Manipulation, measurement and control of simple quantum systems

Hong Kong, November 8 ${ }^{\text {th }} 2017$

Manipulation of simple quantum systems to test quantum principles and demonstrate quantum information procedures

Cold Ions and neutral atoms
Rydberg atoms
Photons in cavities or in fibres
Josephson qubits
Quantum dots....
Review methods to:

- Prepare quantum states
- Measure and reconstruct them (quantum non demolition procedures) - Control their evolution (Hamiltonian engineering)

Optical methods for real atoms, inspired from optics for artificial ones

Outline

1. Description of simple quantum systems and tools to manipulate them
2. A simple model: spin coupled to a harmonic oscillator
3. Non-destructive measurements and quantum jumps
4. Mesoscopic state superpositions: Schrödinger cats
5. Example of Hamiltonian engineering: Quantum Zeno Dynamics of a Rydberg atom
6. Conclusion: related talks in this workshop: Quantum computing, simulation \& metrology

1.
 Simple quantum systems and tools to manipulate them

A.Kastler

Light σ_{+}

During pumping, the number of atoms absorbing light
decreases and transmitted light increases

Transmitted (or fluorescent) light measures degree of atomic polarization

After a few cycles of absorptionfluorescence, atoms are pumped in state $m=+1 / 2$: oriented magnetic moments

OP has introduced the basic ingredients of quantum state manipulation: exchange of photons between matter and radiation to prepare and detect quantum states Lasers have tremendously increased precision and sensitivity to the point where single particles can be detected and controlled

Trapped ions

First Single Ion detection: P. Toschek et al, 1978

P. Schindler et al., New. J. Phys. 15, 123012 (2013)

An ion chain in Innsbruck lab (R.Blatt)

Cooling a trapped ion to the ground state of motion by optical pumping (red-sideband cooling)

Non-destructive continuous detection of single ion by quantum jump spectroscopy

Here, disposable photons are used for QND measurement of atom (quantum information, atomic clocks....). Symmetrical process uses disposable atoms to count photons in a cavity non-destructively.

Comparing Ion Trap and cavity QED («in vivo » physics)

Exchanging the roles of matter and radiation
Two sides of the same coin: manipulating non destructively atoms with photons or photons with atoms

Cavity QED with special Rydberg atoms

Principle of Cavity QED experiment: an atom coupled to a field oscillator

One atom interacts with one (or a few) photon(s) in a box

A sequence of atoms crosses the cavity, couples with its field and

Photons are trapped for mpre tran α tevith per a secønd!
carries away information about the trapped light
Atomic frequency tuned by applying E field aross 6 cm . Qubit state controled by classical microwave applied before C in auxiliary cavity

CQED withs real or artificial atoms: atomic vs superconducting qubit

Circuit QED: a mesoscopic dipole: 10^{4} to 10^{6} debye!
R.Schoelkopf and S.Girvin, Nature, 451, 664 (2008)

Josephson sc junctions inserted in various circuits (phase, charge or flux qubits of various kinds)

A quantum system with charge (N) and phase (δ) as conjugate variables.
δ plays role of position and N the role of momentum in phase qubit

Photon traps in CQED and Circuit QED

Atomic CQED:

superconducting (Nb) FabryPerot

Photon lifetime: $T_{c}=0.1 \mathrm{~s}\left(\mathrm{Q}=4.10^{10}\right)$
S.Kuhr et al, Appl.Phys.Lett. 90, 164101 (2007)

Circuit QED:

Coplanar Nb line with qubit inserted
$\mathrm{T}_{\mathrm{c}} \sim 100 \mathrm{~ns}$ to $1 \mu \mathrm{~s}$
or..
3D
superconducting box with qubit suspended inside with a large antenna (huge dipole)

Exploring the Quantum
Atoms, Cavities, and Photons

Serge Haroche and
Jean-Michel Raimond
2.

A simple model: a spin (qubit) coupled to a harmonic oscillator

An ubiquitous model describing analytically the coupling of a quantum oscillator to a two-level system (spin or qubit)

Trapped ion:
«spin»: 2 internal states of ion

Oscillator: quantized ion motion in trap

Coupling: lasers inducing transitions changing the internal state of ion and its exernal state of motion

Trapped Photon «spin»: 2 states of a Rydberg atom
Oscillator: field mode in cavity
Coupling: photon absorption and emission of atoms in cavity.
CQED or Circuit QED

Strong atom-cavity coupling

Rabi oscillation in Fock state: a quantum

$$
\begin{gathered}
\text { interference } \\
|\Psi(0)\rangle=|e\rangle \otimes|n\rangle=\frac{1}{\sqrt{2}}[|+n\rangle+|-n\rangle] \quad \frac{|\mathrm{e}, \mathrm{n}\rangle}{|-, \mathrm{n}\rangle} \\
|\Psi(t)\rangle=\frac{1}{\sqrt{2}}\left[e^{-i \Omega \sqrt{n+1} t / 2}|+n\rangle+e^{i \Omega \sqrt{n+1} t / 2}|-n\rangle\right]=\cos \frac{\Omega \sqrt{n+1} t}{2}|e, n\rangle+\sin \frac{\Omega \sqrt{n+1} t}{2}|g, n+1\rangle \\
\text { Atom-field entanglement }
\end{gathered}
$$

Circuit QED experiment: Fock states prepared by sequence of Rabi flops

After |n> state preparation, Rabi oscillation $\mathrm{P}_{g}(\dagger)$ recorded by scanning time \dagger and averaging over large number of realizations (from $n=0$ to 5)

M.Hofheinz et al, Nature, 454, 310 (2008)

Rabi oscillation in a coherent field

$$
|\alpha\rangle=\sum_{n} C_{n}|n\rangle \quad ; \quad C_{n}=e^{-|\alpha|^{2} / 2} \frac{\alpha^{n}}{\sqrt{n!}} \quad\left(\bar{n}=|\alpha|^{2} ; \Delta n=\sqrt{\bar{n}}=|\alpha|\right)
$$

Exact evolution: $\quad|e\rangle \otimes|\alpha\rangle \rightarrow \sum_{n} C_{n}\left[\cos \frac{\Omega \sqrt{n+1} t}{2}|e, n\rangle+\sin \frac{\Omega \sqrt{n+1} t}{2}|g, n+1\rangle\right]$
Large field $\left(\bar{n} \gg 1 ; \frac{\Delta n}{\bar{n}}=\frac{1}{\sqrt{\bar{n}}} \ll 1\right) \quad P_{e}(t) \approx \cos ^{2} \frac{\Omega \sqrt{\bar{n}} t}{2}$
Classical Rabi oscillation

Small fields: Rabi oscillations are rapidly washed out....then revive:

$$
\bar{n}=25
$$

Circuit QED (Hofheintz et al, Nature, 454, 310, 2008)

CQED:
Brune et al, PRL, 76, 1800 (1996)

Oscillation Collapse due to dispersion of Rabi frequencies, revivals related to periodic disentenglement between atom and field

Schrödinger cats prepared by resonant atom initially in upper state e: Rabi oscillation collapses
and revives as field components separate and recombine (Bohr's complementarity)

3.

Non destructive measurements and quantum jumps of fields

S.Gleyzes et al, Nature, 446, 297, 2007

How to realize non-destructive photon counts in cavity QED?

Use information carried by slighly off-resonant Rydberg atoms to measure the light-shifts induced by photons. The atoms are destroyed when detected, but the photons are not (non-resonant interaction). The process is the counter part of the non-destructive detection of atoms by photon counting in
ion trap or cold atom physics. Quantum jumps of photons, analogous to those of ions or atoms, are observed in the sequence of atomic events when field suddenly changes due to external processes.

Non-Resonant coupling: light shifts in CQED

Second order perturbation theory

$$
E_{ \pm, n} \approx(n+1 / 2) \hbar \omega_{C} \pm \hbar\left(\frac{\Delta}{2}+\frac{\Omega^{2}(n+1)}{4 \Delta}\right) \quad \begin{aligned}
& \text { (shift proportional to } \mathrm{n} \text {): } \\
& \text { Phase shift } \\
& \text { per photon: }
\end{aligned} \quad \varphi_{0}=\frac{\Omega^{2} t}{2 \Delta}
$$

Quantized light shifts and QND photon counting

The light shift proportional to n is measured by Ramsey spectroscopy:

Single photon shifts Rydberg atom resonance by 3 kHz

QND photon counting and observation of field quantum jumps

Light shifts of Josephson qubits (Yale)

A single rf photon shifts qubit resonance by 7 MHz !

Applications to quantum information (conditional gates)

Use light shifts to project photon number in cavity

Does cavity contain n_{0} photons or not?
Amounts to measuring the projector on $\left|n_{0}\right\rangle$
Observable with eigenvalue 1 if n_{0} photons, 0 otherwise How to do it with a single atom?
Perform high resolution spectroscopy of atom-cavity system resolving in one shot single photon light shifts

Atom-cavity spectrum on the 51c-52c

 transition (Cavity detuned by Δ from 51c-50c transition)Cavity photons shift level 51c but not 52c

$$
\omega_{52 c \rightarrow 51 c}\left(n_{0}\right)=\omega_{52 c \rightarrow 51 c}-\frac{\Omega^{2}\left(n_{0}+1\right)}{4 \Delta}
$$

If microwave is properly tuned, atom prepared in 52 c is transferred by microwave to 51 c only if n_{0} photon in cavity. $52 c$

Requires high resolution, hence long interrogation time $t_{\text {mw }}$ (cold atoms)

$$
\frac{\Omega^{2} t_{m w}}{4 \Delta}>1
$$

Probing system with this precision requires long time and slow atoms....

Electrodes to generate circularly polarized rf

A modified version of the Cavity QED set-up with a vertical atomic beam

An atomic fountain fed by atoms cooled in a MOT. Atoms spend several milliseconds in cavity at top of parabolic trajectory

Circular Rydberg states are prepared in cavity by circularly polarized radiofrequency photons (see below)

Transfer 52c to 51c versus microwave

 frequency exhibits resolved photon numbers from 0 to 6 (coherent field in cavity)

Photon number filter

Atom, initially in 52c with cavity containing coherent field and detuned by Δ from 51c-50c frequency is irradiated
during 0.3 ms by mw at $\omega_{52 \mathrm{c}-51 \mathrm{c}}\left(\mathrm{n}_{0}\right)$ frequency.
If atom detected in $51 \mathrm{c}, n_{0}$ photon are selected in cavity
To prove it, set cavity to resonance ($\Delta=0$) during variable time t before detecting atom in 51c and record Rabi oscillation with same atom (repeat many times)

MW spectroscopy pulse (duration $320 \mu \mathrm{~s}$)

Rabi oscillations after selection of n_{0} photons by same atom ($n_{0}=1$ to 4)

4.
 Photonic Schrödinger cats in Cavity QED and Circuit QED

Single atom index effect: relation with light shifts and optical dipole force

Atom in N-photon light-potential gains
kinetic energy

$$
\Delta E_{N}=N \Delta E_{1}
$$

Energy is borrowed from field whose frequency becomes $\omega-\delta$, N photons losing energy

$N \hbar \delta$

Energy conservation: $\delta=\frac{\Delta E_{1}}{\hbar}$
During atom-cavity crossing time, field undergoes phase shift:

$$
\Delta \phi \sim \pm \pi / 2 \quad \Delta \phi= \pm \int \frac{\Delta E_{1}(z)}{\hbar} \frac{d z}{v}= \pm \frac{\varphi_{0}}{2}
$$

Sign depends on atom's state (upper or lower state of transition)

A single atom shifts field frequency by same amount that a single photon shifts atomic transition frequency

How single atom prepares Schrödinger cat state of light: single atom index effect

1.Coherent field is prepared in C
2. Single atom is prepared in R_{1} in a superposition of e and g
3. Atom shifts the field phase in two opposite directions as it crosses C: superposition leads to entanglement in typical Schrödinger cat situation
4. Atomic states mixed again in R_{2} maintains cat's ambiguity:

Detecting atom in e or g projects field into + or - cat state superposition!

Various cats in Cavity QED

Deléglise et al, Nature, 455, 510 (2008)
Cats prepared by experiment

Even cat $\left|\beta e^{i x}\right\rangle+\left|\beta e^{-i x}\right\rangle$
(preparation atom detected in e)

$$
\left|\beta e^{i x}\right\rangle-\left|\beta e^{-i x}\right\rangle
$$

(preparation atom detected in g)

Statistical Mixture
$\left|\beta \mathrm{e}^{\mathrm{i} x}><\beta \mathrm{e}^{\mathrm{i} x}\right|+\mid \beta \mathrm{e}^{-\mathrm{i} x}><\beta \mathrm{e}^{-\mathrm{i} x}$
|(preparation atom detected without discriminating e and g)
State reconstruction by performing QND measurements on many copies of state translated in phase plane

Schrödinger cats in Circuit QED (Schoelkopf lab in Yale)

b $\begin{gathered}\text { Superposition of } \\ \text { two coherent } \\ \text { states of opposite } \\ \text { phase... } \\ \text { B.Vlastakis et al, } \\ \text { Science, } 342,607 \\ \text { (2013) } \\ \text { C.Wang et al, Science, } \\ 352,6289(2016)\end{gathered}$

...and superpositions of three and four coherent states

Similar cats in J.Martinis
Group (UCSB)

5.

An example of hamiltonian engineering: quantum Zeno dynamics of a Rydberg atom

Freeze coherent evolution starting from non-degenerate state of measured observable..
..or restrict evolution in subspace of degerenate eigenstates of a system

J-M. Raimond et al, PRA
86, 032120 (2012)

The Rydberg atom experimental set-up (how to prepare a circular state and study its evolution from there)

Each ladder state individually

Rydberg manifold in an electric field F

The $n=50$ Rydberg manifold in an electric field (Stark levels):

A circular Rydberg atom interacting with a σ_{+}resonant rf evolves along a ladder of states, like a large angular momentum

The evolution can be pictured on a generalized Bloch sphere, as for an ensemble of N spins $1 / 2$

Coherent rotation of a large spin coupled to a resonant $\sigma_{+} r$ field

Quantum Zeno Dynamics of a SCS

+ repeated measurement asking question:
is system in $I J, m>?$:
Observable is projector on this state, admitting all the other states as eigenvectors with degenerate eigenvalue 0 .

Simulation of the QZD corresponding to a spin initially at the north pole and submitted to the resonant rf field while the level $|J, m=J-5\rangle$ is continuously watched
(A view from the North Pole of the Bloch Sphere)

Characterization of QZD: state preparation

1. Preparation of $\ln =51, \mathrm{k}=0$ 〉 (circular state)

Measuring population $P(k, t)$

1. Preparation of $\mathrm{I} 51, \mathrm{k}=0$ > (circular state)
2. Evolution for duration t.

The Zeno microwave opens a gap creating a border in the Hilbert space

Measuring population $P(k, t)$

1. Preparation of $\mathrm{I} 51, \mathrm{k}=0$ 〉 (circular state)
2. Evolution for duration t.

The Zeno microwave opens a gap creating a border in the hilbert space

Measuring population $P(k, t)$

1. Preparation of $\mathrm{I} 51, \mathrm{k}=0$ 〉 (circular state)
2. Evolution for duration t.
3. Selective detection of population in state I51,k> by microwave transfer to |52,k>.

Measuring population $P(k, t)$

1. Preparation of $I 51, \mathrm{k}=0$ > (circular state)
2. Evolution for duration t.
3. Selective detection of population in state I51,k> by microwave transfer to |52,k>.
4. ionization of $n=52$.

Measuring population $P(k, t)$

1. Preparation of $\mathrm{I} 51, \mathrm{k}=0$ 〉 (circular state)
2. Evolution for duration t.
3. Selective detection of population in state 151 ,k> by microwave transfer to |52,k>
4. ionization of $n=52$.
5. Resume for different k.

Probing the free "spin" rotation

...and the QZD dynamics

- Evolution of $P(k, t)$:

Signoles et al. Nature Physics 10 , 715 (2014)

Full reconstruction of spin state at inversion time

Measuring $P(k, t)$ after many rotations of the state \rightarrow reconstruction of the full spin density operator

- State reconstructed by Maxlike method based on $P(k, t)$ measurement after many different spin rotations

Conclusion: Related talks in this workshop

Ion trap
(University of Maryland picture)

Manipulating real or artificial atoms for quantum computer research (talks by R. Blatt and D. Wineland on trapped ions)

Superconducting qubits (UCSB picture)

Non Classical states and Quantum Metrology (L.Davidovich and J-M.Raimond)

Quantum simulation with circular Rydberg atoms (J-M.Raimond)

Permanent team: S. H, Jean-Michel Raimond, Michel Brune, Sébastien Gleyzes, Igor Dotsenko, Clément Sayrin

