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Abstract—The industrial importance of cold extrusion is now well known. Unfortunately. the productivity
of the process is restricted by the manifestation of a specific defect: the central burst. which is closely
linked to ductility and to a depressive stress state in the core of material. An accurate knowledge of these
facts is therefore necessary to the extension of the process. In this paper. we develop a slip line field model
in order to calculate exactly the hydrostatic pressure on the axis of the system. Its peculiarity is that it can
be associated with a mechanical test of material ductility. This method is developed for axisymmetric
extrusion through conical dies, with a perfectly plastic material, obeying Tresca’s yield criterion with its
associated flow rule and with the Haar-Karman hypothesis. We assume that the pressure has a linear
distribution along the die, which makes it possible to construct the slip line field. We then derive the
velocity field, and determine by trial and error the pressure gradient along the die so that the velocity field
satisfies all the boundary conditions. We apply this method to several extrusion ratios and die-angles: we
compute the stress field in the deformed regions, obtaining an upper-bound for the extrusion pressure and a
value for the hydrostatic pressure on the axis. Comparisons with experimental results show quite a good
agreement belween theoretical and experimental values of the extrusion pressure. The method will enable
us in a future work to introduce friction along the die, metal work hardening and different profiles of the
die.

INTRODUCTION
ExtrUsion through conical dies, with the apparition of defects such as central burst, has been
studied by several authors[1-3]. B. Avitzur[l] has given a criterion for central burst, by an
upper bound approach. However, it appears that the knowledge of the stress field, in particular
of the hydrostatic pressure in the vicinity of the axis, could be of great help in such a study,
since it would make it possible to take the ductility of the material into account. It is obvious
then that the slip line field method must be used.

The basic equations for an axially symmetric plastic flow are given by Hill[4]. For Tresca’s
material under the Haar-Karman hypothesis, punch indentation problems were investigated by
Shield[5], Eason and Shield[6] and Spencer[7]; Szczepinski et al.[8] dealt with the plastic flow
of bars under tension. Murota[9] gave a first analysis of axisymmetric extrusion, but had not
solved the problem of an exact calculation on the axis.

In this paper, the classical slip line equations are used, under the assumption of a rigid
perfectly plastic material which obeys Tresca’s yield criterion with its associated flow rule; we
make the Haar-Karman hypothesis.

Incremental arcs of slip lines are treated during the integration as arcs of circles; this gives a
great accuracy in calculations and removes the indetermination of terms (dr/r) on the axis of
symmetry (r=0). '

A detailed analysis of axially symmetric plastic flow for Tresca’s material is given by
Shield[5].

We just recall the basic equations in Part 1 of this paper. Part 2 will show the resolution, by
means of a computer, of the final differential equations, yielding the slip line field with its
associated stresses and compatible velocities. The program finally prints out the following
results:

Coordinates of the slip line field nodal points.

Principal directions at the nodal points.

Hydrostatic pressure at the nodal points.

Velocities at the nodal points.

Extrusion pressure.

Pressure distribution on the die.

L. Felgeres, Cenire de Recherches Voreppe, Aluminium Péchiney, BP 24, 38340, Voreppe.
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It is only necessary to specify the die geometry and boundary conditions, the calculation

. being performed in an iterative manner.
In Part 3, we present the results obtained for different geometrical conditions and compare
them to experiments on extrusion pressures made by Guimier[10] (Régie Nationale des Usines

Renault).
Part 4 is devoted to a critical analysis of the method and of the possibilities of further

extending the model.

1. BASIC EQUATIONS

1.1 Notations
Using cylindrical coordinates (r, 8, z), the velocity components are denoted by: U, U, U.

(see Fig. 1).

Z
.

Fig. 1.

Due to the symmetry of the problem, and the material being assumed isotropic and
homogeneous

Ur = Ur(r~ 4)
Uy=0
U.=U,(r, 2)

So the strain rate tensor is

= 0 Uir 0
ye 0 aU.
9z !
where
13U, | aU.
7’:’_5( 3z ar )

and 9 is therefore a principal direction for €
The stress tensor is . Its principal values are denoted by o, o5, o3, with the convention

o, = g, = 0y (tensile stresses positive).
The material is assumed to obey Tresca's yield criterion

og—o3<2k=Y (yield stress)
with its associated flow rule.

Since we use the rigid plastic model, it follows that 8, a principal direction for € is also a
principal direction for o, wherever é#0

—
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* gy and oy denoting the principal stresses in the (r, z) plane, we can define two parameters p
and ¢
__Ur+az__al+all] 4
p= 5 5 (1)

é = (r, m)—%= (r,e) (see Fig.2)

where o; = oy

1.2 Hypothesis and basic equations
The stress components satisfy the equations of equilibrium

é_qi_*“;"rz_}_gr—o—ﬂ-__d

ar 9z

M

07, 00 | Tr:
sy =
ar a9z r 0
(body forces and inertial terms are negligible), and in the plastic regions, Tresca’s yield criterion
is reached
o —oy=2k=Y.

But the problem cannot be solved without another relation (since we have four unknowns
Oy Ogs Oz Trz)

The Haar-Karman hypothesis states that in the plastic regions, oy = 2% and is equal either
to o, or to o3: on Tresca’s hexagone, the stress state is represented by points A or F (see Fig.
3).

This hypothesis fits in with the form assumed for the velocity field where Uy =0 (see
Salengon{11}). ’

Since we have, in the case of extrusion, U, <0, it follows that

.. U
ez=eg=—r—'<0,

the stress-state corresponds to point A and so

o, =0t 2k ‘
2
g3 = 02 (§)
g
&
L2k, 0129
£ =A,-A,0)
’ ) o
i(07,<Tz ARore O Ao
: FI Y€ =M, 0, )
i e
¢ oy n Iy © 0BT
[on
Apnzo £
s Fig. 3.

#Notice that the hydrostatic pressure P is equal to
P=-{o+to-+ 0'3)/3 = 2[7/3“(11;/3.

(£The distinction between arabic and latin subscripts (1, 3} and (L. 111 is, therefore, no longer to be made.
§The hydrostatic pressure P is now equal to
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The equations for the velocity field are derived from the flow rule and can be written as

Incompressibility of the material:
) 3
Isotropy of the material
aUJ oz +dUJor _
aUJor—aUJoz ot

Positivity of the two parameters A and u which define the strain-rate (see Fig. 3)

1.3 Final equations

Fig. 4.

The stress state can be represented on Mohr’s circle (in the (o, 7) plane) as shown in Fig. 4.
The stress components can then be written
o,= —p—ksin2¢
0.= —p+ksind
4
oo=—p—k 4)
T, = k cos 2.
By substituting relations (4) into eqns (1), we get a hyperbolic system for the two functions p

and ¢ in the two variables r and z. The characteristics are found to be - and 8- lines and the
following differential equations are satisfied

dp+2kd¢~é(dr—dz)=0 on an «- line
k .
dp —2kdo —7(dr+dz) =0 ona §- hne.

The system of eqns (3) is also hyperbolic for the two functions U, and U,, with the same
characteristics, and can take the form

dU - de)+%(Udr— Wdz)=0 on an a- line
| 6)
dW+Ud¢+7—;(Udz+ Wdr)=0 on a 8- line

where U and W are the velocity components along a- and - lines.
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The positivity conditions for parameters A and u imply

_Q_Q+HW+ Uéib___w%> __[_]_,2

=

=
dsg 38, 05, dsg r

0. (7

1.4 Boundary conditions
1.4.1. On the axis. The siress state takes the form:

¢=mld o,=0, o.=o0, (greatest principal stress)

Two cases are possible:

First, conditions on AB make it possible to determine a field which reaches the z-axis at
point F (Fig. 1); F is the only point of the plastic zone on the axis, and a special procedure is
used to solve system (5), which is indeterminate for r=0.

When the extrusion ratio increases, the plastically deformed region on the z- axis no longer
reduces to point E: the slip line field is then bounded by the «- line BE and the - line AF (Fig.
3).

Fig. 5.

So we can construct the slip line field in regions EFG, FGCH and HCA.
1.4.2. On the die. Conditions concerning the stress field are: an arbitrary linear distribution
of p is assumed on the die, of the form

P =pot 7 (P(A)=po)

where p, is the value of p at point B, I the length BA of the die and x the abscissa along the die
with B as an origin.

A coefficient of friction can be introduced, as will be shown below (Section 2.1).

1.4.3. On the boundaries of the slip line field. We denote by df, the z component of the force
acting on the cylindrical element of surface 2wrdr. The value of py will be calculated from the
condition

df.=0
BE
since there is no traction on the rod at the exit.
The extrusion force is given by

f dfz = Fexlrusion-
AF

No velocity discontinuity is admissible on the two boundaries AF and BE, as indicated by
Shield[3]; the result can easily be obtained by looking at the propagation equation for the
velocity jump derived from (6). So the velocities on AF and BE are respectively

Ven(ry
and

Vei= (1= R) Very Where R, is the reduction
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1.5 Iterative procedure

We assume an arbitrary slope [p(A)— p(B)]/! for a first calculation of the stress and the
velocity field. The program then improves the value of this slope by a bissection type method
until the velocity component normal to the die, denoted by V,, becomes negligible.

2. COMPUTATION

2.1 Initiation :
The slip line field is constructed starting from the boundary conditions on the die, where p is

fixed as indicated in 1.4 and 1.5, and ¢ depends on the friction coefficient: the angle formed by
the normal to the die and principal direction (o) is & (Fig. 6b) so that the shear stress on the die

is ik (Tresca’s friction) (Fig. 6a); that implies
1 .
6= 3 Arcsinm, and so
7 1 -
bap =1 +Z+§ Arc sin m (Fig. 6b).

I"d

Fig. 6(a).

=

Fig. 6(b).

The points A and B are Prandtl’s singularities and their ¢-parameter is a function of the -a
or -B line considered (Fig. 6b); in the computation, they are initiated by an angle increment

H(A) = ¢(A) + 00
P(A) = $(A)+28¢

and so on: at each fictitious point A; corresponds a different p-parameter deduced from eqn
(1.5), for AA; is a degenerated a-line

[p(A) = p(A)]+2[P(A)— d(A)]=0.
Equivalent equations may be written for points B;, which form a degenerated B-line.

2.2 Integration
2.2.1. Calculations. The approximate slip line field is generated by a mesh starting from the

die surface: from the two diagonal points M, and M, of the mesh, point M is calculated as

shown in Fig. 7.
Arcs MM, and MM, are treated as if they were arcs of circles: this makes the integration

very accurate as shown in Appendix 1.
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2.22. Z-axis. The accurate calculation of a point on the z-axis can be described as follows
- (see Fig. 8 and Appendix 2).

A test on ¢ determines a point R near the z-axis where the angle ¢ approaches (7/4).

QS and SR are a (respectively B) slip lines along which E, (respectively E5) are associated
with the interpolation parameter n (respectively ).

E (respectively E'} is the point on the axis corresponding to the B-line issued from E,
(respectively the e-line issued from E,).

n and ¢ are adjusted so that E and E' first have ¢ parameters equal to #/4, and second
E=E.

The approximation by circles also removes the indetermination of terms like (dr+dz)/r
when integrating system (5) along the slip lines for r = 0.

Lines CE and BE can then be calculated.

2.2.3. Velocity fields. The velocity components are derived from system (6), by means of a
first order integration. Then, as said in (Section 1.5), the condition assumed on the die will be

checked.
Finally, the velocity field wilt be admissible if conditions (7) are satisfied.

2.3. Programming
The general scheme is given below:

Arbitrary boundary
conditions on the die

Change in pressure
- gradient on the die

Construction of the
slip line field

Point F on axis?
calculation ot AF, BE

Boundary conditions Extrusion pressure
on stresses on the axis

Construction of
velocity field

Velocitiest no

accross the die= Q¢

no

¥

Solution is an
upper bound$§

iDifferent die geometries were studied, for which it always occured that E = F was the only peint of the
deformed region on the z-axis.
+Test on velocities is

j Valdy =0.
die

$As the stressficld has not been constructed in the whole body. the solution is to be considered only as
an upper-bound. However, as is often done, the heuristic assumption is made that the stress field so
obtained in the plastically deformed zone is significant.
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Our present program gives the final results in 50 seconds on a UNIVAC 1110 computer, for
given die geometry and friction condition.

3. RESULTS
In Fig. 9 we show an example of a computed slip line field for a 30% area reduction, and
with the die geometry: ¢ = 20°. Angle increments at A and B are 8¢ = 1.5°. The pressure drop
along the die 1s: p(A)—p(B)=0,25 Y. ,

Fig. 8. Fig. 9.

The great importance of arriving exactly on the axis is shown by the following results on
points Q, R, S, E (Fig. 8: p(Q)Y =P(R)/Y = —0.591; p(S)/Y = ~0.495 and p(E)Y =
—0.815, where ro=10.060, rp =0.068; r¢=0.114 and rz =0 (reference ry = Rewry=1). The
calculated summation on normal die velocities is less than 6.107%.

Experimental results on extrusion forces were given by the work of Guimier et al. at the
REGIE RENAULTI[10]. Although the friction coefficient is not easy to determine experiment-
ally (and taken equal to zero in our calculation), the results are in fairly good agreement. The
value of the yield stress Y has been averaged in the form

y = &8 (10)

where a traction test determines the quantities A and .
The total equivalent strain € has been averaged in the form

€=log(l-R)

(R: reduction ratio)

The Table 1 gives

I.- Calculdted results P Y (extrusion force per unit area).

2. Experimental extrusion force F (X 10°N).

3. FlAoY, (Aq: initial area; Y: average vield stress).

The slight discrepancies observed may result from the hypothesis of a perfectly plastic
metal, the yield stress of which is assumed constant throughout the section. Moreover, it is to
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TABLE 1
Geometry XC42E  Y=10%Pa | XCA2E ~ Y¥=5.10%Pa | 30CD4  ¥=8.10%Pa
P/Y

S F F/AY F F/AGY F FIAY
20 2] 10°f 0.3 |36.5 ] 0.35 215 | 0.33 33.5 0.37
40 %] 20°| .63 |67.5 .63 57.5 .72 64.5 .62
40 4| 30°f .76 |70 .65 58 73 64 .62
40 %| as°| .94 |71 .66 65.5 .82 73.5 n
80 | 30°| 1.1 103 1.11 118.5 1.05
60 %| 45°) 1.3 ]139 1.27 122 1.32 136. 1.21

be noticed that the extrusion force is not constant during the forging process, and an average
value is taken into account (Fig. 10[10]).

It must be also recalled that the calculation was performed assuming perfectly smooth dies.

The model has also been tested by means of incremental visioplasticity experiments: rods
are deformed in a first extrusion and circular grids are etched on two half-rods, on which an
incremental deformation is made; this makes it possible to draw the slip lines directly[12]. This
method shows a good qualitative agreement with our results and gives some information on the
friction law, but its quantitative exploitation remains difficult.

/Fmax

Faverage

'
'
1
'
)
'
'
'
|

Fig. 10.

4. DISCUSSION

As said above, the problem of strain-hardening may be of great importance, particularly in
annealed materials. On pre-hardened materials, on the other hand, the yield stress probably
varies throughout the section of the body and this is one more error factor. The model should
be improved by taking into account the heterogeneity of the initial yield-stress: moreover, a first
calculation performed under the non-hardening hypothesis gives an approximation of the
strain-rate field in the plastic zone; during a second iteration, the integration can be carried out
along the flow lines to introduce a strain-hardening law: Y = g(é), where € 1s the total
equivalent strain.

Industrial applications of this work may be of great interest: as mentioned above, the first
one was to establish a criterion for central burst, taking the ductility of the material into
account, by means of an accurate knowledge of the internal stress state. Also, the method
makes it possible to test different die contours, and to predict which one optimizes the
extrusion pressure or favors the occurrence of defects.

The knowledge of the stress fields in a plastified zone may also lead to a first prediction of
the residual stress field in the worked material, and of its metallurgical state.
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* coordinates of point E’
r=0
z'=z2+p (cosf}—cos éz)

with
, 2
pl=— :
sin ——sin ¢»

*The calculation of p' is made by integrating eqn (5.1), with a term
I= f dz —dr
B T

Along arc E,E’
r=p' (sin%» sin d))

=z'—p (cos%—cos ¢)

z

RN
ool

),

)

TS
1:=J’ Md¢=w2)f
&2 T & 2 cos G‘_S..;.
sin 7 = sin o

5o that

I

that removes the indetermination for ¢ = (w/4) and so
P’:P2‘2k<§“"¢z) - .

An analogous calculation can be made for point E, for a given value of n; E, is defined by
&1 = do —nldo — ds)

'

n and ¢ are then optimized so that
and
(p—p') minimum.




