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LIMIT ANALYSIS BY FINITE-ELEMENT METHODS

M. Frémond(*) J, Salencon!+)

INTRODUCTION

Limit analysis - often in an implicit form - has been for long the
principal application of the theory of Plasticity to Soil Mechanics.
Through the so called statical and kinematical theorems, lower and upper
bounds for failure loads can be obtained. As is well known, when dealing
with plane strain or axi-symmetric problems statical or kinematical solu-
tions are most often obtained using the method of characteristics - fol-
lowing the theory of slip line fields - or more or less roughly construc-
ted by means of discontinuous fields, e.g. using slip circles. The latter
method is the only one which is practically used for true three-dimensio-
nal problems.

In this paper the Authors intend to describe another approach by
limit analysis, based on the kinematical theorem and using finite elements
in a natural way; it is hoped that this method could be applied as well
as the method of the slip surfaces and the results obtained either way
could complete each other.

The study is made on the example of a plane strain problem for
Tresca's or Mises's material. It appears that the knowledge of the gene-
ral features of some exact solutions already available is of a great help
when devising such a method : for example it shows the necessity of intro-
ducing discontinuities in the velocity fields. In the general case the
problem is then reduced to convex programming of a non trivial kind.

The present attempt should be related to the developments of limit
analysis for structures composed of beams (cf. Gavarini, 1972), or for
plates (Hermann, 1967; Anderhepgen, 1969, 1970; Anderheggen & Knopfel,
1972; cf. Save, 1972).

SURVEY OF LIMIT THEOREMS

Let us consider a system made of a material satisfying Hill's
maximum work principle (equivalent to : convexity of the yield criterion
and normality of the flow rule) and let us assume that this system under-
goes a loading nrocess depending on n loading parameters Q.. Q is the
load vector. 1

The fundamental results of limit analyvsis theory can be stated as
follows (Salencon, 1972) :

Any limit eouilibrium solution for the system = (o : stress field,
d strain rate field) minimizes the functional

(*) Laboratoire Central des Ponts & Chaussées, Paris, France.
(+) Laboratoire de Mécanique, Ecole Polytechniqué, Paris, France.
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I(c.d) = P(a) - 0(o)n(d) (1)

among the set H of statically and plastically admissible (S.P.A.) stress
fields, and the set H' of kinematicallv and plastically admissible
(K.P.A.) strain rate fields.

P(d) is the rate of dissipation for the field d.

The load 0_corresnond1na to such a solutinn is & 1imit load and o
is the associated strain rate for the svstem in consideration.

Then the statical theorem can be stated :

The vield locus - consisting of all the limit loads - of the sys=-
tem is the boundary of the convex K of all loads which ran be enmuilibra-
ted bv S.P.A. stress fields.

From this. one derives the method for anoroaching the vield locus
from the inside (fi%.la). which leads to a problem of maximization in the
case of radial loadine (fig. 1b) :

Q lim = Q°Max{\(a)|2(s)Q° = Q(a). o € H} (2)

/yleld locus

- ..,

Figure 1. Statical method.

The kinematical theorem is also deduced from (1) :
In the arare {O} of load vectors. the set K is the intersection
of the half-snaces Aefined for all K.P.A. fields 4. bv
P(d) - 0 ald) >0 (3)

This leads to the method for anvroachineg the vield locus of the
svatem from the outside (fie. Pa). which introduces a nrablem of m1n1mi-
zation wvhen one considers K.P.A. fields correspvondines to the same MY
(fig. 2b) :

the vlane
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0 g° - Min{P(a)la € H', q(a) = 40} = O (k)

is tangent to the yield locus.

wE

a) b)

Figure 2. Kinematical method.

OUTLINE of PROPOSED METHOD

It is natural to try constructing stress fields or strain rate
fields for the above mentionned theorems, by means of finite elements.
From this point of view the kinematical theorem seems more convenient as
it allows us to draw the mesh in a priori restricted regions, the rest of
the system being riven a solid motion defined by the boundary conditions.
This possibility proves very useful when dealing with systems of great
dimensions or even unlimited in some directions.

The application of such a method will be studied on a plane strain
problem for a system made of Tresca's or Mises's material the limit shear
stress of which is noted k.

It is to be reminded that for such a material, P.A. strain rate

fields are all the fields with no local volume change: tr d = div v = 0

Besides, generally speaking, it is known that the kinematical theo-
rem allows us to use fields d derived from discontinuous P.A. velogity
fields v: in the case of Tresca's (or Mises's) material the Jump [ vl has
to be tangent to the surface of discontinuity the rate of dissipation for

Mises's material is given by
P(a) = [ kv@dijdji aQ + [ x| [Vl |dw (5)

where the first integral is taken over all strained regions, and the lat-
ter concerns the jump surfaces. Equation (5) is also valid for Tresca's
material in plane strain, which will be considered in the following sec-~

tions.
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AN EXAMPLE

The problem which is chosen as an example and as a test for the
method, though it may seem rather academic, is of importance for soil
mechanists as it is connected with the bearing capacity of a foundation
near a slope, and with the passive pressure on a retaining wall for cer-
tain conditions of motion.

It concerns a smooth rigid plate OA (width 2a) acting on an infinite
rectangular wedge constituted of weightless Tresca's material. Separation
is allowed between plate and soil. The flow rule of this contact is asso=
ciated and allows us to use classical limit theorems.

\ Introducing the resultant force N and resultant moment M with res-
pect to the middle point I of the plate, one can use the non dimensional
load-and strain-parameters :

Q, = N/ak, Q, = M/aZk
(6)

al = —vv(I)/lmla. 62 = w/|lw|] = sgn w

where w is the angular velocity of the plate; the lengths being compared
to a, and the rate of dissipation to |w|a’k.

Yoo 2a _
M ,;E

O}

Figure 3

Results concerning the yield locus of that system (Salengon,1973),
obtained using more or less classical methods, are shown on fig. L.

C) is the exact yield locus corresponding to w > O, wherever the center
of rotation Q may be :

M/a2k > O, M/a2k = N/ak(1-N/Lak) (1)
() is the exact yield locus for w < 0 and x(0)/a > 1.584 :
M/a2k < 0, M/a2k = =N/ak[1-N/(2n+L)ak)

(8)
N/ak < 2.136
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@ is an approximation of the yield locus from the outside. It is the
continuation of parabola (8) for 2,136 < N/ak < k&

@ is an approximation of the yield locus from the outside : a vertical
tangent at the point (N/ak = 4, M/a2k = 0).

@ is a numerically obtained approximation from the inside.

‘rM/azk
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i Through the use of slip circles, better approximations of the
yield locus from the outside are obtained for :

w <0, x(Q)/a < 1.584 (9)

For instance, for x(Q)/a = O, which corresponds to ég= 1, &g = =], the
best slip circle is classically known and yields the equation (10) for
plane (4) which is drawn on fig. L

N/ak - M/a2k - 5.56 = O (10)

With the finite element method for limit analysis proposed in the
paper we shall study the range (0),

APPLICATTON OF THE METHOD

A mesh of t triansular elements is drawn over the cross section of
the wedge as shown on fig. S. The deformable 7mne is redured to a square
of sufficient width. Using that m~ch, vavious kind of K.P.A. fields were
constructed which are des~ribed below, the velocity beins enual to zero
outside the meshed sanare.

O A
1 2 3 4 5 6

Figure 5

1st Model : Linear variation of v. Div v = 0 on each triarrular element

™e velocity v varies linearly in each triancle, and is continuous
on the whole wedmse. Such a field is described by the 2n-component vector
u built with the values of the velocity components at the vertices of
the mesh. The field will be striectly P.A. if div v = 0 is true everv=-
where. The strain rate being constant on each element. this vields t
linear conditions.

Boundary conditions vrescribe the values of some comnonents of u at
some of the vertices along the boundary of the mesh :
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Du = ud

vhere D is a projection matrix, and ud is the vector of the prescribed
component values. In fact, to account for the possibility of sevaration
along OA, Boundary conditions should be divided into two parts Dju = u? and
Dyu < u¥, but this does not affect the reasoning anyway.

The rate of dissipation for each element is the square root of a qua=-
dratic form: thence :

. t
P(a) = [ W/2a,.a.. ao + 0 = ] vh'Au = Py(u) (11)

J a1 j=1
The number of degrees of freedom for minimizing P; is very small in
this model because, as it is known (Anderheggen & Knénfel, 1972), t/n -+ 2
when n — o : therefore this number will be of order vn when n increases.
Thus this model is of little practical use but leads to a variant, with a
reduced number of conditions.

. . - -> . > hg
2nd Model : linear variation of v; Div v = O in the mean sense on each
square element.

The only alteration to the 1lst model concerna the condition div v =o,

Div v = 0 in the mean sense on a square element made of two triangular
elements of the mesh, such as 2389 , if the integral of div v over this
square element equals zero.

Considering fields which satisfy only this reduced condition on each
square element, we get for u the condition

Bu =0
where B is only a(t/2)x2n matrix.

These fields are no longer strictly P.A., but they tend to become
Pvo VhEH n > o,

The problem to be solved is then

Inf{Py(u) | Bu =0, Du = ud} (12)

which was transformed into the saddle-point problem (13) :

Inf, sup{P;(u) + uTBu} (13)
_.d
Du=a u
is
where u is a t/2 vector. Problem (13) solved using iterative methods (des=~
cent method with respect to u, gradient method with respect to u).

The dualization process used to go from (12) to (13) can be given a
mechanical interpretation which helps to understand the meaning of solu=-
tions so obtained.

Let us consider a "standard" material with vield criterion defined by

1/2 tr s2 < k2, 32" < tr o < 32"
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i.e. Mises's Criterion with restricted value of the mean stress tr o/3.
Any strain rate field is P.A. for that material and the rate of dissipa~
tion is

P(a) = [ [evBa  a.; + Supfe tr o | 27 <2 < ¢'fan (1k)

For a system made of such a material, the kinematical theorem will
lead to the minimization of (1k) among all K.A. veloclty fields, and after
discretization and taking the mean value of d1v v to :

Int {Py(u) + Sup _ (2 Bu}}
Du=ud L <2<t

where ¢ is a t/2 component vector.

+ Then in order to recover Mises's material one only has to make -2
and £ tend to infinity. This brings to problem (13).

The method was tested on the example. The width of the meshed square
was la.

In a first cane, for x(Q)/a = 2, w > 0, (62 = 1, ag = 1) the exact
solution is already known, the minimum value of P being 4. The method gives
the value P;= 4.1 after 30 iterations, and the corresponding field is very
similar to the exact one.

In a second case for x(f1)/a = 0, w < O, using a 121 nodes mesh, TO
iterations lead to the value P} = 7.312, whereas the slip-circle method
yields the value P = 5.56 a=s alreadv said.

From these two trials one can see that : for the 1lst case, as the
exact velncitv field is linear and continuous, the rigourous method of
the 1st model cannot miss it.. Since this solution is reached rather quick-
lv by the 2nd model, we can have rood confidence in the two apnroximations
concerning div v = O made in this model; for the 2nd case. the exverience
derived from the knowledee of exact snlutions for similar oroblems makes
us believe that a discortimiity lire should exist startine from A. The
model nrovosed hers is evidentlv hadlv suited to describe such a solution.

3rd Model : Discontinuous veloecitv field. Constant velocity on each trian-
zu]ar P]em»nt.

The velocitv is constant on each triansular element. discontinuity of
the velocitv mav ocrur between adiacent elements. Such a field is described
bv the 2t-vector i1 built with the components of the veloc1tv on each ele-
ment. In order to et a P.A. field the velocitv iumms [vl must be tangent
to the sides of the triangles: this gives the condition

Rl = 0

where B 1s a sx?2t matrix.

Boundarv randitions are satisfied In the mean sense

-~ a
Dii = 1O

The rate of dissivation is
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P(d) = [ x| [V] |dw = R °ii|ﬁi°ai| = P, () (16)
ig ™ )

the numerical problem is then :
Inft{P,(d) | BG = 0, D& = Gd} (17)
vhich can be reduced to a linear program in the canonical form.
This model was tested in the case x(Q)/a = 0, w <O :

for a width of the meshed square of 3a, and a mesh of T2 triangles, one
gets the minimum P, = 6.75

for a width of 2.5a and 200 triangles, one gzets P, = 6.8125,

for a width of 2.22a and 800 triangles, after 3220 iterations, one gets
the value P, = 7.9205.

All these results are worse than the value obtained by slip cire
cle method. Moreover, we see that the minimum of P, increases as the
number of elements increases. This is no paradox and proceeds from boun=
dary conditions being better satisfied as the mesh is refined.

This model is not adequate; it allows us minimizing over a wide
range of discontinuity lines, but deformation of the elements themselves
is impossible. Another model was imagined combining features of the two
vreceeding ones.

. s > L . .
ith Model : linear variation of v. Div v = 0 in the mean sense discon~
tinuous velocity.

A curve T made of horizontal or vertical straight boundaries of
elements is drawn through the mesh. The velncity varies linearly R
on each element and can admit discontinuity on I'; the velocity Jjump [ v|
must be tangential to I' on account of div v = 0. It is worth noting that
the velocity jump is continuous and piecewise linear alone T'; it is equal
to zero at any vertex of T'. Such a field is described by a vector u built
with the velocity components at the vertices of the mesh, the nodes situa=
ted on TI' appearing twice for the vertical or horizontal components.

The rate of dissipation is given by :

(@) = § VuTau+ J £(]u.-u, |) = P3u) (18)
i t ik K

(R 1

Boundary conditions, and div v = O in the mean sense are expressed as
in the 2nd model, and the numerical method used to solve the problem is

the same.

The minimization of P3 for a given line T' can be combined with the
optimization of the shape of T. '

For the vresent problem, in the different cases which were tested,
it is natural to have T starting from A. Various likely shanes were
tried. The width of the meshed square was La.
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For x(Q)/a = 0, w < 0, with a mesh of 200 trianeles, the value 4.93 was,
obtained for P3 after 230 iterations. This sives the plane (19) drawn on
fig. b :

N/ak - M/a’k - 4,93 = 0O (19)

For x(Q)/a = -2, w < 0, with a mesh of 72 triangles, the value 13.03 was
obtained. The shape of the discontinuity-line and the velocity field yiel=-
ding this result are shown on fig. 6. It corresponds to the plane (20) on
f1g. N (q° = 3, q° = 1) :

3IN/ak - M/a’k - 13.03 =0 (20)
o\

Tn the first case the result is hetter than the value 5.56 obtai-
ned usins a slin-circle, but it is too zood now as it apvears that the
plane (19) intersects the statical apnroximation () ! This could seem
surnrisine since the method is based on the kinematical theorem, but it
should be remembered that the fields considered in the model are only
approximately P.A. This shows the limitations of the method.

In the second case the nlane (20) proves to be very zood. Of course
it should not be taken as an accurate avproximation from the outside,but
as an approximation with some uncertainty.

It should be emrhasized that we are lookines here for an accuracy
that would not be necessary in usual cases, since the already available
results for the examnle chosen for testinz the method could be considered
as sufficient for anv nractical amnlication.

COMMENTS

Four models have been nrosressively studied in this paner. The
last one appears the most adequate, as it makes use of non zero strain
rate fields derived from discontinuous K.P.A. velocity fields. This is in
accordance with the fact that for some exacts solutions available, lines
of discontinuity drexist but do not concentrate all the deformation of
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the system.

It is worth noting that the conditions defining K.P.A, fields are
dealt with differently in the four models: only the first model does ri-
gourously fulfil all conditions but it is of little practical usej in the
3rd model the fields are rigourously P.A. but satisfy boundary conditions
in the means sense only; with the ith model, boundary conditions are exac
tly gatisfied but the fields are P.A. only in the limit since the condition
div v = 0 is taken in the mean sense and dualized. :

This does not allow us to use the kinematical theorem rigorously:
we cannot be sure that a so obtained minimum of P. is superior to the
true minimum of P, i.e. we cannot be sure to have an approximation of the
yield locus from the outside. The mechanist should feel if the approxima~
tion is sufficient, as he always has to do with numerical method . Never-
theless, the results obtained so far using mean values and dualization
give confidence in that approach which appears the most efficient one
available at the moment.

Improvements in the hth model could be obtained by diversifying
the possible shapes for ©' as it has been seen that the results are highly
dependent on it: also the numerical procedure could certainly become more
efficient, as for the present time calculations are still rather long.

As a conclusion, the Authors believe that finite element method
can lead to new develorments in limit analyvsis, because of its ability to
use elaborate fields in a systematical way. There are a lot of problems
of practical immortance and especially problems connected with soil mechae
nics, for which one would preatly appreciatéfew result sufficiently
accurate for practical use.

The method is indeed based on the classical 1imit theorems which
are not oractically valid when dealing with soils obeving Coulomb's cri-
terion. Tn that case we should have to refer to the extended limit theoe
rems given by Radenkovie (1061). Palmer (1066).

The extension of the method to three-dimensional problems Anes not
rige any theoretical diffieultv and would be of the hirhest intaragt ., but
the numerical difficulties involved are too big. for the bpresent.
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ORAL DISCUSSION OF THE PAPER BY J. SALENCON

E.H. Davis

You're dealing entirely with ¢ = O material in all the work you're
doing, so in that case your statement that the jump in velocity is tang~
ential is alright. There is then a further question: 1in your lower
bound solution I imagine all your difficult regions are those in the
lower part of your main diagram. The lower bound solutions surely involve
stress discontinuity, did they not?

J. Salencon

Yes, you must remember, it was using Bishop's complete solution
for the punch indentation problem, and it involves stress discontinuity.



