative elementary volumes of

the multi-layered material

A fixed geometrical domain £ of unit volu-

me with a boundary of) is considered in
space & (with co-ordinate system OxX;X,X3)
A representative elementary volume (Le
Nizhery, 1976) of multi-layered material
is then defined as any volume of this ma-
terial occupying {2, such that :

. the direction of the layers is parallel
to Oxx,,

. and e = € .L, where € is a small dimen-
sionless parameter and L a characteris-
tic length of Q@ (for instance the smal-
lest diameter of § normal to the layer
direction : fig.3).

Such a volume will be denoted by QE.

2.2 The case of the homogeneous material :
G1 = G2 = G

The multi-layered material can then be

considered as homogeneous with regard to

its strength capacities, so that the de-
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e=¢l

X4

Fig.3 : Representative elementary volume of multi-layered material.

pendence on € of any representative ele-
mentary volume of this material can be
omitted : @ Q.

Generally speaking, the notion of stress
solicitation on the boundary 32 of Q, de-
noted by S, can be defined as the datum of
the stress vector T acting upon £ in each
point x of 90 :

s ={T(x) , x € 30} ,

under the conditions :
X A T(x)ds

J I(x)ds
1Y) of

Likewise, the work of S in any velocity
field v can be defined as the integral

0, and J o .

P(S, ¥) I Z(®Iy(x)ds
an

We suppose then that } is subjected to
a uniform stress solicitation, that is :

vV x € 93Q

where I is a constant symmetric tensor and
n(x)the normal unit vector at the point x
of 9f. Such a solicitation is denoted by
Sz .

Two properties can be then established
as follows :

T(x)

~

L .nx .,

Property 1 {1 is subjected to a 6 para-
meter loading process.
Indeed, it can be written :
V g statically admissible with SZ
V v kinematically admissible, ~
P(Syry) = I (%) .0 (%) .v(x)ds =Z(9) :<&>(v)
~ af
where 1
<@>(y) = = n®v +v®nds
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The set of tensors [ is a six-dimensio-
nal vectorial space, made identical to its
dual space (strain rate tensors), and for
which the double contracted tensorial pro-
duct (denoted by :) is a scalar product.
Then :

P(Sp.¥) = Q . q , where Q,§ € RS,

Property 2 : K, domain of the potentially
safe loadings I is identical

with the yield domain G :

k={f[3gs.a L, gx) €6 Vx€Ql=¢

Then the yield criterion for a homoge-
neous material (local datum) appears as
the solution of a yield design problem on
any volume of this material.

2.3 General case (G # G,). Definition

of GH

These results induce us to propose a defi-
nition of the yield criterion of the multi-
layered material on the macroscopic scale,
that is to say on the scale of the repre-
sentative elementary volumes of this mate-
rial. Some definitions must be adopted
first :

2.3.1 Let {Qe }, n € N be a sequence of

..n
representative elementary volumes such
that :

lim € o .
n

n>v
Such a sequence will be called asympto-
tically homogeneous.

Q
€

of Qh occupied by the constitgent i will
be denoted by Q;, and G_(x) will be the
convex domain describing the strength ca-

Let us define Qn as Qn . The part



pacities at the point x in Qn :

Gn(g) =G, vV x

eat.
n

2.3.2 Likewise, a sequence of stress
solicitations {Sn}, n €N

s_ = {r ®, x € 30}
will be called asymptotically uniform, if
there exists a tensor I such that :

ll'll._i)g P(S ., ¥) = P<S§,' v) , Yy K.A.
This will be written conventionally :

{sn} > Sy .

=

2.3.3 The following definition of the
macroscopic yield domain Gy (< /%) is
then adopted :

Z belongs to G, if and only if, given
any asymptotically homogeneous sequence
{Q_}, there exists a sequence {s_} such
thit {s } » s; , and checking : n (4)
S _acting on { is potentially safe
(P.s.) for every n ;

this means that it is possible to exhi-
bit a stress field gn statically admissi-
ble with Sn and respecting the yield cri-
terion everywhere :

gn(z) € Gn(z) Vx € Qn .

The diagram below clearly shows the
consistency of the proposed definition,
by making a comparison with the homoge-
neous case :

lumes. For our reasoning to be fully jus-
tified, the independence of the criterion
so-obtained with respect to the choice
of Q@ has then to be proved.

This independence property can be ex-
pressed in a very simple way, when the
multi-layered material can be described
within the framework of two-dimensional
continuum mechanics ; this is, for instan-
ce, the case of "plane strain" yield de-
sign problems in a direction parallel to
the symmetry axis of the multi-layered ma-
terial. Each convex G, (c f%) describes
then the "plane-strain" strength capaci-
ties of the constituent i.

The following sections of this paper are
devoted to problems studied within the
framework of two-dimensional continuum
mechanics.

3.1 The two-dimensional multi-layered ma-
terial being studied in the plane Oxy
(fig.4), it can be shown (de Buhan, 1982)

that GH can be defined as follows :

3 (g,,02) such that
Z =00 + 220,

satisfying g, € G,

tee <—>{ (1=1,2 + * ()
~ H
and
&Y Oxy (components in
LT Y2 co-ordinate
O¥y = oZY system Oxy)

where A, and A, are defined by (1).

The major interest of definition (5)
lies in the fact that it makes the practi-
cal determination of the macroscopic yield
criterion much easier.

Note : when the material is homogeneous

Homogeneous Material Multi-Layered Material
Gl = Gy= G G] * Gy
v {Qn} asymp. homogeneous
= ->
¢ =1z | Sy - p.s.} Gy ={Z |3 {s } Sg
VnsS_P.S.
n
Property Definition

3 INDEPENDENCE OF THE DEFINITION IN THE
CASE OF THE TWO DIMENSIONAL MULTI-
LAYERED MATERIAL

Definition (4) a priori involves the geo-
metry of the representative elementary vo-

(G] = G, = G), definition (5) leads
to GH = G.

3.2 "Dual" definition of GH :

It can be proved that :
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Figure 4 : Two-dimensional multi-layered

material.
v
A Hm=-A Hm «AH
M= 1 Hho ) m2
H ___________
m,
N
ol
e u
C, ACsAL, €,
Figure 5a : Representation of the
yield domain in the deviatoric
plane.
[
/
4
4
Cla)
d I
Figure 5b : Polar diagram for
cohesion.
6, = {};;g:n<n m)} ()
H  peg? Gy~

where T, (B) (Qefined as Sup {Z: D, L GGH})

is equal to :

i
GH

(D) = Min
(gl ,QZ

){A,ncl @)+ Aallg @)
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xlgl + A4, = g}
under the condition : dfx = dﬁx

rates along Ox).

(strain

4 APPLICATION TO THE CASE OF PURELY
COHESIVE ISOTROPIC CONSTITUENTS

4.1 The two constituents are now supposed
to be Tresca materials :

g€EG, <<>og,-0 =-2C, <0 (7)
i M m i

i=1,2)

where 0, (resp. 0_) is the major (resp.
minor) principal stress of the tensor g
and Ci the cohesion of constituent 1i.

It can be shown (de Buhan, 1982) from
(5) and (7) that the macroscopic yield
criterion can be expressed as follows :

L€ Gy <> ZM-—Zm-—ZC(d) <o, (8)

where I and I are the major and minor
principal stresses of I, and a the angle
made by the major principal stress with
Ox. Thus, the multi-layered material with
purely cohesive isotropic constituents
behaves, as regards its yield criterion,
like a homogeneous, but anisotropic cohe-
sive material.

Formula (8) is clearly of the same form
as the yield criteria proposed by many au-
thors who have dealt with two dimensional
plane strain problems for naturally aniso-
tropic purely cohesive materials such as
soils (Casagrande & Carillo, 1944, Bishop,
1966, Salengon & Tristan Lopez, 1980).

4.2 Geometrical representation of the
criterion

As criteria (7) and (8) are independent of
the hydrostatic component of stress L,
they can be represented in the two-dimen-
sional space of deviator stresses with
co-ordinate system :

@Y - % /2 v =3,

The boundary line of each domain Gi in
the plane (U,V) is a circle of radius C.,
centered at the origin, and that of G a
curve (T') obtained through a very simple
geometrical construction (fig.5a). The
corresponding equation in polar co-ordina-
tes is :

p(B) = C(6/2)

The polar cohesion diagram C(d) can be

U=
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Figure 6 : Variation of the polar

diagram as a

function of X,.

\J

Figure 7 : Polar diagram for cohesion
in the case of interfaces

with cohesion C'.

easily deduced, showing the symmetry pro-
perties (figure 5b)

Cla) = C(-a) (9)

and especially C(m/2 - a) c(a).

Two dimensionless parameters can conve-
niently be introduced :

k =c,/c,
A€y + A,C,0/C; = A, + kA,
Cla =0)/Cl(o=m/4) .

(suppose that k = 1)

and r

The evolution of the dimensionless polar
diagram C(a)/C,, as a function of A,, with
r remaining constant, is shown on fig.6.
Two particular cases have to be underli-
ned :

* A

= 0 : it represents layers of cons-

tituent 2 (with cohesion xC,)

int __ . ,
LE€ Gy <=> ZM )Im< 2 mn(c(oc) '
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seperated by interfaces with
cohesion C,

* A\~ 1 (whence k » 1) : it corresponds to
constituent 1 with inclusions of
very thin layers (Xl <€ 1) of cons~
tituent 2(C, » C;). (This configu-
ration might schematize reinforced
earth) .

4.3 Macroscopic yield domain in the case
of yield conditions at the interface

We now assume that the interfaces between
the layers are no longer perfectly adhesi-
ve and that a yiéld criterion governs the
contact. Such a condition can be described
by a scalar convex function g defined by :

the stress vector T
acting on the interface

g(T) < 0 <> {
~ respects the criterion.

It can be easily shown that the corres-
ponding macroscopic yield domain G;nt be-
comes

int

G

- (10)

=G, n{z | g(2*¥, 1YYy < o}

In a general way, the macroscopic yield
criterion is ‘then no longer of the aniso-
tropic purely cohesive type (even in the
case of isotropic constituents) except in
the case of an interface yield condition
defined by :

g(@¥, ) = [P ¢

Formula (8) becomes then :

el )
sin 20
(11)
(fig.7).

4.4 "Failure" modes of the elementary
volume of multi-layered material

We shall speak of the "failure of the ele-
mentary volume" of multi-layered material,
when the "macroscopic" solicitation [ is
located on the boundary of G_. Let then

g, and g, be the "microscopic¢" stress ten-
sors corresponding to definition (5) of [,
and gl, gz the "associated" strain rate
tensors defined by :

HG.
1

@) d=1,2 (12)

:~l

Two cases have to be distinguished accor-
ding to the orientation o of the major
principal stress (but due to relations (9),



it is possible to consider only
a € [0, m/al) .

« 0< 0 < 0o_ where sin2a = 1/r (fig.8a)
Tensors J, are both locateé)on the boun-
daries of the domains G,. The criterion is
reached in both constitients, and "failu-
re" occurs by deformation of both mate-
rials (gi 0, 1i=1,2).

(Actually the term "failure" is
misused, and should rigorously be used on-
ly in the case of perfectly plastic mate-
rials obeying the principle of maximum
plastic work. Relation (12) defines then
the corresponding plastic flow rule).

ca <as E-(fig. 8b) . Only the stress
state in constituent 1, which is the one
with the weaker cohesion Ci, is on the
yield surface. "Failure" occurs then
through pure shearing strain of constituent
1 : the principal directions of d, make
45° angles with the vertical direction,
and 4, = O.

5 APPLICATION TO THE STABILITY ANALYSIS
OF A MULTI-LAYERED VERTICAL CUT (Zghal,
1983)

Let us come back to the vertical cut exam-
ple (section 1). Assuming now that the
constituents obey Tresca's criterion, the
problem can be solved as a "plane strain”
problem in the plane Ox,x,;, and the pre-
viously established results {sections 3
and 4) are then directly applicable here.

A dimensional analysis of the initial
problem (2) shows that Yt is necessarily
written as :

YF=xt0y, £, e/ .ci/h

where
+

+
XK = K+(X1, r, e/h) = Yh

S

is a dimensionless factor characterizing

the stability of the vertical cut.
Likewise, for the homogenized problem

(3)

+
Y. .h

+ H +

K = c = KH(XI, r) .

1

The justification of the homogenization
process achieved by substituting problem
(3) for p£oblem (2), involves the equality
between and the limit value of K' when
the thickness of the layers tends to zero
(with h remaining constant), to be pro-
ved :

Yo um k(= K;)
e/h>0

The aim of this paper is only to compare
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the upperbound values of K’ and K (res-
pectively denoted by K® an ) obtained
from kinematic approacges using rigid
block mechanisms, with circular failure
lines as shown on fig.9. The analysis leads
to the following results :

direct calculation
+

K < Min F(8,,0
fo) 1

el’ 2

m

2 ;Xl, r) = K~ 3.83 r
"homogenized" calculation

m

K< Min G(8,,8, 54, 1) = K .

8

1772

The variations of Km/r and Kg/r as func-
tions of r, are represented by curves
displayed on fig. 10.

In the case where r = 1 (homogeneous
vertical cut), Taylor's classical result
is thus obtained

K:(r =1) = Kﬁ(r = 1) ~ 3.83.

Moreover, the upperbound value K"
(~3.83 r) is identical to the one which
would have been obtained by performing the
same kinematic approach on a homogeneous
vertical cut with isotropic cohesion
rC1 = )\lcl + )\2C2.



Figure 9 : Rigid block mechanism with

circular failure line.

Ko/t

3,83

30 r

1 2 3
K/

Figure 10 : Variations of K /r and
as functions of Al

6 COMMENTS

6.1 Definitions (5) and (6) of G coincide
in the case of the two dlmenslonal multi-
layered material, with those assumed by
Suquet concerning periodically structured
materials (i.e. G(x) a periodical func-
tion of x.

Besides, the approach adopted in this
paper can be easily extended as a whole to
this latter type of material. The case of
the two dimensional multi-layered material
being noticeable because of the very sim-
ple calculation of the macroscopic yield
criterion.

6.2 The following inequality, deriving
from a result by Suquet can be proved :

Ko < KH .

Thence, taking into account the inequa~
lity :

1(H<Km
¢}
it follows :

+ +
K, < Ky <

(figure 10),

m m
KH < Ko .
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These inequalities emphasize the great
interest of the homogenized calculation,
which, by using the same failure mechanism
as for the direct calculation, leads to a
better result. It is likely that more
sophisticated mechanisms would have been
necessary to achieve the same result
through direct calculation.

6.3 Lowerbound values for K. and K, can
also be achieved through static approach.
It is then necessary touse heavier methods
(finite element methods : Pastor, 1983),
in order to obtain significant results.

6.4 The homogenization method within the
framework of the yield design theory can
be applied to other types of structures
and problems : for instance the indenta-
tion of a multi-layered half-space could
be studied.
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