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‘Bearing capacity of circular shallow foundations

H
i

J. Salencon, M. Matar

1. INTRODUCTION

The bearing capacity of shallow foundations
of the strip footing type has already been
the theme of various studies, among others
by the authors of the present work, in cases
when the foundation rests on a soil layer
overlaying a rigid bedrock, and with a ver-
tical cohesion gradient.

The practical importance of such analyses is
quite evident :

- it is common to find a relatively thin foun-
dation soil layer bound with a bedrock which
can be considered as being rigid, the soils
being either frictional (¢ # 0°) or purely
cohesive;

- a downward- vertical cohesion -gradient ap-
pears in soils with an internal friction an-
gle ¢ < 25°, and more often in purely cohe-

“.sive soils or with ¢ near to 0° such as ma-

rine soils, for example.

The present article aims at studying circular
shallow foundations, axially loaded and lay~-
ing upon a non homogeneous soil, in condi-
tions identical to those described above.

* Besides being interesting in itself - it is

actually possible to find circular shallow
foundations of a similar type - this study

.will moreover provide the pratician dealing

with a rectangular shallow foundation, for
example, with two gquite different elements:
first,the bearing capacity of a strip footing

~ and second, the bearing capacity of a circular

"As the reader

. footing, so as to enable him to evaluate the
“bearing capacity, he is loocking for by means
‘of an appropriate shape factor.

vill see hereunder, we have
been concerned riainly with presenting our
results in form of charts, for a direct use

in common practice. As a matter of fact, these

" charts are derived directly from those which

- the authors have chosen to use in their publi-

cation on strip fbotings (MATAR and SALENGON,
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1979) . Besides being intrinsecally easy to
use, they allow the designing engineer to
evaluate, at the same time, the bearing ca-
pacities of a strip footing, and of a circu-
lar footing of identical width and under i-
dentical conditions, which of course, makes
interpolations easier for foundations of
"intermediate" forms.

2. THE STUDIED PROBLEM

Figure 1 gives the data of the problem : a
circular shallow foundation with a diameter
B, supposed to be perfectly rough (which
means that the soil and the foundation are
totally adhesive to one another), is axially
loaded by a force Q. The foundation acts upon
a soil layer, with a thickness h, whether fi-
nite of infinite this soil layer itself
rests with perfect friction on an assumed
rigid bedrock.

The strength criterion of the foundation soil
is ¢

-~ for a purely cohesive soil, with a cohesion
C :

denoting by o1, 0,, g3 the principal stres-~ -
ses (!) ordered following o, > 0, > o0,

gy - 03 » 2C, (2.1)

(this is TRESCA's criterion)

.
12

(!) The stress tensor is noted g. The con-
ventional sign which has been chosen, is the
same as for mechanics (tensile stresses posi-
tive) so as to make it easier to refer to the
formulae that one finds in basic theoretical
works about the theroy of limit equilibriums
in axial symmetry. This will have no

effect at all upon the practical use of the
results as shown in the charts, since bearing
capacity will, of course, be counted positi-
vely, in compression.



- for a soil exhibiting both cohesion and
friction, with a cohesion C and a friction
angle ¢ :

gy (1l +sin¢) - g3{l-sin¢) - 2Ccos $50
‘ (2.2)
The foundation soil is supposed to be non

homogeneous and to show a vertical cohesion
gradient g :

g = -dc/dz (2.3)

the Oz axis being upward vertical, and the

~friction angle supposed to be constant.

The downward vertical gradient will be suppo-
sed positive :

g =0 (2.4)
It will be seen afterwards that the results
are valid as long as the group (g+yY tg ¢)
is positive :

g+ vytge >0 (2.5)

is the unit weight supposed to be
constant, of the foundation soil,

where vy

C0 denotes the surface cohesion
g is the uniform lateral surface load.

IRERY!

Fig.l The problem:circular shallow foundation
on a non homogeneous soil layer.

3. BEARING CAPACITY OF SHALLOW FOUNDATIONS

3.1 DEFINITION

One knows that the theory of yield design ma-
kes it possible to define clearly the ultima—
te loagd ©of a shallow foundation,namely Q ,cha-
racterized by the average pressure then pre-
vailing under this same foundation,that one
being called the bearing capacity: Q' is the
highest load that can applied to the founda-
tion, for which compatibility between the
equations of a quasi-static equilibrium and
the strength capacity of the soil holds

(see e.g. MATAR and SALENGON, 1979) .

Thus, for a shallow foundation of the strip
footing type, where Q denotes the load per

unit of 1linear length, the bearing capacity
is ¢
= Qt .
9, . Q%/B (3.1)
where B is the foundation width.

For the circular shallow foundation described
hereabove, (Figure 1), the bearing capacity
is :

M

@ = o*/ (1B2/4) (3.2)

3.2 RESULTS FOR STRIP FOOTINGS

We recall here some of the results which have
been achieved by MATAR and SALENGON (1979).

The bearing capacity q,, written in (3.1) is
a function of all the parameters defining a
problem homologous to that of figure 1.

qu = f(col g, B, h, v, ¢, q) (3.3)
It has been demonstrated, through a mechani-
cal analysis of the problem, based upon
the theory of yield design, that the para-
meters which appear in (3.3) can be put to-
gether so that q, appears under the follo-
wing form :

q, = @+ £2(C, + atg ¢,

g +vytge, B, h, ¢) (3.4)

Dimensional analysis of (3.4) then leads to
the formulae :

4

q, = 4+ (C ,+atg¢)

g+ytge B
x Fo (co+qtg¢ Br g ¢)
if (Co+qtge) # O (3.5)

q =
if (C°+qtg¢) = 0

where Fc
of the indicated arguments.

Before determining the exact value of q_, by
calculating the values of F, and K, a lower
bound was obtained for the gearing capacity,
. by using the static approach of the theory
of yield design : applying the method of su-
perposition :

(3.7)

9 * (qu)superp.

(q)

= B
u’ superp. - a+ (Cy+ qtg¢) NS (g, ¢)

+%(v +gcotg ¢) BN ( %.}0)

when ¢ > O. (3.8)

(1) In order to avoid confusions and to make
comparisons easier, the same notations will

be used for the values and the magnitudes
related to a circular foundation, as for those
related to the strip footing of same charac-
teristics, plus the exponent "o".

i

A e TR

and K represent two scalar functions

I e



and

1

B
= ! - -
(qu)superp. q+C, Ny (h' o) + 798

when 0.

$ (3.9)

Formulae (3.8) and (3.9) yield the exact va-
lue for q,; when either (Co+qtg¢) =0, or
(g+ytgy) O. Using them requires the know-

ledge of the scalar functions : Né ( §,¢)

' B
and NY (H,¢) which have already been deter-

mined by MANDEL and SALENGCON (1969 and 1972).
Formula (3.9) was proved by MATAR and SALEN-
GON (1977) using the demonstration which had
been given by SALENGON (1974) for the case

of the foundation soil with an unlimited
thickness.

Comparing the formulae(3.6) on the one hand,
and (3.8) and (3.9) on the other hand, shows
that :

B _ 1 : B
K(grd) = 5 N (fr ¢) cotg ¢
for ¢ > 0O (3.10)
and
B =1

The numerical calculation of factors F, was
made through the theory of plane limit
equilibriums (MATAR (1978), MATAR and SA-
LENCON (1979)) ; thus the exact value of the
bearing capacity q, is known in any case.

Charts have been given to make practical cal-
culation of quy easy. These charts are based
on the use of factor uc defined by :

g+ytg¢ B
HC(W—%W B, G $)
9, - 9
= — (3.12)
(qu)superp. g

which characterizes the underestimation of
the bearing capacity due to the superposi-
tion method.

Thus, by using triple entry charts, establi-
shed for values of ¢ 0°, 4°, 10°, 20°,

25°, 30°, 35°, 40°, 45° making it possible

to read or to interpolate the values of the
factors Ng§, N; cotg ¢ and u, for ¢ > O,

or the values of the factors N& and g

for ¢ = O, one can calculate the value of

qy by applying the following simple formt}aez

9, =@+ u (C, + qatgy)
l g+yt
< = 1 . '
X {2 Co+qtg¢ BNchtg¢+NCJ
N0
if ¢ >0 (3.13)

§
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+ N!

if (3.14)
Comments about these results have already

been made in the various publications quoted
before.

3.3 RESULTS FOR CIRCULAR FOUNDATIONS

The same process as has just been described
can be followed for circular foundations.

The bearing capacity, which depends on the
parameters defining the problem of figure 1,
can be written :

o
u

q fo(Co’ g, B, h, Y, ¢, q) (3.15)

The parameters can be grouped exactly the
same way as in § 3.2, which results in the
following formula, homologous to (3.4) :

a; = Q+£5(C +atgd, g+ytge, B, h,¢)
(3.16)

Dimensional analysis yields:

fqg = q+ (C, +qtge)

J x Fo (co++thtg¢¢ B, Rr 9)

\if (Co + gtg¢) # 0 (3.17)
with

9y =a+ (9 +vtge) BXK® (L, ¢)

lif (C, +atge) =0 (3.18)
where Fg and K° are scalar functions of the

already indicated arguments.

Applying the static approach of yield design
proves that a lower bound for the bearing
capacity qg is obtained by using the super-
position method.

a > (q?l)superp. (3.19)
with

(qg)superp. =aqt (Co+qtg ¢) N‘-"o <E' #)

+%(y+gcotg¢) BN\'(o (gr ¢)

when ¢ > O (3.20)
and A

(qg)superp. R Ncl:o 'g' ©)

+ K° (%, 0) gB
when ¢ = O (3.21)



From the very definition of the superposition
method, formulae (3.20) and (3.21) yield the
exact value of g when either (Co +qtg¢) =0,
or (g+vytge¢) =0, Using these formulae, re-
quires the knowledge of the factors

NSTR 0 O (R, 0) ana k0 (B, o).

It follows that those factors can be easily
determined by calculating the bearing capa-
city qg of the circular foundation for each
of the following three simple cases

1) Foundation acting on a homogeneous weight-
less soil layer, without lateral surface
load (Figure 2).

2) Foundation acting on a cohesionless, homo-
geneous, weighted soil layer, without la-

teral surface load (Figure 3).

Foundation acting on a purely cohesive
soil layer, (¢ = 0), non homogeneous with
a cohesion linearly increasing with depth,
and without lateral surface load (Figure
4).

3)

The first two problems were studied by SALEN-
CON et al. (1973) through the theory of limit
equilibrium in axial symmetry, within the
frame of the HAAR-KARMAN hypothesis : the
solutions thus obtained (!) made it possible

to determine, for some values of ¢, the fac-
0 (B o (B
tors Nc (}“ ¢) and NY B’ %) .

The comparison between. (3.18) and (3.20)
shows that, as for the case of strip footings,
the following relation holds :

B

K° Rr ¢) . cotgs

B ) _ 10
(R #) = 2 19 ¢

when ¢ > O (3.22)

(!) These solutions are similar to those gi-
ven by most authors for this type of problem :
stress fields obtained by the characteristics
method in a zone spreading under the founda-
tion in the soil layer, and emerging at .the
free surface. To be quite riqorous,»and in
order to show that this solution really gi-
ves the value of Néo or N!©, it would be ne-
cessary to complete the szress field in the
entire soil layer, respecting the compatibi-
lity “equilibrium—bearing capacity”, and to
build a velocity field associated to this
stress field by using the mathematic rule

of normality (v.z. theory of yield design);
for reason of simplicity this question will
be left aside here and afterwards for the
determination of K° and FQ
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Fig.4 Determination of KO(B, 0).

As for the determination of k° (5,0),

appears in (3.18) and (3.21), it requires
the solution of the third problem stated
The solution of this problem leads
to the following new result :

which

o

K° (£, 0) = )

V B/h (3.23

1
6

and to the Superposition formula for ¢ =0

- 10 B
qu—q+CoNc (hlo) +€gB
when ¢ = 0O (3.24)
The use of the global formula (3.17), whiclh

takes into account all coupling effects be-
tween the groups of parameters, requires the
determination of the factor F2, as a function
of these arguments. The exact value of the

bearing capacity qO will then be obtained
through (3,.17).  u

In order not to make this paper too long,
shall leave aside any discussion related to
the method which has been used to determine
Fg, and to the extensive numerical calcula-
tions which have been required to find this
value.

In a few words:use is made again of the theoq



of limit equilibriums in axial symmetry, with
the HAAR-KARMAN hypothesis (which will be
justified a posteriori by the fact that it
makes it possible to construct a solution).
This leads to solving a hyperbolic problem
by using the characteristic method. Greater
difficulties are encountered than in the
case of a strip footing, which are due to
the presence of singularities on the axis

0z (r = 0). Moreover, the amount of calcula-
tions needed to determine the function FQ is
much greater than that needed to determine
Fc in the same value ranges for the various
arguments.

4. THE OBTAINED RESULTS

4.1 THE SHAPE FACTOR

A calculation programme has then been devised
to perform the calculation of Fg in any case.

As a matter of fact, this programme has been
designed so as to give results that are easy
to use practically for the determination of
g2, which is obviously linked to the way of
p?esenting the results.

Two remarks have helped to decide how to pre-
sent these results

1) Experience has proved that, in the case
of strip footings, triple entry charts are
very convenient ;

2) Foundations of the "strip footing" type and
circular foundations represent, in a way
the two extreme geometrical cases, between
which are found the foundations which are
being built in actual practice : it would
then be interesting to find a means of
presenting the results which would make
it possible to calculate the bearing ca-
pacity in both cases almost simultaneous-
ly. :

Thus, after having thought of a presentation
similar to the one that has been adopted for
strip footings, and which would have used
triple entry charts for reading or interpo-
lating the values of the coefficients Néo,
N§°cotg¢, and 19 (homologous to ug), it was
considered more advisable to present the re-
sults in axial symmetry, making use of the
shape factor v defined as :

14

(o}
© -
tytge 5 B = 2~ 4.
" Fqtge B Er ¥ a, -q 4

where qS and q,, represent the bearing capa-

cities under identical conditions of two foun-
dations, of equal width, one of the circular
type and the other of the strip footing type.

The calculation programme has been arranged
SO as to lead to a determination of v, which
That made it necessary to perform the "plane"
calculations and the calculations in axial
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symmetry at the same time ; it should be no-
ted. that this proved to be difficult because
the calculation procedures are not didentical
in both cases.

The results are then presented in quadruple
entry charts, established for ¢ = 0°, 4°,
10°, 20°, 25°, 30°, 35°, 40°, 45°

where

1 L
Nc’ NY cotg ¢, uc and v

can be read or interpolated.

(Figure 5)%

One can thus determine first the bearing ca-
pacity for the strip footing, by means of the
formulae (3.13) and (3.14) already written,
then the bearing capacity of the circular
foundation of equal width, by using the for-
mula (4.1), i.e.:

[ o _
A4 = 9+ v u (C + gtgs)

NG

q lg+tytgs BN' cotg ¢ + N'
2 Co-+q tg ¢ Y (\ 4§
if ¢ > O (4.2)
(oY 198,
9, = 4 + v ;{ Co [4,Co + ;i}
if ¢ =0 (4.3)
4.2 CHARTS ISO-v

The adopted presentation thus consists in ad-
ding to the charts which had been given before
for calculating the bearing capacity of strip
footings, new charts to determine the value

of the shape factor v.

This factor, like Moo depends on the three
arguments :

+ ytg ¢ B
Co +qtg Py B, H’ and $.
Therefore, as is shown on figure 5%charts iso-v
have been drawn for each of the values of
¢ listed hereabove these charts are consti-
tuted by lines of equal value to the factor v
and drawn according to the arguments

% Figure 5 is related to the charts included

in the preceding paper, by MATAR-~SALENCON,
figure 27 to figure 34.

8/nt /

d 1 iso-flg
— 7 K\
Mg —
Ny cotgp g+Ytg
Strip footing . Corqtg
[_qu = § +-moooon ] iso -~V |
circuler footing -

I 9y =4 +V{y, -q)

8/h

Fig.5 Scheme of the charts for consolidation

of the bearing capacity.



gt ytge B, B ¢
CO +gq tgé¢ ' h" 7

4.3 PROPERTIES QF TH!! SHAPE FACTOR v

i;LJLEL£~B b

1) ¢ and‘Co T gtq s ring given

B

B*

This means particularly that the shape
factor is at its maximum when the foun-
dation acts on a soil layer of unlimited
thickness.

v 1is a decreasing function of

2) ¢ and g being given

v 1is a decreasing function of

g + ytg¢ B
C, ¥ atge
3) When tyt B= 0, the factor v reduces
Co T atge !
to the ratio :
B - nO(B (B
v (O, h' $) = NC (hr ¢)/Nc(hr¢}

(4.4)

which can be termed as : "shape factor
for the cohesion in the superposition
formula". ‘

imi g+ vytgd 5,. .
Similarly, for Co T qtge B+t o, we get :

Vi 20 = OR8N (R) ()

(4.5)

"shape factor for gravity in the superposi-
tion formula".

In particular, for B/h = 0, i.e. for a soil
layer of unlimited thickness, we have
v(0, 0, ¢) =

o
NO(4) / N (o) (4.6)

and

vi=, 0, 6) + N‘j(w /N0 (@

The maximum value of the shape factor is
thus :
~ O
v{0,0,¢) = NJ(¢) / N_(9)
4) The shape factor for the cohesion in the
" case of a soil layer of unlimited thickness

which is the maximum value of v, is an in-

creasing function of ¢. Its variation is

drawn on figure 6. It is always superior

to 1.

(l) When ¢ = O, this formula still holds as :

N;o cotg ¢ / N; cotg ¢ N$ cotg ¢ / NY cotg ¢

1 1 2
¢/ 1 -3

The shape factor for gravity in the case
of soil layer of unlimited thickness is
also an increasing function of ¢ . Its
variation is drawn on figure 7.

The range of variations of v with respect&
its first two arguments increases with ¢.
k]

5) For a same%yalue of ¢ , according to the
values of the first two arguments, the
shape factor can be superior or inferior
to 1. :

In particular, for a foundation on a soil
layer of undefinite thickness, the shape
factor is always superior to 1 only when
¢ > 29°.

3

Fig.6 Variation of v(0,0,¢) vs.é.

Fig.7 Variation of v(=,0,¢) vs.¢.

6) It has been shown (see e.g.: MATAR and
SALENGON, 1979), that, in the case of
strip footings, there exists a value (E)
function of ¢ and of —g—:—f—ig—i—B below °

otatg¢
which the bearing capacity is independent
of B/h :

B B
if T < ()
h h g

then a, is independent of

B
P



Similarly, for a circular foundation, - Surface cohesion : C_ = 103 pa

) : o
there exists a value g) with the same - Downward vertical f g =2.5x 103 N/m3
property : o " cohesion gradient

o - Unit weight : = 1.6 x 10 N/m3
if 2 < (2) Y /
° B (B =40m, ¢ = 0°, 4°, 10° .
then qg is independent of B cases Al, A2, A3 ;
B= 4m, ¢ = 0°, 4°, 10° :
Moreover, the following property holds : ) cases A4, A5, A6).
for any given ¢, for the same value of
6.2.2 B
the argument %iﬁ¥é%&$$ B, we always have: = = =2Zf:%_ Site B
o - Soil with internal : ¢ = 0°,
(E) B (E)O friction angle then 4°, 10°
h’o h'g - Foundation width : B =40m

From which it results that the shape fac- - Lateral surface load a=0
tor v 1is independent of B/h as soon as - Layer thickness : h=o
B/h < (B/h)q. - Surface cohesion : Co =0
The representative curve of (B/h)oas a func- - Downward vertical t g = 0.6 x 103 N/m3
hesi i
tion of<%iiLE%JL B, is drawn on the charts e es»on gradient
) otqtge - Unit weight ! Y = 1.6 x 10* N/m?3
1so—uc and iso-v.
. 6.2.3_Site_C
5. CHARTS FOR THE PRACTICAL CALCULATION OF . . . . _ °
THE BEARING CAPACITY OF SHALLOW FOUNDA- T Soil with internal  : ¢ = 30
TTONS friction angle
- Foundation width 't B =4nm
¢ = 0 - Lateral surface load : q = 1.8 x 10* pa
o
4 ~ Layer thickness : h= o
]
10 - Surface cohesion : C, = 1.6 x 10" Pa
(-]
20 - Downward vertical : g=20
25° cohesion gradient
30° - Unit weight : Yy = 1.8 x 10* N/m3
35°
40° 6.3 TABLE OF RESULTS
45°

The reading of charts for the values of the
arguments indicated in columns 2 to 4, makes

it possible to determine the factors N;cotg¢,
L}
N&, Mg, and v
. EXAMPLES OF THE USE OF THE CHARTS
6.1 INTRODUCTION
'RET ) N N
To illustrate the use of the above-given CASES K B/h vt IRMICLT RN b v
charts, we intend to select some of the cases ‘
which have been studied in the reference Al o0° 4 100 0,5 6,2 1,48 0.77
(MATAR and SALENGON, 1979){ with ?he main a2 e N 145 12 3 s 0.76
objective of comparing strip footings to cir- .
cular footings. A3 10 4 213 2,46 14,5 1,07 0,78
A 0° 0,4 10 0,5 5,14 1,65 0,9
AS 4° 0,4 14,5 1,12 6,19 1,42 0,87
6.2 THE SITES WHICH WERE STUDIED ) A6 10° 0,4 21,3 ) 2,46 8,34 1,30 0,87
~6.2.1 Site A 8! o 0 © 0,5 5,14 ] 0,67
———————————— B2 4° 0 ® 1,12 6,19 1 0,70
- Soil with internal ’ 83 10° o - 2.46 8,34 , 0.7
friction angle :7 ¢ = 0° then 4°, 10° : i
. C X 30° 0 1,58 25,55 30,14 1,20 1,57
- Foundation width t B =40m, then 4m ‘_J
- Lateral surface load : q=20
= Layer thickness : h=10m" the bearing capacity being thus:
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CASES (qu)superp. qz in 10"Pa q, in 10* Pa
in 10* Pa

Al 3,12 3,56 4,62
A2 8,96 7,8 10,3
A3 27,38 22,9 29,3
Ab 0,76 1,13 1,26
AS. 1,43 1,77 2,03
A6 3,45 3,91 4,49
Bl 0,60 0,40 0,60
B2 3,85 2,70 3,85
B3 16,45 12,62 16,83
C 133 252 161

6.4 COMMENTS

These results demonstrate how easy it is to
use charts for the calculation of the bearing
capacity, whether for strip footings or for
circular footings.

If we compare one to another the cases Al, A2
and A3 ; A4, A5 and A6 ; Bl, B2 and B3, we

can notice the stabilizing influence of the
internal friction angle : as in the case of
strip footings, for a purely cohesive soil,

if an internal friction angle can be assumed,
even very small (a few degrees), the bearing
capacity of a circular footing is considerably
increased. This adds to the security of the
calculation.

In the case of a purely cohesive soil (site A,
cases Al and A4), it may be noticed that, for
both cases, the bearing capacity of a circular
footing is lower than that of a strip footing.
The wider the foundation, the more noticea-
ble this effect, because of the sense of varia-
tion of v. It is also linked to the presence
of the cohesion gradient and to-.the limited
thickness of the soil layer : upon a purely
cohesive, homogeneous and unlimited soil,

the bearing capacity of a circular footing

is superior to that of a strip footing

(v 1.15).

In the case of a purely cohesive soil, with
zero cohesion at the surface, (site B, case 'Bl)
which can be assumed as a model for some ma-
rine soils, we are now able to calculate the
bearing capacity qg for a circular footing.

If there is no surface load, this capacity is
in the ratio v = 2/3, with that of a strip
footing.

It can be instructive to compare the results

that can be obtained with the charts given in
chapter 5, for non-standard cases which can
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be found practically, with the bearing capa-
city evaluations, which could be obtained by
means of empiric rules.

These rules are based on the classical results
available in the case of plane problems, that
is for strip footings ; they refer to the bea-
ring capacity factors determined in the case
of a homogeneous layer : as a matter of fact,
it is an application of the superposition me-
thod in the plane case, which introduces, in-~
stead of a cohesion increasing linearly with
depth, a constant cohesion. One will then take

. either the surface cohesion Cg, either an

"average" cohesion to be determined as it has
been explained in MATAR and SALENCON (1979).

We get :

with the surface cohesion :
= 4
(qu)o 0.625 x 10" Pa
with an average cohesion :
= 8.44 x 10* Pa

u
to be compaged with :
'qz = 3.56 x 10" Pa

- for site A (case A4) :

with the surface cohesion :
= [
(qu)o 0.51 x 10* Pa

with an average cohesion :

q, = 2.33 x 10* Pa
L.
to be compared with :
qg = 1.13 x 10* Pa
- for_site B_(case Bl) :

with the surface cohesion :

(qu)o =0
with an average cohesion :

&; = 4,36 x 10" Pa

to be compared to :

qﬁ = 0.40 x 10* Pa.
One should notice the underestimation intro-
duced by the first method,. which can even ma-

ke any building impossible and the unaccep-
table overestimation brought in by the latter.

As concerns the example of a soil with fric-
tion, which has been studied (¢ = 30°),it should
be noticed that the bearing capacity of the
circular footing is significantly more impor-
tant than that of the similar strip footing
(56.5 %).

This effect, which is evidenced here in the
case of a soil of unlimited thickness, ap-
pears as long as the thickness of the soil
layer remains sufficient, which means as



long as the presence of a rigid bedrock in-
fluences but little the cavacity of the strip
footing.

7. CONCLUSTION

This study aimed at providing engineers an
€asy way of calculating bearing capacity of
shallow foundations, particularly under con-
ditions of non-homogeneity which occurs in
practice and for which the presently avai-
lable methods often prove insufficient.

This aim has been reached with the calcula-
tion of the "shape factor", defined as the
ratio of the bearing capacities for two foun-
dations, one of them circular and the other
one of the "strip footing" type, of equal
width and under identical conditions.

The charts representing this factor have then
been drawn for the values of ¢ corresponding
to practical needs (0° < ¢ < 45°). By adding
these charts to the charts given pPreviously

by the same authors, for a strip footing, one
can immediately determine the bearing Capacity
of circular shallow foundations or of "strip
footing" foundations ; this is an answer,
whether direct or by interpolation, to the
needs of the engineers.

Similarly to the case of strip footings, where
a4 comparison had been given between the re--
sults of the theoretical calculations and the
results of experiments led on small-scale mo-~
it would also be interesting to study,
on a small-scale model, taking into account
the results evidenced by the theory, the va-
riation of the shape factor, not only in func-
tion of the parameters listed hereabove but
also in function of the actual shape of the
foundation: for example, square foundation,
“rectangular foundation, etc...

Finally, attention should be drawn to the

fact that the whole analysis has been led
assuming perfect adhesion at the interfaces
between the soil layer and the rigid base,

and between the foundation and the soil layer.
Of those two assumptions the latter is likely
to be valid in any case, whereas it appears
that the former may be, sometimes, question-
able, for instance due to the fact that a

thin layer of poorer quality might be encoun-
tered at the contact with the rigid base. It
is very difficult to give more precise ideas
about that topic because of the great number
of physical parameters that are likely to

play a role : the nature of the soil itself,
the thickness of the layer, and the level of
the applied stresses for instance.

Generally speaking, the strength criterion

at the interface between the soil layer and
the rigid base is somewhat between the two
extreme cases of perfect adhesion on the one
hand, and perfect smoothness on the other.
Let the bearing capacities in the latter case
be denoted qy and q3', it is clear that these
may be written :

.
- - g*tytge . B -
;- 9 AFo*'qt9¢B'h'¢ (q, =
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and
o _ = olg + Y tg ¢ B o _
where A and \° are scalar functions of the

indicated arguments : A and
A° < 1, '

The work done by MANDEL and SALENCON (1972)
makes it possible to determine 3 (0, B/h, ¢)
for various values of ¢ in the range 0O°,
40°. It appears that the reduction of the
bearing capacity in the case of a perfectly
smooth interface may be important, ang that
this effect increases with the values of
B/h and 4. asg a matter of fact, since the
assumption of a perfectly smooth interface
is a very pessimistic one, it appears that
the indications derived from the values of
2 (0, B/h, ¢) .are sufficient for practical
applications. What will be retained is that
the results of the charts should be used with
great care in the cases of high values of
B/h and ¢, which woulg correspond to very
high values for factors N, and N! cotg ¢
that are practically irrelevant. Y
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