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Bearing capacity of a footing on a ¢ -0 soil with
linearly varying shear strength

J. SALENCON*

This Note is concerned with the bearing capacity of a strip footing on a ¢=0 soil when the
shear strength C increases linearly with depth from zero, i.e. according to the formula
C@)=Cyzla . . . . . . . . . .M
The width of the footing is B, the bearing capacity is Q, and the corresponding average
pressure P, = Q../B. ’

The determination of Q,;, is made within the framework of classical limit analysis, the
material obeying Tresca’s yield criterion with an associated flow rule.

* Maitre de Conférences, Ecole Polytechnique, Paris.
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Fig. 1. Kinematic field: net of orthogonal zero extension lines
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Fig. 2. Stress field

KINEMATIC APPROACH

Let us consider the class of symmetrical kinematic fields with no volume change, constructed
by use of the orthogonal net of zero-extension lines «, 8, shown in Fig. 1 and depending on
parameter 3.

The footing is given a downwards vertical velocity U; the triangle mAB is undeformed and
slips along mB with the velocity U/sin §; under the footing the material slips with the velocity
U/tan & along mA ; the velocity jump across mBCD is tangent and equal to U/sin §; ABC de-
forms plastically with no volume change and the corresponding velocity field is determined by
means of Geiringer’s equations

dv,—v,d0 =0 along « lines
dvg+v,d6 =0 along B lines
thence
vy =Ufsin g, v; =0 over ABC

ACD is undeformed and slips along CD with velocity U/sin 6.

The rate of dissipation is obtained by integration along mBCD and over ABC, since the
contribution along mA is zero, however rough or smooth the footing may be, as C(0)=0,
hence

2
P3) = ClUlzia(l/2+\/§sin S+sin?8) . . . . . .
for the whole symmetrically deformed area, from which, applying the kinematic theorem of
limit analysis,

PunsCI%(1/2+\/5sin8+sin28),V8e(0,%) LB
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The minimum value of equation (2) is reached for §=0 which corresponds to the limit of the
kinematic fields considered. It then follows from equation (3) that

1 . B
Pun;szcl—a . . . . . . . . . . (4)

STATIC APPROACH

Let us now consider the discontinuous symmetrical stress field in Fig. 2. Discontinuity
lines are either horizontal, vertical, or inclined at +/4 to the x-axis. The stresses in the dif-
ferent regions (tensions positive) are

region 1: o,, = C;x/a, 0. = Ci1X/a, 0. = —Ci2z/a
region 2: o,, = C,; 2x-+‘-lB/2, 0. = C; 22— B2 Oox = 0
region 3: 0,, = C; 2x4;B/ 2, Gux = 0, G, =0
region 4: o,, = C,2x/a, Oy = —Ci2zfa, o, =10
region 5: o,, = C,2x/a, 0, =0, 0, = 0
region 6: o,, = 0, O = —Ci2zla, o, =0
region 7: o,, = 0, Oux = 0, 0. =0

o, is zero everywhere, and o,, may be taken equal to o,,.

This stress field is statically and plastically admissible. The corresponding pressure under
the footing along mA is

px)=—-Cxfa . . . . . . . . . .0
and by use of the static theorem of limit analysis one gets
1 B
P ult > Z Cl E . . . . . . . . . . (6)
CONCLUSION AND COMMENTS
Comparing equations (4) and (6)
1 _,B
P ult — Z C1 21" . . . . . . . . . . (7)

The exact value of Py, is thus known. This result was indicated by Salengon et al. (1973) and
by Davis and Booker (1973).

According to a general theorem (e.g. Salengon, 1974) under the assumption of existence of a
limit equilibrium solution, the kinematic and static fields which lead to equation (7) should be
associated. It is worth noting how this property is true here: in the static field of Fig. 2,
region 1 isin a state of limit equilibrium where mA is an « line (as 0., <0), point A in regions 4
and 6 is at limit equilibrium too; as 8==0 in Fig. 1 does not allow any movement, this case has
to be considered as a limit. Therefore a complete solution to the problem under concern con-
sists in the stress field of Fig. 2 which is associated with the limit of the kinematic field of
Fig. 1 when 8 = 0. (As far asis known, it is the first example of such a kind of limit equili-
brium solution, which is obviously due to the condition C(0)=0.)

In this complete solution the deformed region squeezes to mA. According to Hiil’s (1951)
and Mandel’s (1965) theorems, the distribution of stresses along mA is the exact one. It
follows then from equation (5) that the pressure under the footing increases linearly with
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horizontal distance in the same ratio as the shear strength increases with depth. This con-
firms the conjecture made by Davis and Booker (1973), although the stress field proposed by
these authors is not correct.

- It was pointed out (Salengon et al., 1973) that in the case of a weightless Coulomb material
the resolution of the same problem as considered here leads to the formula

Pu1t=-21— y(¢)cotan¢Clg e ®

Assuming'thc continuity of the solution of the problem with féspect todasa physical likeli-
hood, it follows from equation (7) that N, behaves as ¢/2 in the vicinity of ¢ =0 both for rough
and smooth footings.
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