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ABSTRACT

The stability of embankments on soft grounds is examined with the
basic argument of yield-design ; from the knowledge of the strength
criteria defining the allowable stress states in the constitutive
soils a yield-factor is defined with a plain significance : if the
yield-factor is less than unity, the embankment is certainly

unstable. Upper bounds for the yield-factor can be determined either
by static or by kinematic methods which are more convenient. This

leads to the yield-factor method for stability analysis, based on

the use of rigid-block mechanism. It proves to be efficient as regards
for instance computation time and can be extended to deal with many
practical cases of embankment stability as well as with earth-dam
stability. The comparison of the so-obtained results with results given
by a method of slices reveals some interesting discrepancies, proving
the yield-factor method to be at least a valuable check for the well
established classical methods for stability analysis in soil mechanics.
By the yield-factor method a weak line is also determined in the
considered embankment : it defines the block whose overall equilibrium
satisfying the strength-criteria is the "weakest" ; this may give

some information as regards the initial collapse mechanism for an
unstable embankment.
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AN ANALYSIS OF THE STABILITY OF EMBANKMENTS
ON SOFT GROUNDS

J. SALENGON 0. COUSSY

1. INTRODUCTION

Alike the study of the stability of earth slopes, the analysis of the
stability of embankments on soft grounds is a theoretical problem far
from being completely solved despite its great importance from the
practical point of view. Numerous analytical methods have been devised
for this kind of study and their very variety is a proof that none of
them is thoroughly satisfying. During the recent years this diversity
did increase due to the expansion of the finite element method. A good
bibliography on the subject can be found in RAULIN, ROUQUES and TOUBOL
(1974).

Stability analysis in soil mechanics, for instance when dealing with

an embankment, or an earth-slope, aims at solving the following problem :
given the embankment by the parameters defining its geometry, given the
constitutive soils with the knowledge of the "strength-criteria"

defining the allowable stress states, determine whether such a structure
is stable or unstable under a loading consisting in the self weight of
the system and given additional loads. This problem is the fundamental
problem of what we call "yield-design" (an english translation for the
French "Calcul & la Rupture").

In soil mechanics the first one to have stated the problem of stability

in such a way is certainly C.A. COULOMB in 1773 ; but this kind of

problem is also to be dealt with in many other branches of the engineering
practice. Recently a theory of yield-design has been built up

(SALENGON, 1976-1978) which covers all these various aspects. It includes -
some of DRUCKER's (1954) and RADENKOVIC's (1961,1962) works and is,

roughly speaking, parallel to what may be found in the book by W.F. CHEN
(1975).
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The outstanding result of the theory of yield-design is to show that,
from the only knowledge of the "stress criterion" defining the allowable
stress states for the constitutive material, it is possible and only
possible to decide whether a given structure under a given loading

(for instance the above-mentioned embankment) is certainly unstable

or, on the contrary, potentially stable. Therefore only a "yield-factor"
can be defined for the structure.

The theory makes it possible to point out the origin of the difficulties
encountered with some classical methods used for stability analysis in
soil mechanics (COUSSY and SALENGON, 1978). From the practical point of
view it shows that upper-bounds for the yield-factor can be determined
by means of static considerations or, which is easier, of kinematic ones,
through the only use of the principle of virtual works without any
intervention of a flow-rule or of anything similar.

The paper will present an analysis of the stability of embankments on
soft grounds within the frame of yield-design. The theory of yield-
design being only exposed in what concerns the studied problem and on
this particular case, readers looking for a more exhaustive view should
report to the above-mentioned references. Attention will be focused on
the use of rigid block mechanisms to obtain upper bounds for the yield-
factor ; this will lead to the "yield-factor method" for stability
analysis. Finally some other applications of the method will be evoked,
for instance dealing with the stability of earth-dams.
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2. YIELD-FACTOR FOR AN EMBANKMENT RESTING ON A SOFT GROUND LAYER

2.1. The studied problem

The problem is to analyse the stability of an embankment made of a
homogeneous soil with both cohesion and friction, resting on a purely
cohesive ground layer which lies on what may be considered as a rigid
bed rock.

The geometrical parameters are defined on figure 1.

The "strength-criterion" for the soil constituting the embankment is
represented by Coulomb's criterion with a cohesion C and a friction
angle ¢ 3 it may be written :

(2.1) |t|<C+o tan ¢ , Vn,

where o and T stand for the normal and tangential components of the
stress acting on any typical facet with a normal n (compressive stresses
are counted positive, that is n is the inward normal to the facet).

For the soil in the layer, the strength~criterion reduces to :

(2.2). ITIS c'

The strength-criteria  at the contact between the.embankment and the
layer, and between the layer and the bed-rock, must also be evoked here ;
a discussion on the influence of these criteria on the stability of
the structure can be found in Coussy (1978). In order to have matters
fixed we shall assume that perfect adhesion takes place at both inter-
faces, but this assumption will have no influence on the significance

of the final results obtained.

The loading for the problem is defined by y and y' , the specific
weights of the soils in the embankment and in the layer respectively.



Figure 1 :
Stability analysis of an embankment on a soft ground Layer

The problem is then plainly formulated by the question : given the
embankment with its geometrhy, Lits strength-criterda, and the Loading,
A5 &t possdible that this structure be stable ?

The answer to this question derives from a very simple reasoning ; it
can immediately be stated that :

In onden forn the embankment to be stable there must exisit
(2.3) at Least one sthess field g, satisfying all the equations
' 04 static equilibrium, under the restraint that (2.1) on
(2.2), acconding to the 504k, must be fulfitled everywhere.

As this obvious statement is only a necessary condition, an embankment

for which such a stress field does exist will be c¢alled "potentially stable”.
Conversely an embankment for which such a stress field doesn’'t exist

is centainly unstable.

2.2 Definition o4 the yield-factor

The parameters defining the problem can be sorted in three groups :



B, H, D, B, defining the geometny,
C, C's ¢, defdning the strnengthy
Y, v', degining the Loading ( y, y'>0)

Then, taking the geometry and the strength as constant and considering

y and y' to be variable we get a family of problems of stability analysis
for the same embankment, depending on the loading.

As a consequence of the convexity of the strength-criteria (2.1) and
(2.2), the following result can be stated : in the plane of the loading
parameters (y, y' ), the loading-points corresponding to potentially
stable embankments form a convex domain including point O.

Figure 2 shows this domain in the shape sketched by COUSSY (1978) after
a priori considerations, but this shape is not involved in the continua-
tion of the demonstration.

v /.Q

-

0 T

Figure 2 :
Potentially stable embankments with fixed geometry and strength~ eriteria.

The yield-factor is then defined as follows : considering the embankment

under the loading case (y,y') represented by point § in the plane of
the loading parameters, the yield-factor is :

(2.4) F=0Qf/

o

Q.
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where QF is the point at the intersection of the vector-radius 0Q with
the boundary of the convex domain of potentially stable embankments.

It is clear form this definition that the scalar factor F exhibits the
following property :

(2.5) F<l ==>  unstable embankment,
F>1 ==> potentially stable embankment.

F is a function of all the parameters defining the problem ; it results
from a dimensional analysis performed on this function that F must
assume the form :

c' C !
2.6 F=F(— , Y R

D
C_T's 9'H’B,¢)o

| oo

Besides, from definition (2.4), it is evident that multiplying both
y and y' by the same positive constant results in multiplying F by
the same constant. It follows that F will necessarily be written :
ot
-

C o C C ‘B D
(2.7) F_WK'-C_'-’%—’H’H’B’(P)

where K* is a scalar function of the indicated arguments.

2.3, Signigicance o4 the gield-facton

Equation (2.7) shows that the yield-factor F can be given 3 different
meanings :

1) a factorn with respect to cohesions,
if the embankment with parameters B, H, D, 8, C, C', ¢, v, ¥', is

potentially stable,its yield-factor being equal to F>1, then any embankment ;
with the same parameters B, H, D, B, ¢, v, Y', @nd the cohesions

T =2C/x and T' = C'/X, whera ) is >F, is certai‘My unstable (for
this embankment : F <1},



2) a gactor with rnespect to geometrny,

if the embankment with parameters B, H, D, B, C, C', ¢, v» Y',
is potentially stable,its yield-factor being equal to F>1, then any
embankment with the same parameters C, C', ¢, v, y', and the
geometrical parameters B=\B, ﬁ=AH, D=AD, B=8, where A is > F » 1S
certainly unstable (F'<1).

3) a factorn with nespect to the specific weights,

if the embankment with parameters B, H, D, B, C, C', ¢, v, Y',is
potentially stable, its yield factor being equal to F>1, then any
embankment with the same parameters B, H, D, 8, C, C', ¢, and the
specific weights 77'=Ay'and‘;=xy-, where X is >F , is certainly
unstable (such a case happens when reduced scale models are tested in a
centrifuge).

As will appear in the following sections, the yield-factor F defined by
eq. (2.4), is very convenient for practical use, especially from the
kinematic point of view. The first interpretation given above shows that
F appears as a factor with respect to cohesions ; when dealing with
classical methods for stability analysis, such as the method of slices,
it is usually preferred to refer to a factor with respect to the total
strength : that means that the factor instead of concerning the cohesion
of each soil, will concern the maximum feasible shear-strengths for a
given value of o , namely [t|=C+ctan ¢ and |t|=C', therefore it will
actually concern both C' and C on the one hand and tan ¢ on the other.

There would be no difficulty in defining a yield-factor F with respect to

the total strength. F would be the solution of the implicit equation :

—1(tan o/F) ) >

C D
(2_8) = W K ( ‘C‘l, Y_’ H, H" B, tan
and therefore need the use of iterative procedures for its determination.
It is clear that the so-defined F exhibits the same property (2.4) as
F and that, for a given embankment, the values of F and F are on the
same side of the crucial value 1 :

, B D ey C y'BD
(2.9) F(”,Yfﬁ'a'cljs—*gﬁ':ﬁ:Ba¢)<1=‘F(Wa€T’TaH=&H’Bﬁq’)%l



3. UPPER BOUND FOR F OBTAINED THROUGH STATIC METHODS

The introduction of the yield-factor F given above, as well as all the
arguments used are founded on considerations of static equilibrium.

For given values of parameters-%v s z > %- D

> f> By 9 the value of

the function K* in formula (2.7) appears as the highest value of the
parameter %1- for which there exists a stress-field o satisfying the
necessary condition (2.3).

Conversely, any value of %gi for which such a stress-field doesn't
exist is an upper-bound for K*. This means that any value of %gi for
which the equilibrium equations and the strength-criteria are

. . . +

incompatible, is an upper bound to K .

Knowing such an upper bound KM to K" for a given set of parameters

(C , Y B D g ¢) we get an upper bound F,, of the yield-factor F
Ty H | M C y' B D
for any embankment with the same set of parameters (ET, X, 0/ Bs 9)

whatever the value of %ﬂvby the use of the formula :
(3.7) Fy = =— K .

From this point of view derive the methods for stability analysis which
are founded on the equilibrium of a block. The idea is simple :

Consider, as represented on figure 3, a curve such as RBA drawn across
the embankment itself and the layer.

RN

LTI 7777777777777 777777777777

Figure 3 :
Stability analysis by studying the equilibrium of a block.
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It results from condition (2.3) that, in order for the embankment to
be stable, the overall equilibrium of the block RBATSR must be assured
under the conditions (2.7) and (2.2) written along RB and BA respecti-
vely for the facets tangent to this curve. This condition is evidently
weaker than (2.3).

Thus, any value of -%ﬂ for which the overall equilibrium of block
RBATSR is incompatible with the strength-criteria (2.7) and (2.2) along
RBA is an upper bound to K.

The difficulty of such an analysis is to prove this incompatibility
since for a given curve RBA one doesn't a priori know the optimal
distribution of the stress components o, T, that is the distribution
which would ensure compatibility for the highest value of %ﬂu This is
the very origin of the differences between classical methods based

upon this static approach and which introduce different hypotheses for
the dis?ributfon (O,T)RBA : therefore the maximum value so-obtained

for 1#7 may Tlose the character of an upper bound of K*, which makes

it impossible to interpret the results rigorously.

As in the case of earth-slope stability analysis it can be shown that
the use of particular forms for the curve RBA makes complementary hypo-
theses unnecessary ; the problem is then sometimes called "statically
determined". The maximum value obtained for %ﬁ is a real upper-bound
for K.

We don't think it useful to insist on this aspect of the question, since
the form of curve RBA will be dealt with again in the following sections
from the kinematic point of view, which seems to us clearer and more
efficient.

4. UPPER BOUNDS FOR F (QBTAINED THROUGH KINEMATIC METHODS

The principtecdf virtoal work makes it possible to transform condition
(2.3) into the following statement :
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In order for the embankment to be stable there must exist at least
one stress-field o, satisfying the strength criteria (2.7) and

14.1)X (2.2) everywhere (Td.and such that, in any kinematically admissible
velocity-field v, the power of the stress-field g balances the
power of the gravity forces (y, v') :

(4.2) {Power of g in v} = {Power of (y, y') in v}

Thus, to prove that F s less than unity it is sufficient to show that,
for the considered embankment, in at least one velocity-field v, conditions
(4.2) and (2.1, 2.27) everywhere (1) are incompatible.

Said otherwise, for a given set of parmeters (%}r; %}r, %3 %u B, ¢) , to
prove that KM is an upper-bound for K+, it is sufficient to show that for
this value of %ﬂ-, in at least one velocity-field v, conditions (4.2) and
(2.1, 2.2) everywhere (') are incompatible.

At this stage, such a dualized form of the approach given in sections 2 and
3 doesn't appear more convenient than the primal one.

The interest of this kinematic formulation comes from the fundamental property
stated below, which is demonstrated in the theory of yield-design and will
be proved directly in a particular case in section 5 :

whatever the stress-field o satisfying (2.1, 2.2) everywhere ('), and for any
given velocity-field v, the first member of (4.2) admits an upper bound P(v)

which is a univoquial function of v.

The form of P(v) depends on the parameters C, C', ¢ defining the conditions
(2.1, 2.2) 5 P(v) is positively linear with respect to v, non negative, and
takes finite values for properly chosen velocity-fields v.

It follows that : chosen v such that P(v) is finite, any embankment for which
the inequality (4.3) holds, is certainly unstable (F is less than unity) :

(4.3) P(v) < { Power of (y, y') in v },

(') i.e. (2.1) in the embankment itself and (2.2) in the layer.



- 12 -

since the power of (y, y') in v, denoted P(y, y',v) is evidently bilinear
with respect to (y, v') and v, inequality (4.3) separates the plane (y, v')
of figure 2 into two half-planes as shown on figure 4

: any potentially
stable embankment must 1ie in the half-plane P(v)

> Ply, ¥', vl.

A
yl
F<l
b<p P(YYV). Plw)
F>1
pP>pP
¥
Figure 4 :

Upper-bound for F through the use o4 kinematic methods.

It is clear from figure 4 that for a considered embankment, any kinematical-
ly admissible velocity-field such that the power of the external (i.e. gravi-

ty) forces is positive will provide an upper-bound of the yield-factor,
namely :

(4.4) F, = P(v) /7 Plys v's v ) 5 F

A better upper-bound will be obtained by minimizing the ratio in (4.4) over
a range of velocity-fields, i.e. a range of deformation modes of the embank-
ment. An upper-bound so obtained will be denoted FM' It is plain that for

any upper-bound of F, and in particular for FM’ the following implication is
valid :

(4.5) F. <1 - unstable embankment.
. M —

As it is to be expected from equation (2,7, FM will be obtained in the
form :

- L
14.6) Fu =y M
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where KM is a function of the same arguments as K" ; KM is an upper bound
for K*.

We shall now examine the use of rigid block deformation modes to obtain an
upper bound FM'

It is to be emphasized that the kinematic approach described here makes no
use of any flow rule or anything similar : P(v) is defined and can be
computed from the only knowledge of the strength criteria.

5. THE YIELD-FACTOR METHOD

5.1 Rigdd block deformation modes

In order to apply the kinematic method described in section 4, we consider
as a deformation mode of the embankment a rigid block mechanism. Such a
mecanism is defined by a center of rotation 0 and an angular velocity w.

RBA being a curve drawn across the embankment itself and the layer, it is
assumed that the block RBATSR moves as a rigid body round point O with the
angular velocity w, while the rest of the structure remains motionless.
Curve RBA is a velocity discontinuity line.

A 4 <

7777777777777 777777777777777777

Figure 5 :
Rigdd bLock mechanism.
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Looking back at equation (4.2), we can see that for this velocity field
the first member reduces to :

(ovn+1vt)ds - I

(5.1) {Power of g in v}= -J
BA

- (Gvn+rut)ds,

where v, and are the normal and tangential components of the velocity v.

Ve

Under the strength-criterion (2.2) the first integral in equation (5.7) is
evidently bounded by :

(5.2) -J (ov tTv,)ds < J m(v)ds
RB RB
with :
- m(v) = 4 if v, #0
(5.3)
(v} = Cflutl ifv =0

As for the second integral, under the strength criterion (2.7), it is
bounded by ::

(5.4) -J (Qvn+TUt)dS < J m(v)ds
BA “BA

with (figure 6) :

m(y) = oo ifv < |v,. tang ,
(5.5) % n <1l

m{v)

i
(]
(o]
(@]
‘-’-

<
<
=

if v, 3 [v,] tang.

Figure 6 :
S04l with cohesion and friction : intriinsic curve and function m(v).
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Therefore P(v) will be defined as :

(5.6) Plv) = j m(v)ds + J m(v)ds
RB BA

The mechanism must be chosen so to obtain a non-trivial upper-bound FM
i.e. P{v) must be finite. For the first integral in (5.6) to be finite,
since v is the velocity in a rigid body motion round point 0, RB must be
an arc of a circle with a centre. 0. For tne second integral to be finite
it derives from equation (5.5) that in any point M of BA the normal n
must make an angle ¥, satisfying ¢ < ¢ < m-¢ , with the vector radius OM ;
the angle y may not be constant along BA. It must be noticed that the
curve BA is never an arc of a circle. As an example BA may be chosen an
arc of a log-spiral with a centre 0 and ¢y = ¢ (RENDULIC, 1935 ; DRUCKER
and PRAGER, 1952).

On the other hand the power of the gravity forces splits into two terms :

1° for the block RBSR, where it reduces to nought since RB is an arc of
a circle with a centre 0 and RSB is horizontal ;
2° for the block BATSB.

It can be proved then (COUSSY and SALENGON, 1978) that for any given

centre 0 and any given point B, the minimum of ratio FV is reached when

BA is an arc of a log-spiral with a centre 0 and ¢ = ¢ (v.z. W.F. CHEN, 1975,
for an analogous result).

As a consequence the minimization process for obtaining FM will be
performed on the rigid block mechanisms.for which curve RBA is made of
an arc of a circle with a centre 0 in the layer and of an arc of a log-
spiral with a centre 0 and y = ¢ in the embankment itself (figure 7).
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Figune 7 :
Definition of the rnigid-block mechanisms used in the
"yield- gacton method".

5.2. Determination of Fu

As shown on figure 7 such a rigid body mechanism may be conveniently
described using 3 angular parameters 0;, 0,, O3 (counted positive
clockwise). Detailed calculations show that FU takes the form :

_C' C
(507) FV = _'Y—['I KU (@1;@2163) E’," s B,d) ) ’

where KV is a scalar function of its arguments. FM will be given by :

_ Min =L Min
(5.8) FM ' @1,@2,@3{Fv} YH ©01,02,03

{KV}

with geometrical restraints on 0,,0,,0; involving B/H and D/H. Analytical
minimization can be performed with respect to 0; and yields the optimalvalue
of 03 as an explicit function of 0, and 6,. It then remains to minimize

K, with respect to @, and 0, numerically under the above mentioned
restraints. K, being an explicit function of ©; and O, this numerical
procedure doesn't need much computer time.

5.3.Some nesults obtained through this method. Possibility o4 extension

Figure 8 presents some charts of the results obtained by the kinematic
approach using rigid-block mechanisms. On account of equation (4.4) and
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(5.8) it has been prefered to plot KM versus D/H for diffent values of
the other parameters.

The minimization procedure also leads to a minimizing curve RBA which we
propose to call the "weak 1line" for the given embankment.

This method may be extended to make stability analysis possible in case

of an embankment with side-benches, or resting on a multilayer of different

purely cohesive soils ; it may happen also that the embankment having

been built up gradually a higher value must be assumed for the cohesion

of the soil in the layer under the embankment : this case can also be dealt
with, S0 can also the cases of an embankment with a distributed load on TT' or

with punctual Toads, etc.

For instance Figure 9 presents some charts for KM in the case of an embank-

ment with side-benches.
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5.4. Cnitical analysis of the obtained nesults

In the following we shall call "yield-factor method" the analysis described hereover
which determines an upper bound FM of F, using rigid block mechanisms.

It is interesting to compare the results obtained by the yield-factor method with
those given by a classical method. As an example, a comparison has been carried out
with the safety-factor given in the charts obtained by Pilot and Moreau (1973) using
a method of slices.

Figure 10 a) shows the ratio "safety factor" / FM’ which is independent of C'/yH, as

a function of D/H. It can be observed that this ratio decreases, starting from the
value 1.30 for D/H = 0.2, down to 0.91 for D/H = 2. It is noticeable that for

D/H < 0.74, the safety-factor obtained through the method of slices is more optimistic
than FM’ this property being plainly marked for D/H < 0.4. Its significance is still
reinforced by FM being only an upper bound of the real yield factor F, and important
consequences appear for the small values of parameter C'/yH. For instance, figure 10b)
presents the values of F\, and of the safety factor as functions of D/H, when

C'/yH = 0.1 : it can be seen that for 0.28 < D/H < 0.4, the safety factor is greater
than 1 whereas FM’ an upper bound for the yield factor, is smaller than 1. This means
that the instability of the embankment is certain from (4.5) despite what might be
infered from the value of the "safety"-factor.

We think that such a result must be related to the practical rules which

often trust the safety-factor differently according to the constitutive soils. But
one must remind that setting a level of confidence greater than 1 to the safety-
factor for the embankment to be built, aims not only at preventing instability but
chiefly at keeping far enough from instability in order to avoid any preliminary
disorder ; the afore presented example shows that this essential purpose may be
missed.

Fa
“costlisiont do nbcwrité’’ .
Fu 15 ¢=40°
1 c/YH=0,1
\\ c/c' =00
12 tgf =25
% BfH =00
1" 10 N/
‘ \
10 \\
09 ST pa
05
OB o L] o 4 4. . D/H;
02 05 1.0 1.5 20 03 05 10 15 20
Figure 10 :

A comparison between the yield-factor method and a method of sices.
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As for the weak line ? It has been emphasized before, that the method
doesn't require any knowledge of a flowrule or anything similar ; this
means that the minimizing mechanism cannot in any way pretend to have
the significance of the failure mechanism which would take place in case
of an unstable embankment. Moreover it must be kept in mind that only the
particular range of rigid block mechanisms has been explored to minimize FV.
As a matter of fact the yield-factor method is strictly equivalent to the
static analysis presented in section 3 considering the equilibrium of a
block : the weak 1line corresponds, so to speak , to the "weakest"
equilibrium.

One must be very cautious when thinking of a comparison with an observed
failure mechanism : since in case of unstability great displacements do
occur, it is very difficult -not to say risky- to try to imagine the
collapse mechanism at its very beginning in the initial geometry ! The
case of an embankment on the French river Dives has been used for the
comparison presented on figure 11 : the quite good agreement between the
calculated weak Tine and a "remake" of the "real" initial collapse
mechanism is worth noticing.

56 m |

o
3

Figure 11
Embankment on the river Dives :
caleulated weak Line (—) and assumed initial collapse mechanism (--)




Finally Tlet us mention that the yield-factor method adequately
modified, can be used to analyse earth-dam stability. Effective stresses
are considered and the external forces consist in gravity forces (with the
different specific weights) and seepage forces. Here again a comparison
between the results obtained by the yield-factor method and by a method of
slices shows the same kind of discrepancy as before which occurs for non
pathological cases.

6. CONCLUSTION

The yield-factor method is founded on the only knowledge of the strength-
criteria defining the allowable stress-states for the constitutive soils.
Therefore the so-obtained upper bound of the yield-factor has a plain
significance, ensuring instability when it is less than unity.

Not pretending to be the so-Tong-waited-for method which will definitely
solve any problem of stability-analysis in soil mechanics, it appears to
be quite easy to use : it is at least a valuable method for checking

the well established classical methods ; examples have been. given that
this may prove really useful.




J. SALENCON & 0. COussy

REFERENCES

s o o o s e

CHEN W.F. (1975) Limit analysis and soil plasticity
Development in Geotechnical Engineering,
Vol. 7, Elsevier, pp. 399-445.

COULOMB C.A. (1773) sSur une application des régles
de Maximis & Minimis A quelques problémes de
statique, relatifs a l'architecture.

Mémoires présentés a 1'Académie des Sciences.

COUSSY 0. (1977) application du calcul & la rupture
A la tenue des remblais - Communication 3éme
Congrés Frangais de Mécanique, Grenoble, 6-9
Sept. 1977,

COUSSY 0. (1978) Le calcul & la rupture dans la
tenue des ouvrages en terre -
Thése Dr Ing., Paris.

DRUCKER D.C. (1954) coulomb friction, Plasticity
and limit loads - J1 Appl. Mech. Trans.ASME,
vol. 21, pp. 71-74.

DRUCKER D.C., PRAGER W. (1952) Soil mechanics and
plastic analysis or limit desi -

gn
Quart. Appl. Math., Vol. 10, pp. 157-165.

PILOT G., MOREAU M, (1973) 1rLa stabilité des remblais
sur sols mous. Abaques de calcul -
Eyrolles, Paris.

RADENKOVIC D. (1961) rThéorémes limites pour un maté-
riau de Coulomb -~

C.R. Ac.Sc., Paris, pp. 4103-4104.

RADENKOVIC D. (1962) Théorie des charges limites -
Séminaire de Plasticité, J. Mandel ed.,
P.S.T. Min. Air n°® 116, pp. 129-142.

RAULIN P, TOUBOL A. et ROUQUES G. (1974) calcul de
la stabilité des pentes en rupture non cir-
culaire.

Rapport de Recherche n°® 36, L.C.P.C., Paris.

RENDULIC L. (1935) Ein Beitrag zur Bestimmung der
Gleitsicherheit -
Der Bauingenieur, n°® 19/20.

SALENGON J. (1976) calcul & la rupture -
Cours D.E.A., E.N.P.C., Paris.

SALENGON J. (1978) calcul 4 la rupture et analyse
limite ~
Cours E.N.P.C., Paris.

SALENGON J., COUSSY 0. (1978) analyse de la stabili:
des ouvrages en terre par le calcul & la
rupture - & paraitre.

TAYLOR D.W. (1937) stability of earth slopes -
J1 of the Boston Society of Civil Engineers,
Vol. 24, n° 3, pp. 337-386.

TAYLOR D.W. (1948) Frundamentals of Soil Mechanics -
John Wiley, 1960.



