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proving the defects in the structure.
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Bearing capacity of strip footings*

M. Matar, J. Salengon

ABSTRACT - —————

The paper is concerned with the bearing capacity of a strip-footing resting on a soil
layer of limited or unlimited thickaifs, the cohesion of which increases linearly with
depth. -

The bearing capacity is defined through the theory of yield-design. A linear formula is
given extending the superposition method in order to take the cohesion gradient into
account and yielding a conservative value for the bearing capacity.

A global analysis of the problem is then performed. It leads to the determination of the
exact value of the bearing capacity. This enables to appreciate how the value of the
bearing capacity is underestimated through the use of the superposition method.

Multi-entry charts are proposed which makes it possible to calculate the exact value
of the bearing capacity easily.

The interest of these results is attested by various examples of calculations of bearing
capacities. For instance let us mention that, for a soil with a cohesion gradient, methods
such that "taking only the surface cohesion into account" or "use of an average value of
the cohesion" may prove to be either too much conservative, up to the point of making
construction impossible, or on the contrary very risky and even dangerous.

* MATAR M., SALENGON J.(1979) = Capacité
portante des semelles filantes - Revue

frangaise de Géotechnique, Paris, n°9
pp.51-76.
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1. INTRODUCTION

Surface foundation designing is usually
based on two criteria :
settlement and stability.

~ The settlement criterion is used to ob-
tain the admissible load for the foun-
dation with the condition that a certain
settlement, absolute or differential,
does not exceed a value considered accep-
table for the good holding of the rele-
vant work. The load-settlement ratio,
required for the use of this sizing cal-
culation criterion, is obtained either
by calculations that for the most part
use a model having an isotropic linear
elastic behavior or by formulae brought
into relation with the field tests.

- As for the second criterion,
foundation "stability" that concerns
us here and the admissible load is limi-
ted for this latter to a fraction of
the bearing capacity. This concept of
bearing capacity is derived from an ana-
lysis of the foundation "at failure"
baged on the criterion's datum charac-
terizing the foundation's soil "strength".

it is the

In the following we will be more espeqial-
ly concerned with the bearing capacity
aspects as it relates to "strip-footing"
type foundations, axially loaded. However,
certain of the inferences used will be

of a more general nature and can be trans-
posed without any difficulty to other
types of foundations and to other types

of loads.

Various commonly used formulae enable the
bearing capacity of strip-footing to be
ascertained from those parameters that
characterize soil strength which are inte-
gral parts of the classic criteria of
COULOMB (C, ¢) or of TRESCA (C) for unli-
mited and homogeneous foundation soils (1).

Based upon this bearing capacity estimate,
the admissible load for a foundation is
limited by introducing a safety factor
which is to take the following aspects

into consideration (fig. 1). !

1. Modelizing, which is that which
verts the practical problem
" design a real foundation to ensure the
proper working of the relevant work"
into schematic problem wherein
" the foundation is assumed to be of the
strip-footing type, infinitely rigid, sub-~
jected to a deterministic uniaxial load

resting on an unlimited homogeneous soil
layes"

con-

(1} € and ¢ are used here as generic signs
fgr cohesion and friction angle respec-
tively without any specific signification.
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2. The fact the solution obtained from
the modelized problem is more or less li-
mited as it accounts for only one aspect
of soil behavior, i. e. strength.

3. The adaptatien of thig partiasl solu-~
tion from the modelized problem to the
question raised by the concrete practical
problem.

Let us note in passing that the second
point brings one back to a purely mecha-
nics problem to whith can be applied ri-
gorous arguments enabling one to give
exact values to the results obtained.
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soil yield crite-



The purpose of the work described here is
to advance the state of knowledge concer-
ning the above modelized problem, both

for the classic case of an unlimited homo-
geneous foundation soil and for the case

of a soil layer of limited thickness that
has cohesion that varies with depth. This
means that for this problem, results, of
which the significance in mechanics is more

exact than those actually possible when they

exist, are obtained. For soil mechanics
this depends on the theory of yield de-
sign (cf. e. g. SALENGON, 1978) and on the
new calculations made by MATAR (1978).

In addition, a comparison is made with the
laboratory results on scale model of
TOURNIER (1972) and of TOURNIER and MILOVIC

(1977) in an attempt to calibrate, vis~a-vise

this modelized problem, the partial charac-
ter of the obtained results, that is, the
significance, vis-a-vis this bearing capa-
city problem thusly calculated. The theory,
in fact, causes the bearing capacity to
appear as the "extreme" load for the foun-
dation and it is advisable to situate it,
by experimentation, in relation to the
loads that bring about the ruin of the
foundation. It is thereby possible to ap-~
preciate, among other factors, the impor-
tance of the form assumed for the yield
criterion for the soil, of the pre-failure
distorsions, etc.

The paper will deal only with the modeli-
zed problem and is as follows.

Chapter 2 is devoted to defining the con-
cept of bearing caPacity while showing
that the problem posed is a typical yield
design problem and by underscoring that
the traditionally used superposition me-
thod is a direct application thereof.

In chapter 3, the case of a fonndation on
a soil layer of limited thickness and
having a cohesion varying linearly with
depth is analyzed and it is further shown
that it is possible to apply the super-
position method to it yielding, by means
of previously known results, a non-trivial
lower bound approximation of the bearing
capacity.

Chapter 4 offers a global analysis of

the problem, leading to the use of new
computations that supply the value of the
bearing capacity taking the effects of
coupling between all the problem's parame-
ters into consideration.

Then 'in chapter 5 these results are given
~in multi-entry chart form so as to be
easily useable.

Chapter 6 gives various examples of their
use, revealing, under certain conditions,
the importance of those coupling effects
neglected by the ordinary formulae for
classic cases and by showing, for the
non-classic case of a soin layer of varying
cohesion, the drawbacks, and even dangers,
that might be entailed by the use of cer~

tain empirical rules which, moreover, are
frequently rather impractical.

In chapter 7, the comparison with the tes-

- ted scale models is considered.

For certain aspects of our discussion we
will be intentionally brief, notably
concerning the developed computing pro- -
grams and digital computations carried
out. Should the reader desire further
information he can, for the most part,
find this in MATAR (1978).

2. THE CONCEPT OF BEARING_CAPACITY

2.1. Classic formulae

As already mentioned, numercus authors
have proposed formulae to determine the
bearing capacity of superficial founda-
tions of the strip-footing type resting
on an unlimited homogeneous soil. In the=-
se formulae, the soil is characterized

by its yield criterion (cf. SALENGON and
HALPHEN, 1979). With o and T designating
the normal and tangential components of
the stress vector T acting on the facet

-with and inward normal n (fig. 2), is

used :

for fully cohesive soils (short term
behavior), the TRESCA criterion

(2.1) [t] « ¢,V n
fog other soils, the COULOMB criterion :

(2.2) |t] < C+c tg ¢, ¥ n

(¢ # 0).
T
e g T
n
o

Fig.2 Conventional stress signs

The formulae proposed to determine the bea-

ring capacity of a strip-footing, with a
width B, an axially loaded force Q (per
unit running length) acting on a soil of
a unit weight Yy, with a uniform lateral
surface load g (fig. 3), are based on the
superposition method, the conservativeness
of which is acknowledged and which results
in the breaking down of the bearing capa-
City into three terms in the form of
(TERZAGHI, 1943) :

(2.3) (q,)

1
u) superp. = 7-YBNY(¢)+CNC(¢)+qu(¢)
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Fig.3 Strip-footing on homogeneous
unlimited soil

In this fashion, computation of the bea-
ring capacity requires, as results from
equation 2.3, that the scalar coefficients
Ny(¢), Nco(o) and Ng(¢), entering into the
surface,
be known. The values of the coefficients
Nc(¢) and Ng(p) are now practically the
same for all the authors, however, diffe-
rences continue as concerns Ny (¢).

2.2. Definition of bearing capacity

It is obvious that before starting aﬁ?‘dis-
cussion concerning the validity of a for-
mula or concerning the values of the coef-
ficients to be used, the very notion of
bearing capacity needs be defined. Further-
more, it will be seen that once this defi-
nition found and stated, the difficulties
relating to the interpretation of the so-
lutions and of the values proposed by the
various authors for Ny(¢) will disappear

by themselves.

BN

Recalling what has been said about this
subject and from equation 2.3, it is seen
that the bearing capacity of a foundation
depends, as far as soil behavior is con-
cerned, only on the parameters C and ¢
which characterize the soil's "strength".
This is an indicator of the logical proce-
dure followed when dealing with bearing
capacity. Based on the only knowledge of
the strength capacities of the soil ele-
ment (from the macroscopie viewpoint of
continuous medium mechanics), information
concerning the loads that the studied
superficial foundation can support will be
sought out. The considered Jload is
composed of the surface load g and the soil's
weight (unit weight) -stabilizing elements-
and the actual load applied to the fcun-
dation.

This procedure was followed by all the au-
" thors for the problems related to founda-
tion bearing capacity. It is the same type
of ressoning which, ever since COULOMB
(1773), has also been followed concerning
slope stability and ground thrust and pres-
sure. It is typical of yield design reaso-
ning.
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cohesion and surface locad terms, -

The soil's strength capacities at a point x
are characterized by a criterion, imposed
condition at the stress state g(x) at this
point so as to be able to be supported
there by the material element and which is
defined by a scalar function f of gix) (1).
(2.4)

0 (x) supported by the ground element

<=> f£(x, g(x))<0

From these data, the maximum load that the
work being studied may support is sought
arter. This is obviously done without it
being possible to state, unless supplemen-
tary information on the behavior is forth-
coming, that the work will actually support
this maximum load.

This leads to the definition of the bearing
capacity. In fact, by situating oneself
within the initial geometry of the problem
and assuming it to be invariable, it is clear
that in order that the foundatian_support

a load Q, there needs be a stress field G
which equilibrates the load made up of
gQ, Y, d) while the strength criterion be-
ing satisfied everywhere (soil and inter-
face). It turns out this copdition, needed
80 as to be capable of being supported by
the foundation, limits the Q forces to a
straight line segment (0, Q+) (fig. 4).

0 Q* Q

Fig.4 Forces likely to be supported
by the foundation within a
given geometry

Thus
F supported by the foundation (in
initial geometry)
(2.5) 3g : g equilibrates (Q, v, g} , and
f(x19(x))8oV x
Q (0, Q)

It is important to analyze the signifi-

. cance of this result.

- It is obviously necessary that the pro-
blem's geometry be given and invariable,
as the reasoning, from the point of
view of behavior, only refers to the
"strength characteristics", that is, to
the soil yield criterion.

- From these data, the stated result which
is based on the convexity of the criteria
(2.1) and (2.2) is the strongest that can
be obtained.

() Tensors are underlined in a number equal
to their order. We will often interchange
the field ¢ and its local value g(x), but

this will cause no ambiguity.



As a result, it is quite natural to define found by adding at each point of the medium
the bearing capacity of the foundation by the stresses produced by g., gc and Oqo
the average value : is statically admissible and everywheré
+ satifies the strength criterion for a weigh-
(2.6) q, = Q /B o ted cohesive soil, with a surface load
’ (fig. 3).

Consequently, by using the above theorem
2.3. Static approach ; superposition method for the problem given in figure 3, we ob-

tain

It immediately follows from this definition 1

of the bearing capacity that the bringing (2.7) qua(qu)suPerp,ziYBNY(¢)+CNC(¢)+qu(¢)

forth of a stress field g, statically ad-

missible and satisfying everywhere the i

soil strength criterion, results in a con- which shows the conservative character of

servative figure (by lower bound approxi- the superposition method.

mation) for the bearing capacity (this is

the static theorem of yield design). . )

2.4. Kinematic method - Complete solutions
by vield design

For instance, taking the three load cases
illustrated in figure 5 and assuming that

the following stress fields are available : It is further demonstrated that the upper

bounds of g, can be easily approximated by
kinematics. This result is obtained by
dualizing mathematically the equilibrium
equations and this by using the principle
of virtual work and the support function
derived from the strength criterion,

a) ¢, statically admissible and satisfying
the strength criterion of the material
element everywhere for the weighted,
non-cohesive and unloaded medium (fig. 5a)
corresponding to the average pressure
under the foundation : l/2yBNY(¢).

) o S , We thus have two approaches which belong

b) g., statically admissible and satisfying to the general formulation of the approaches
the strength criterion of the ma;erial from the inside and outside in yield de-
element everywhere for the cohesive, sign. While these are analogous to the well
weightless and unloaded medium (fig. 3b), - known limit analysis theorems they are in
corresponding to the average pressure nowise related to the theory of Plasticity.
under the foundation : CNg(¢). An example of their detailed application

to the analysis of the stability of earth

works is to be found in COUSSY and

SALENGON (1979).

c) Oq, statically admissible and satisfying
the strength criterion of the material
element everywhere for the loaded, weight-
less and non-cohesive medium (fig. 5c),
corresponding to the average pressure
under the foundation : qu(¢).

The combinaticn of these two approaches,
through the construction of complete solu-
tions ~-from the yield design viewpoint-,
make known the exact value of qy.

2.5. Consequences

Y Once this precise definition of the concept
® ont of bearing capacity, corresponding exactly
non cohesive weightless non cohesive ‘ A : . N
antoaded unloaded weightless to the guiding lines followed by the authors
weighted soil cohesive soil loaded soil working in this field, is established the
in friction in friction in friction 3 1 101 -
contact (sur- contact  {cohe- contact (sur- interpretation of the various @ethods pro
face term) sion term) face load term) posed for the computation of the coefficients'’
%héwm(w gLC%<N %.wQW) values, that were given in equation 2.3,
presents no difficulty. Determining to which
(5a) (5b) (5¢c) type of approach each of the reasonings

used is related will suffice. A detailed
analysis of this matter is given 1in
MATAR (1978) from which is derived that

Fig.5 Superposition method

By means of the MOHR representation for No($) and N, (4) are given by the equations
instance, it is possible to immediately issuing from the PRANDTL solution as com~
verify that the stress field (1) : pleted by SHIELD (1954) ::

g =gy *gectagq

tgs

N (o) mcotgsle ~°.tg2(F+§)-1]

2.
(1) This result is based on the fact that (2-8) Tt
the domain of the stress states that can Ng(¢)=e
be supported by the COULOMB criterion is
a convex cone.

g¢.tgz(%+%)
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As for N_(¢), its value is obtained from
the LUNDGREN and MORTENSEN solution (1953)
as completed by DAVIS and BOOKER (1971).

2.6. Remarks

We have seen that the only possible defi-
nition for a bearing capacity qu using an
approach based solely on a knowledge of

the foundation's soil strength capacities
is that of an extreme load as used in yield
design : g, is the heaviest load likely

to be supported by the foundation under
given conditions. This is clearly a partial
answer to the given (modelized) problem,

if for no other resson than that nothing
lets us state that any load inferior to

qy will always be actually supported by

the foundation, independantly of such
factors as loading path, etc. Moreover,

the level of distortions before failure and
their possible future role are not without
importance. This is what the comparison

with the model tests, discussed in chapter 7,

will attempt to evaluate.

3. BEARING CAPACITY OF A STRIP-FObT{NQ ON

NON-HOMOGENEOUS SOTL - SUPERPUSITION METHOD

3.1. Previously studied cases of non-

homogeneity

The most classic foundation studied is ob-
viously that of a strip-footing on unlimi-
ted homogeneous soil. The relatively small
number of parameters needed to describe

the problem in terms of bearing capacity
effectively diminishes the volume of calcu-
lations to be made when using the superpogi=-
tion methed and enables are to easily pre-
sent the results : tables or curves for
-N‘Y(¢)I Nc{(¢) and Nq(¢)}

The case of a strip-footing on homogeneous
soil of limited thickness resting on a ri-
gid base (fig. 6) has been studied too by
MANDEL and SALENGON (1969 and 1972). These
authors used the superposition method ba- *
sed on the general theory § 2.2. and by
constructing complete solutions for the
three basic problems that correspond in
structure to those in figure 5.

Fig.6 Strip-footing on homogeneous soil
of limited thickness

The dimensional analysis shows that the
bearing capacities for the three basic
problems are, using the notation of
figure 6, expressed as :

% YBN'

#

B
a) du Y ('H r $)

(3.1)¢ b)) qy =CN'c @, ¢)

) gy = QN'g GE ¢

Thereby, the bearing capacity for the ge-
neral problem as per figure 6 is underes-
timated, using the superposition method
in the followingq

(3.2) quz(ay) =

superp.
1 B B v B
5 YBN' (f «9)+CN'(F so )H+QN'g(E 4 ¢)

The authors studied various cases of inter-
face friction between the s0il layer and itz
rigid base. As for the foundation, it is
assumed to be perfectly rough. In that
which follows, solely will be considered
the case where there is perfect adhesion
between the soil layer and the rigid base.

The values of the coefficients of eguation
3.2 are given in the references noted:
They are graphically represented in fi-
gures 10 and 11l. Between N'_(B/h, ¢) and
N',(B/h, ¢) the relation is :

N'g(B/h, ¢) = N'c(B/h, ¢) tg¢ + 1.

Note that for each one of the basic pro-
blems, a critical value for the ratio

B/h exists, that is, (B/h)Y and

(B/h) e = (B/h)q, functions of ¢ such that :

2@y <= NE L, 6 = N
(3.3) B
1B By s> Nlelg + @) = Nelo)
h¥ *h’€
N'g@E . 6) = Ng(o)

This means that when the soil laver ig
sufficiently thick, the rigid base's in-
fluence is no longer significant on thg
bearing capacity of the foundation vanishes.

Yet another type of non-homogeneity has
been studied an unlimited foundatlon
soil the cohesion of which linearly in-
creases with depth. This type of non—homo—
geneity is encountered in current practice
where ¢<25°, and notably where ¢=0° or
nearing 0°, such as the sea soils that
were used as examples by DUNCAN and
BUCHIGNANI (1973) and LE TIRANT (1976),
(fig. 7).
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Fig.7 Examples of sea soil shear strength

The analysis of this problem rendered it
possible to handle it by means of the
superposition method and a global calcu-
lation taking all the coupling effects

into account (SALENCON, FLORENTIN and
GABRIEL, 1976). As with the precedin¥®=ones,
these are particular instances of the
results of this study and the details

are not needed here.

isstly, MATAR and SALENCON (1977) recently
published results concerning a purely
cohesive soil with cohesion linearly va-
rying with depth.

The works mentioned above are those di-
rectly related, through the method used,
to the present study. Other authors have
worked on these problems, attacking them
through different methods. Those interested
may refer to OBIN (1972) and to GIROUD,
TRAN-VO-NHIEM and OBIN (1973) for the
bibligraphical references ; the inter-
pretation of the solutions should be done
in reference to the theorems §§ 2.3 and
2.4.

3.2, The problem studied (problem P)

Let us now consider the bearing capacity
of a strip-footing, width B, axially loa-
ded, resting on a soil layer of limited
thickness h, unit weight Y, constant fric-
tion angle Y and with a cohesion that
linearly increases with depth according

to the law :

(3.4) C(z) = Co -~ gz

Co is surface cohesion and g = - dC/dz (>0)
i$ the cohesion gradient with depth ; Cg
and g are constants.

The soil layer rests on a rigid base with
a lateral surface load g (fig. 8).

Fig.8 Problem P ; weighted soil,
variable cohesion

It is assumed in the following that we

are dealing with a rough strip-footing and
a rough rigid base. By rough footing
(resp. base) we mean that the adhesion
between footing and soil is total, i. e.
any failure occuring occurs in the soil
and not in the soil-footing (resp. soil-base)
interface.

The problem thus stated (1), the bearing
capacity of the footing is a priori a
function of the parameters Co, g, B, h, Y,
¢, q ¢

(3.5) Qu = £ {Cery ) B, h, Y, #, ‘4)

3,3, Soil in friction contact, use of su-
perposition method

Through a mechanics analysis of the pro-
blem, it will be seen that for the case
of soil in friction contact (¢#0) a lower
bound for the bearing capacity can be ob-
tained from equation 3.2, i. e. by using
the superposition method without necessi-
tating new calculations.

1. It i§ evident that this problem contains,
as particular instances all those pre-
viously mentioned.



The following theorem is demonstrated
vp-pl equivalence”

For a soil with ¢#0, the bearing capacity

q, for problem P is yielded by the equation :

(3.6) gy = qul + g

of the bearing capacity g 1 corresponding
to problem P1L geometricalfy identical to
the preceding one defined as homogeneous
soil of same friction angle ¢, unit weight
YI =¥ + g cotg ¢ and cohesion

€l = ¢4 + g tg 9.

This property is analogous to those stated
‘by SALENCON, BARBIER and BEAUBAT (1973) and
by SALENCON FLORENTIN and GABRIEL (1976).

Figure 9 details the correspondence bet-
ween the two problems.

Thus, the lower bound for the capacity ob-
tained through by applying the superpo-
sition method to problem Pl follows in

an abvious manner by means of equation

3.2 :

AL
(3.7) guz(qul) superp.

+.q = 3(v+ g cotg ¢) BN'Yéé' *

+Coratg ) N B, 0 +gq

= (qu)superp-

B

‘ ;

! lYEYogcom(P 1

h C=Cy*ata @

¢ +0
A

Problem Pl
Weighted soil, modi-
fied unit weight, mo-
dified constant cohe-
sion

Problem P
Weighted soil
variable cchesion

Figure 9

Problems Pl and P ; correspondance between

stress fields : ol = 0 - (gz cotgd + q) 1;

correspondance between bearing capac1tles :
qul ®= dy - q

It is there by seen that a simple mechanics
analysis of the given problem yields, wi-
thout requiring new calculations, a non-
trivial lower bound for the bearing ca-
pacity, taking into account the cohesion
gradient's effect in the case of a frictio-
nal soil layer friction.

3.4. Purely cohesive soil

Due to the presence in the above P-P1l
correspondance eguatiohs ©f the factor
cotg ¢, it i8 evident that the above
method cannot be directly used with a pu-
rely cohesive soil. A specific analysis
must thus be made.

The following two properties are demons-
trated (cf. MATAR and SALENCON, 1977)

a) If Co = 0 the footing's bearing capa-
city is :

1 B
(3.8) q; = 7 9B+ g~ v Y :

b) For the general case of a purely co-
hesive soil (¢=0) the superposition
of the bearing capacity corresponding
to a constant cohesion equal to Cy and
to the surface load ¢ (1) and of that
due to the cohesion grauient viel-s a
conservative value for the bearing
capacity in problem P :

ol 1v]

(3.9)  qus(qy) =cN' &, 0)+% gBeg

superp.

Equation 3.9 thus yields a lower bound

for the footing's bearing capacity where
¢=0, taking into account the cohesion gra-
dient's effect -; this is a superposition
formula. In addition, this formulea is
homclogous with equation 3.7 in that the
continuity between these two equations a
$+0 corresponds to the property

N' (B/h, ¢) ~ ¢/2 when ¢-0, YB/h.

3.5. Remarks

The "P~Pl equivalence" theorem stated in
§ 3.3 shows for a material frictional:

an equivalence between the cohesion C and
the surface locad g effects this is the
so~called "corresponding states" theocrenm;

and an equivalence between the vertical
cohesion gradient and the unit weight ef-
fects : from the point of view of bearing
capacity, the vertical cohesion gradient
is equivalent to an additional unit weight
equal to g cotg ¢. In the next chapter we
will make use of this but in the so to say
"opposite direction”.

(1 For ¢=0, the surface locad g has a pure-
ly additive effect.



Here these two equivalence brought about a
grouping of terms from which it was possi-
ble to make use of equation 3.2. Figures 10
and 11 indicate the values of the coeffi-
cients N', (B/h, ¢) and N'<(B/h, ¢) to be
used in 3.7 as well N'-(B/h, 0) for 3.9.
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#/M
30\__.—_” =o° o =4' 100

=20

P
20| /
9 =30°

%
/
[/ L e

Fig.l1l Values of N'C(E, )

As was stated, the superposition method
yields, when applied to problem Pl, the
lower bound (eq. 3.7). It may be tempting,
in accordance with the general theorem in

§ 2.3, to directly apply this method to
problem P. However, as MATAR (1978) explai-
ned, such an application would necessitate
new computations which would be in fact
identical to those made in the following
chapter for the global calculation of the
bearing capacity for this very same problem
P. This application of the superposition
method to problem P would thus lack any
real interest.

10* N&(.E.V)loi
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4. BEARING CAPACITY OF A STRIP-FOOTING ON
NON-HOMOGENEOUS SOTL - GLOBAL CALCULATION

4.1. Position of the problem, P-P2 equivalence

For the following analysis, it is conve-
nient to take-up in the opposite direction
the ressoning that was developed in

§ 3.3 concerning the "P-Pl equivalence".
Thusly, the following theorem is demonstra-
ted :

“p~p2 equivalence"

The determination of the bearing capacity
q,2 for problem P _brings us through the
equation :

(4.1) qu = qu? + g

to the determination of the bearing capa-
city gy for problem PZ geometrically igen-
tical to the preceding one and defined as :
weightless soil, friction angle ¢, variable
cohesion C2(z) = (Co+g tg 6) - -{g+ Ytci)z,
without surface load.

Figure 12 details the correspondance
between these two problems while table 1
summarizes the positions aof P, Pl and P2,

x
dn :Co+qigy
(9+7tgp)z

————

Problem P2

weightless soil
modified variable
cohesion

rd

q

Qfciigiggerrsies ijieibid

[TTIRSTRRVTIRRNTY HHUr

.

i

17
C(z):C,-92

T

Problem P

weighted soil,
riable cohesion

va-

Figure 12

Problems P2 and P : correspondance between
stress fields : g2 = 0 +(yz - q) 1 ; cor-
respondance between bearing capacities

Aqu2=qu'CI-



Table I

Position of problems P, Pl ang p2

PROBLENM >

(] 0.

p! p?

figure 9 and12

12

unit
weight

cohesion
gradient

4 g+ Ytg o

surface
c¢ohesion

€, tactxd

lateral
surface load

bearing
capacity

! . -
9, "9, ~q

. stress
field

g = g-(smeotgo+eqdl|glng e (yz - )L

Note that in this expression ¢ is without
restriction. Indeed the demonstration re-
mains valid for ¢ 0. Thus it is possible
to group together under the same formalism,
the cases of purely cohesive soil and of
frictional soil (1).

From this equivalence theorem is immedia-
tely derived that the bearing capacity qy
depends on the parameters defining problem
P, indicated in equation 3.5, only through
the mediation of the groups
P2, In more precise terms, considering
eqguation 4.1 and with the notation of 3.5
we ebtain i

qu=q+f (Co+qtg¢ ’ g+ Yt9¢,B,h,O,¢ IO)

As a result of the dimensional analysis,
it is seen that the bearing capacity qy

for problem P necessarily takes the fol-
lowing forms

- g+Ytgo B
qu=q+ (Cotqtgd) FC(ESIEEEbB’ o $)
(4.2) when (Co+gtgd) # 0
,=q+ (9+7t99) B.K(E , 0)
(4.3

when (Ch+qtgd) 0

defining problem

where Fo and K are scalar functions of the
indicated arguments.

These equations have an obvious interest -
reducing the number of parameters on which
qy really depends, first by mechanics
analysis then by dimensional analysis ob-
viously considerably reducing the volume
of calculations which are needed for the
complete determination of gq,. It is also

Seen that the presentation will be greatly
facilitated.

R R T A S

4:2. Determining the funection K{Bsh, &)

, In equation 4.3 corresponding to the case
where (C, + g tg ¢) 0 the determination
of the function KﬁB/h, ¢) reduces to tne
calculation of gu4 for problem P2 in the
case where the surface cohesion C2(z)
is zero C2(0) 0.

Let ug {irst assume ¢ # 0 ; qu2 is then
e%ual to qul For the homologous problem

PL (table I), i. e. where the surface cohe-
sion is zero. This problem is thus one of
the three basic problems exgressed in § 3.1
for the strip-footing on a homogeneous soil
layer. It is in fact, problem "a" and by
referring to equation 3.1 we obtain

(1 This proves that it is the factor N' =N"'
cotg ¢ which is significative and not N'
in itself (the same for N'c=(N'q-l) cotg ¢
and not N'q-l). This will be apparent from
the multi-éntry charts for practica compu-~
tations given in chapter 5.

y

, ' s
(Y + gcotg ¢) B N Y (h’

du 5

¢)

W



From this is derived :

B B
K= ¢+ ¢) = 5= N', (&, ¢) cotg ¢
(4.4) h 27y '‘h A
when ¢ # 0

When ¢ # 0, the problem P2 to investigate is
that of the strip-footing on a purely coche-
sive soil of limited thickness, surface
cohesion is zero and cohesion linearly
increasing with depth in accordance with the
gradient g2 = g + Ytg¢. This is that problem
which was mentioned in § 3.4 and the bearing
capacity there is given by eqguation 3.8,
thus :

1
qu = %—(9 + vtgd) B = 5y gB

From this is derived :

(4.5) x(% , 0) ={%

The function K(B/h, ¢) is thereby determined
for 930 without needing to make any new
calculation.

4.3. Determining the function

g + Ytgd
Cot atgd

Fe ( B, B/h, ¢)

To determine the function Fo a complete so-
lution for the problem P2
re {(Co, + gtg ) ¥ 0. To this end, the theory
of plane limit equilibrium for non-homogene=-
ous soils (cf. e. g. OLSZAK, RYCHLEWSKI

and URBANOWSKI, 1962 or SALENGON, 1974 for
the equations relevant to this problem)

is used.

We limit ourselves here to giving only some
brief indications concerning the process
followed and the shape of the characteristic
line networks obtained. Details are available
in MATAR, 1978, and notably concerning the
extensions of the velocity and stress fields.

Construction of the solution for a limited
thickness soil layer is derived from the
solution of the semi-infinite soil case

(h = ©) in a fashion similar to the one des-
cribed by MANDEL and SALENGON (1969 and 1972)
and by MATAR and SALENCON (1977). This was
done with the hypothesis (g + Ytg ¢) > 0.

. Unlimited soil (h = 0)

Figure 13 shows a network of characteris-
tics such as constructed by BERTHET, HAYOT
and SALENGON (1972) for a purely cohesive
soil (¢ = 0) and by SALENGON, BARBIER and
BAUBAT (1973) for a frictional soil (¢ # 0).

This network is made from :

1. a RANKINE field in non-homogeneous
medium OAB

2. a PRANDTL fan in non-homogeneous medium,
center at O, aperture 31m/4+¢/2 : OBC.

3. Network construction is then continued
by the (o) characteristics issued from
OC and the (g) characteristics tangent
to 0'0 as a consequence of the founda-
tion being perfectly rough. The net-
work of characteristics has to be syme-
tric- with respect to the foundation axis
and is thereby limited by the characte-
ristic SCBA (a) and ST (8) which inter-
sect on the axis of symetry at a point
S in such a manner that the main direc-
tion of the stresses corresponding to
the maximum compression be vertical.
This condition determines the length
of OA, and of the other network dimen-
sions, which were a priori onknown.

Thus constructed (fig. 13) the network

descends into the soil to a depth hg,
proportional to B and depending on

g * 132&— B and ¢.

Co + qtygg

is constructed, whe-

Figure 13

Fig.13 Foundation on soil of unlimited

thickness ; network of characteristics

Figure 14 represente h,/B as a function of
these variables

ho/B

3 1 0 07 0 10¢
Fig.14 Values of hg/B

If (9 + Ytgd) = 0, then B/hg = B/hs cor-
responding to a weightless cohesive homo-
geneous soil ; if (Cy + g tg ©) = 0, then
B/hgy = (B/h)Y, cf. equation 3.3. Thus,

hs/B is a decreasing function of

(g + Ytg ¢0)B/(Co + gtg 9) at a given $.
This corresponds to the fact that at a gi-
ven surface cohesion Co and surface load q,
the soil is disturbed so much the shallower



as it becomes more rapidly more resistant,
that is, as the gradient g2=(g + Y tq ¢)
is larger.

From the solution so constructed, ‘it is
possible to determine :

+ Ytg ¢
fo @ wgEgs B O ¥

S50il layer hzhg thick

For a soil layer of thickness limited to
hyhgy, the construction of the network of
characteristics of figure 13 can be used wi-
thout any change (fig. 15).

-

1nCqvaige
“(0 s1ge)2

-4

e e -

Fig.15 Foundation on a layer hzhg, thick

In conclusion

: g + ytg ¢ . . h
with B, Co v at3 % B and ¢ given, 15‘5& o

the rigid base does not influence the bea-
ring capacity of the strip-footing.

In other words :

g + ytg ¢ B =
Fe (& B, £+ ¢

ot a tgp

- g + ytg ¢
(4.6) 1" Foles v g eg s O ¥
B

. BB
if O$Esho

Soil layer hgh, thick.

It is obvious that the network of charac-
teristics of figure 15 cannot be used for

a soil layer having a thickness h less

than hg. In this case, the construction

of the. solution, symetric to the founda~
tion axis, is made as shown on figure 16. !

Ffig.16 Foundation on a layer hghgthick )
network of characteristics

1. OAB is a RANKINE field in non~homoge-
© neous medium

2. OBC ts a PRANDTL fan in non-homogeneous
medium, center at O aperture 3n/4 + /2.

3. Construction of the network of charac-
teristics beyond. these fields is con-
_tinued from OC and CI based on the
conditions at the limits.
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The network is limited by the characteris-
tics SR and ST which intersect on the

- foundation axis as in the case of an unli-

mited soil and it is completed by symetry.

It remains to compute, for the various
solutions, the bearing capacity qy2. rlhis
is the integral of the vertical stress
(corresponding to the constructed solution)
beneath the foundation divided by its
width :

i o
(4.7) qu? =§-f_B o,, (X, O dx)

Thus, to calculate qS it suffices to inte-
grate the known stresses on STO and to
take the vertical component of it which
represents the value q_,2.B/2.

The iso-B/h curves on figures 17, 18 and
19 represent the values of :

g + Ytg ¢ B - —Gu - 4g

-8 FoleoFgeaes 5 ® "Covaws

Co + 9 tg ¢ _.

(see the figures next page).

4.4. Comparison with the superposition metnod

Equations 2.4 and 4.3 in conjunction with
the knowledge of the functions K(B/h, ¢)

g+ytgo \
and FC(CO+qtg¢ B,B/h, ¢) obtained from
equations 4.4 and 4.5 and from curves such
as those in figures 17 to 19 for the various
values of ¢, enable one to calculate, for
problem P, the exact value of the bearing

capacity, i. e. q,.

This exact value, result of the global cal-
culation, accounts for the coupling effects

possible between the various parameters defi-

ning the problem. The mechanics and dimen-
sional analyses made in § 4.1 by parameter
grouping and the non-dimensional factors
that they bring forth, clearly indicate
which coupling effects are likely to occur.

From equation 4.2, it is seen that the
coupling effect on (gy-g9) is to be sought
out between (Cno+tgtgd) and (g+Ytgd)B.

Having the exact value of qy, it is impor=-
tant to compare it with its lower bound
approximation obtained by the superposition
method which does not take the above ef-
fects into account : equations 3.7 and 3.9,
Note that insofar as equation 4.2 has as a
particular instance the classic case of
strip-footing on unlimited soil, the propo-
sed comparison enables the conservative
character of the superposition method, as
used in current practice, to be calculated.
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Values of Fe

To make this comparison, we introduce the
(9+Ytg¢

coefficient u., function of B, '
Cotg tgd
B/h, ¢) defined as
(4.9) Qu — 4
. ., =
¢ (qu)superp - q

This coefficient is analogous to the one
used by LUNDGREN and MORTENSEN (1953).
It represents, when g=0 , the ratio bet-

ween qu and (qU)superp'

When q # 0, the introduction of this coef-
ficient is justified, in addition to its
suitability for representing the results,
by the fact that when making foundation
design calculations the safety factor
bears not on q, but rather on (gq,-q)

(cf. LEONARDS, 1968, etc.).

i L
10° 10° 104

Bh<0,63
10 . N ERAL
01} 1 10 10° 10? W0 Co*datgP
Figure 19
¢ = 0°, 10°, 30°

By referring to equations 3.7, 3.9 and 4.2,
we obtain for g

.
g + Ytgd B
“C(EO ¥ tgs o' B ®
tgo B
S F (g_i_l_____ B, =, 6)
(4.10) =CCO+q tg¢ h
B , .B
: go++Y<§gtg¢ BN'y (fv ¢)cotge + Nigfy, ¢)

“~

when (C, + q tg ¢) # 0

by taking N'(B/h, ¢) cotgd¢ = 1/2 when ¢ = 0.



Thus
+ Ytgo B
(4.11) pexl VY {%;—;—aﬂgga B, 5 30

On the other hand, an upper bound can be
_§btained for u, by noting that qu2 is neces-
sarily less, in accordance with the static
theorem of § 2.3, than the bearing capaci-
ty of a footing on a homogeneous layer

with a cohesion Co+gtgd+(g+Ytgd¥h which,

for problem P2, is the maximum cohesion in
the layer. Whence :

g+ytgé B
lsuc(m B: h' @)
LatYtgo (E)—l
< C,tatgy ~ " 'h
-~
1 g+ytge N'y(B/h, ¢) +
2 Cotqtge N'c (B/h, ¢) cotgé 1

Let us now indicate the properties of yuc,.
demonstrated in MATAR (1978) :

(4.12) pc(0, 2, ) = 1 VY 2¥e30
B B
(4.13) (=, B, o) = 1 Y 2Y420
9+Ytgo o ayoy ¥ 9FYEQe oy
(4.14) UC(W B, . $) =1 msu @30

As indicated in the preceding § and in

figure 14, (B/h)g is an increasing function
£ g+vtgo B
Co+qtg¢ :
B B B
GH)C < (300 < (FAY

Thus, with equation 3.3, it is i i
. mm
seen that : ‘ cdiately

B
If Q) < @
(4.15) N .
Then uc is independent of ¢, V ¢>0.

On the other hand, u, depends on B/h, ¥ ¢320
as soon as B/h is greater than (B/h)..
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These properties, used to plot the multi-
entry charts in chapter 5, are sunmarized
in fiqure 20.

(B/h)
- Pl -y 1 ) 151
HEN S
1
1
'
My | U, dépendant
indé= de B/h
pendant
de B/h | l -I:F.
1
1
H
]
i
1
1
]
g +Ytgd ! !
3 -

L.T_J

Properties of g

C, *atgd

Fig.20

In figure 21, 22 and 23, u. is represented,
as a function of its first argument, by
"iso-B/h" curves with ¢ constant.In figure.24
to 26, it is represented as a function of its
first argument by "iso-9" curves with 8/h
constant when the values of B/h (1) are small.
The obtained curves call for the following

remarks :

for figure 21 to 23, it is seen that

-~ the maximum value Ucmax of ., correspon-
ding to the curve peaks, is a decreasing
function of B/h

-~ the bearing capacity underestimation due
to the superposition method may be large,
especially when the value of B/h is small.

For figures 24 to 26

- the maximum value ucmax of Lo corres-
ponding to the curve peaks, 1s a decrea-
sing function of ¢

- the bearing capacity underestimation due
to the superposition method may be large,
especially when the value of ¢ is small.

For a purely cohesive soil (¢=0), e rea-
ches a maximum value equal to 1.72, when
gB/Cy = 22.

It follows from these results that bearing
capacity underestimation resulting from
the superposition method may be large for
values of B/h and ¢ that are zmali and
that 1t reaches up to 40 % of the exact
value of qy.

(1) The case B/h=0, corresponding to unlimi-
ted soil, has been given by SALENCON,
FLORENTIN and GABRIEL (1976).

i
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5. MULTI-ENTRY CHAR'S ECR THE COMPUTATION OF THE
BEARING CAPACITY OF STRIP-FOOTINGS

5.1.

Presentation

Due to the high numerical values attained
by the bearing capacity dyur it has to be
represented on graphs whose Fo. axis is ex~-
pressed on & logarithmic scale such as
given in figures 17 to 19. This type of
representation is rather clumsy in actual
Practice,

As the use of the superposition method is
usually rather simple, we propose to base
the computation of the bearing capacity on
this method by making use of correction
factors obtained from the definition of P
given by equation 4.9.

To this effect, with ¢ constant, are given v
"iso-uc" curves in the

(gi%§%§3 B,-%J plane already introduced in
(8] 2

figure 20.

Taking this plane into account, curves
were plotted giving N'o(B/h, ¢) and
N' (B/h, ¢) cotgd as functions of B/h,_

These multi-entry charts, where the values
of the coefficients pu., N'e, N'_ cotgd

can be read or interpolated, arg easily
used for the actual computation of the

bearing capacity by applying the following
formulae derived from equations 3.7,

3.9 and 4.9 : .

For a COULOMB socil (¢ # 0)

(5.1) gy = g + uc(Co + q tg ¢) .

[l g + ytgd B N

——— '
2 Co + q tgd y €otge + Nic]

For & purely cgohesive soil (& % 0)

1 gB
(5-2) qu=q+uc CO(N|C+~4—%O—)
"Iso-uc" multi-entry charts are given
below corresponding to the case where
¢ = 0°, 4°, 10°, 20°, 25°, 30°, 35°,
40° and 45°.

5.2. Iso-p." multi-entry chart for ¢ =

0°,
4°,10°, 20°, 25°, 30°, 35°, 40°, 4ct°

wota .

The original charts for strip footings,
are dealing with curves located on the
upper part of the figures 27 to 34. The
curves located on the lower part sare
refering to computation of circular shal-
low foundations. Detailed comments for
use are given in the next K paper by
SALENgON and MATAR.
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6. EXAMPLES OF THE USE OF THE "is0-u_"
MULTI-ENTRY CHARTS ¢

6.1. Presentation

MATAR (1978) gives well detailed examples
concerning the use of the superposition
method and of the global calculation as
well as of various practical "rules" used
for the case of a strip-footing resting
on a non-homogeneous soil of limited
~thickness. So as not to encumber our dis-

.-

cussion we will only give the most signifi-

cative ones.

6.2. Example 1 : site A

Friction angle of soil : ¢

Foundation width : B = 40m, then 4m
Lateral surface load t:g=0

Layer fhickness = 10 m

Surface cohesion : Co = 103%Ra
Descending vertical

cohesion gradient : g = 2.5x103N/m3
Unit weight T Y = l.6x104N/m3

6.2.1. B = 40 m

From the multi-entry chart of figure 27
(¢ = 0°) we read :

pe = 1.48 N'G = 6.25
whence (qﬁ)suéerp. = 3,12 x 104 pa
and Qu = 4.62 x 104 Pa

This renders evident the magnitude of the
" bearing capacity underestimation by the
superposition method.

Since, the case a non-homogeneous soil
layer of limited thickness has been dis-
cussed by MANDEL and SALENGON (1969 and
1972), in practice, one can think of hand-
ling the above problem as if it were a
homogeneous soil layer by such rules as :

. only takiny the surface cohesion into
account, leading to an underestimation
of the bearing capacity :

(du)le = 0.625 x 104 Pa

This value yield a superabondance of
dimensionings.

. by using an "average" cohesion, for ins-
tance :

h'
Cm=Co+gT

0°, then 4°,10°
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where h' is the thickness of the distur~
bed zone corresponding to a homogeneous

soil

h' = min (h,-E%?)
Thereby :

C. = 13.5 x 103 Pa

m

and the estimated bearing capacity is :

g, = 8.44 x 104 pa

Besides the difficulty incurred in using
this method, it leads to an overestimation
of the bearing capacity, which is obviously

unacceptable.

A comparison between the bearing capacity
values obtained by the different methods
is illustrated by figure 36.

An examination of the influence that the
friction angle, even when very small,
could have on the bearing capacity is not

without benefit. For
assuming ¢ = 0°, 4°,

when ¢ = 0°
when ¢ = 4°
when ¢ =10°

the above example,
10°, we have :

4.62 x 10% pa

Qu =
g, =10.24 x 104 Pa
q, =29.3 x 104 Pa

this clearly establishes (fig. 37) the
very strong stabilizing effect of the
friction angle, from the bearing capa-

city viewpoint.

6.2.2. B =4 m

It will be seen that the remarks made
above are also valid for the case of a
narrower strip-footing.

qu/m‘Pa

844

1621

pow
o b pa g

N
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From figure 27, we read :

= 1.65 ' The pronounced stabilizing effect of the
e T - : . N . -
friction angle can once again be eviden

ced here.

whence :

a, = 1.26 x 104 pa

Empirical methods, when used for the above 6.3. Example 2 : site B (1)

mentioned non-homogeneous case, lead to :

0°, then 4°,10°

when taking : C = Cp ~ (qy)e = 0.51 x 104 pa - Friction angle of soil : ¢ =
¢ = Cp a: = 2.33 x 104 pa Foundation width : B = 400 m
Lateral surface load :g=0

Figure 38 shows the comparison between the
values obtained from the different methods.

Layer thickness : = ®
A
qu N0 Pa Surface cohesion : Cqo =0
\ .
| Descending vertical
cohesion gradient : g = 0.6 x lO3N/m3
Unit weigt : Y = 1.6 x 104N/m3
293 N
: For the purely cohesive soil (¢ = 0), the
various methods yield :
o = = 4
e - 10° |\ | Qu = (9u) gyperp. = 0-6 x 104 Pa
p = 4° (9,0 = 0 construction will be impossible
= . Ao . g, = 4.36 x 104 Pa unacceptable overes-
P 0 u timation

The stabilizing effect of the friction
angle is again guite pronounced

10.24 ¢ =0 gqu = 0.6 x 104 Pa
¢ = 4° g, = 3.85 x 104 pa
¢ = 10° qu = 16.83 x 104 Pa

L62

PO P e Y

6.4. Example 3 : site C

Figure 37
. Soil frictional : % = 30°
q. /10“Pa .
¢ Cet Foundation width : B=4m
= average
44| exact method Unit weight Y = 1.8 x 10%N/m3
233 = Lateral surface load
] surerrasirion (footing depth : 1 m) : q = 1.8 x 104N/m3
C=Co
Layer thickness : h = o
Surface cohesion : C, = 1.6 x 104 pa
126 Descending vertical
cohesion gradient
0.77 (homogeneous medium) : g = 0
0.51 Referring to the multi-entry chart of
. figure 32, we read
(0™ €Tay in Mediterranean (LB TIRANT 1976)
Figure 33
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e = 1.20

whence ag = 1.20 (qy) - 0.20 g

superp.

The bearing capacity underestimation re-
sulting from the superposition method is,
in this case, around 20 &.

7. COYPARISON WITH THE MODELS'TEST RESULTS

7.1l. Presentation

The purpose of this comparison of the theo-
rical study results, given in the preceding
chapters and materialized in the form of
multi-entry charts for the computation of
the strip-footing capacities, with the test
results from models has been explained in
chapters 1 and 2 (§ 2.6). It is concerned
with evaluating the practical import,
vis-a-vis the modelized problem, of the
notion of bearing capacity as was defined.

Figure 39 schematically represents a‘?EBt
unit within which one must attempt to sa-
tisfy all the conditions in order to repro-
duce the modelized problem, especially from
the viewpoint of the strip-footing, for
example :

. The foundation is rigid and axially loa-
ded with a constant lineic density.

. Adhesion between foundation and soil is
total.

Test trough is rigid.

. Adhesion between test trough bottom and
soil is total.

. The lateral faces of the test trough,
perpendicular to the foundation's longi=-
tudinal axis, are smooth and in direct
contact with the foundation.

Fig.39 Test trough

7.2. Results and remarks

This comparison is made with the tests car-
ried out by TOURNIER (1) in a study of the
bearing capacity of a strip-footing on a
homogeneous soil layer of limited thick-
ness. They were performed on a layer of

dry sand, of thickness h, average unit
weight Y = 1.64 x 104 N/m3 and with a fric-
tion angle of ¢ = 38° (determined from
‘triaxial tests). Several values of B/h

were considered for footing widths, B = 0.20m
0.35m and 0.50m.

The modelized problem is thus one of the
basic problems for the study of the bearing
capacity of a footing on a non-homogeneous
soil layer. It is in fact problem "s" of

§ 3.1. corresponding to the theoretical
bearing capacity given by question 3.1la

qu = 1/2 YBN'  (B/h, @)
Table IIgives the experimentally determi-

ned values of the ratio 2g9y/YB, i. e. the
"experimental N', ".

.
B —.
B/h 0,20m | 0,35 @ | 0,50 m
0,15 150
0,33 ) 150 128 9u
6.5 ‘ 150 128 101
0,67 s
0,8 184
1 : 231 124 134
1,16 | 194
161 ' 2w
2 ‘ 508 192
Table II
"Experimental N'_ " according to TOURNIER

and MILOVIC

The results clearly bring out the experi-
mental difficulties (e. g. divergence of
the values obtained for a single value of
B/h). Various reasons may be suggested for
tpis, of which the difficulty in evalua-
ting foundation failure and thus to select
the load value to be used, is not the
least important.

{) TOURNIER (1972), TOURNIER and MILOVIC

(1977)



They are represented on figure 40 where it
will be noted that the values found are
all greater than those on the theoretical
curve corresponding to ¢ = 38°. Various
explanations may be proposged.

. Foundation failure does not occur in the
initial geometry but follows upon a cer-
tain settlement which, for the theoreti-
cal bearing capacity to be used, no lon-
ger leads to equation 3.la but rather
to the global equation 5.1 so as to ac-
count for the surface load.

. Work-hardening of the soil under the
foundation can also be evoked.

A dotted curve has been plotted on

figure 40. With the exclusion of one devia-
ting point, this dotted curve would repre- v
sent rather closely the experimental re-

sults. It is seen that this curve would be

in close agreement with the ¢urve repre-
senting N'y(B/h, ¢), provided that the

value used for ¢ be 42°.

Bih o] B« 20cm
B B=35cm
3} v B 50crfud
L9442’
2 i L4
1}
. Ny

%% 10°

Fig.40

This can lead to questioning the value of
the friction angle that is to be used in
the celculations concerning strip-footing,
i. e. to in fact adopt for each soil a
tridimensional failure criterion other
than the "intrinsic-curve" of COULOMB,
SALENGON and HALPHEN (1979) discuss this
point which is related to the "true
triaxial" experiments performed by nume-
rous teams (e. g. LADE and DUNCAN, 1973)
and to the considerations of HABIB (1958
and 1961).

The main conclusion to be drawn from this
comparison seems to us to be that the
exact theoretical value of the bearing
capacity derived from the definition of
12.2 and calculated by the theoretical
equation 3.la with the given coefficients
using the friction angle read at the tri-
axial is less than the load which experi-
mentally appears as corresponding to
foundation failure. This result tends to-

156

ward a greater safety margin. It would

be worthwhile to confirme this by testing
under conditions where the coupling effect
would appear, gy then being calculated by
equation 5.1 or 5.2, notably for the case
where ug reaches ite highest values.

§. CONCLUSTON

The theoretical aspects, linked to yield
design, considered in this paper will not
be brought up again ; we will simply con-
cern ourselves here with bringing out the
pertinent contributions as related to the
computation viewpoint.

An equation was given that, for a soil
layer of limited thickness and having
cohesion linearly increasing with depth,
enables one to take the cohesion gradient
into account in order to evaluate, by means
of the superposition method (lifiear egua-
tion), the bearing capacity of a strip-
footing. This result is based on the "unit
weight - vertical cohesion gradient”
equivalence.

The formulae and multi-entry charts, con-
veniently enabling the exact calculation of
this bearing capacity by taking all the
coupling effects into account, are given.

The use of these "iso-y." multi-entry
charts brings into view a favourable correc-
tion, possibly large, to the results ob-
tained by the superposition method tradi-
tionally employed to calculate the bea-
ring capacity of strip-footings on homo-
geneous soil.

It offers a precise reply to the commonly
encountered problems, handled at present,
in an empirical manner, by two types of
methods. The dangerous aspect of one of
these methods has been shown. The other
method is assuredly conservative, but may
render the construction expensive and
sometimes impossible.

It also enables one to see the very wpranoun-
ced stabilizing effect, from the viewpcint
of bearing capacity, of the friction angle
even for soils having little friction
contact.

BIBLIOGRAPHY

BERTHET D.,
SALENGON J.

HAYOT J. C.,
(1972)

Poingonnement d'un milieu semi-infini
en matériau plastique de Tresca non
homogéne.
"Archives of Mech., Vol.
pp. 127-138.

24, n° 1,



F
t

COULOMB C. A. (1773)
Essai sur une application des régles
de Maximis et Minimis a quelques pro-
blemes de statique relatifs a l'archi-
tecture.
Mémoires présentés & 1'Académie Royale
des Sciences.

COUsSYy O., SALENGON J. ( 1979)

Analyse de 1la stabilité des ouvrages en
terre par le calcul a la rupture.

Annales des Ponts et Chaussées, n°l2.

DAVIS E. H., BOOKER J. R. (1971)
The bearing capacity of strip footings
from the standpoint of plasticity theo-
ry.

Research report, Civil Engineering
Laboratories, University of Sydney,

N
DUNCAN J. M., BUCHIGNANI A. L. (1973)

Failure of underwater slope in San
Francisco Bay.

Jnl Scoil Mech. and Foundation Divisions,'
ASCE.

GIROUD J. P., TRAN-VO-NHIEM

OBIN J. P. (1973)

Tables pour le calcul des fondations.

Tome 3, Dunod, Paris,

HABIB P. (1961)

Force portante et déformation des fonr-
dations superficielles. .

Annales de 1'ITBTP, n° 163-164,
pp. 759-772.
HABIB P. (1958)

La dispersion des résultats des essais
de sols.

Annales de 1'ITBTP, n® 130, pp. 1088-
1094

LADE P. V., DUNCAN J. M. (1973)

Cubical triaxial tests on cohesionless
soil.

Jnl of Soil Mech. and Foundations Di-
vision, vol. 99, n°® SM 10.

LEONARDS G. A. (1968)
Les fondations.

Dunod, Paris.

LE TIRANT P. (1976)

Reconnaissance des sols en mer pour
l'implantation des ouvrages pétroliers.

Editions Technip, Paris.

LUNDGREN H., MORTENSEN K. {1953)
Determination by the theory of plasti-
city of the bearing capacity of conti-
nuous footings on sand.

Proc. 3rd Int. Conf., Scoil Mech., Zurich,
vol. 1, pp. 409-412.

MANDEL J., SALENGON J. (1969)

Force portante d'un sol sur une assise
rigide.

C. R. 7éme Cong. Int. Méc. Sols, Mexico,
vol. 2, pp. 157-164.
MANDEL J., SALENgON J. (1972)

Force portante d'un sol sur assise
rigide (étude théorique).

Géotechnigque, Vol. 22, n° 1, pp. 79-93.

MATAR M., SALENgON J. (1977)
Capacité portante d'une semelle filan-
te sur sol purement cohérent d'épzis-
seur limitée et de cohésion variable
avec la profondeur.
Annales de 1'ITBTP, n°® 352, pp. 93-108

Revue Frangaife de Géotechnigue, n® 1,
pp. 37-52.

MATAR M. (1978)

Capacité portante des fondations super-
ficielles,

These de Docteur-Ingénieur Génie Civil
E. N. P. C., Déc. 1978, Paris.
OBIN J. P. (1972)

Force portante en déformation plane
d'un sol verticalement non homogéne.

Thése USM, Grenoble.



OLSZAK W., RYCHLEWSKI J TERZAGHI K. (1943, 1965)
URBANOWSKI W. (1962)

Theoretical soil mechanics.
Plasticity under non-homogeneous condi-

tions. L e John Wiley and Sons.

Advances in Applied Mechanics, Ac.

Press, NY, pp. 132-214. TOURNIER J. P. (1972)
) Comportement d'une couche compressible
SALENGON J. (1974) d'épaisseur limitée par un substratum
. i ) rigide et soumis a une charge verticale
Théorie de la plasticité pour les appli- appliquée & une semelle filante.

cations a la mécanique des sols.
Thése de Doctorat (Ph. D), Université

Eyrolles, Paris. de Sherbrooke, P. Q. Canada.
SALENGON J. (1978) TOURNIER J. P., MILOVIC D. M. (1977)
Calcul a la rupture et plasticité. ’ Etude experimentale de la capacité por-
) : tante d'une couche compressible d'épails-
Cours ENBC, Paris, seur limitees.

Géotechnigue, 27, n° 2, pps=--111-123
SALENGCON J., BARBIER M.,

BEAUBAT M. (1973)

Force portante d'une fondation sur sol
non homogeéne. ‘ L.y

C. R. 8éme Congrés Int. Méc. Sols, Moscou,
Vol. 1.3., pp. 219-224,

SALENCON J., FLORENTIN P.,

GABRIEL Y. (1976)

Capacité portante globale d'une fon-
dation sur un sol non-homogéne.

Géotechnique, Vol. 26, n° 2,
pp. 351=<370.
.SALENQON J., HALPHEN B. (1979)
Calcul des structures inélastiques.
Chap I. "Le comportement élastoplasti-
que”,
Cours ENPC, Paris ‘
SALENCON J., MATAR M. (1979)
‘Bearing capacity of surface foundations.
3rd ASCE/EMD Specialty Conference
University of Texas, Austin, USA,
17-19 sept. 1979.
SHIELD R. T. (1954)

Plastic potential and PRANDTL bearing
capacity solution.

Jnl. Appl. Mech. Trans. ASME, Vol. 21,
pp. 193-194

158



