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Latent factor model

LFM is a major statistical tool for multivariate data, and goes
back to Spearman (1904) on latent intelligence factor

LFM is particularly suitable for modeling dyadic and multi-
adic relational data

Entities in the relational data can be embedded with low-
dimensional latent factors

customers’ ratings on products/services
test-takers’ responses to test items
users’ linking behavior on social networks
and many others ...
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Application I: recommender system

A system that recommends items to users, by tracking users’
preferences and making personalized predictions
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Netflix competition

Netflix initiated a million-dollar competition in 2006

Data: movie ratings (from 1 to 5)
Training: ∼100 million ratings, 480,000 users, 18,000 movies
Test: ∼1.5 million ratings but withheld

Observations are scarse; about 99% missing

“Cold-start" issue
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Application II: co-authorship network

Remark: dataset from Ji & Jin (2016), which consists of 3248 papers and 3607 authors.
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Network structures

Network data captures pairwise interactions among nodes
of interest

Interaction can be undirected or directed

Community structures

Sparse networks; small averaged node degree
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A general LFM framework

Let R = (rui)n×m be the available dyadic relational data
In RS, rui ∈ R is user u’s rating on item i
In directed network, rui ∈ {0,1} denotes if user u sends an
edge to user i
In undirected network, rui = riu

Low-rank assumption: rank(R) ≤ K
The LFM model assumes that

E(rui) = θui = pT
u qi ,

where pu and qi are K -dim latent factors
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Smooth RS (Dai, W., Shen and Qu, 2019)

If R is completely observed, SVD of R suffices

In practice, only a very small part of R is observed,

min
P,Q

n∑
u=1

m∑
i=1

( ∑
(u′,i ′)∈Ω

ωui,u′i ′ru′i ′ − pT
u qi

)2
+ λJ(P,Q)

where Ω is the index set with observed ratings
ωui,u′ i′ is defined based on social network and covariates∑

(u′,i′)∈Ω ωui,u′ i′ ru′ i′ echoes the idea of data imputation
J(P,Q) = ‖P‖2

F + ‖Q‖2
F ; other penalties are possible

Smooth RS enlarges the effective sample size, and pro-
vides an effective treatment for the “cold start" issue
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Directed community detection (Zhang, He and W., 2021)

Given a directed network with rij ∼ Bern(pij),

logit(pij) = θij = αT
i βj

where αi and βj are r -dimensional latent factors

Likelihood of the network is

P(G) =
n∏

i,j=1

paij
ij (1− pij)

1−aij =
n∏

i,j=1

exp(αT
i βjaij)

1 + exp(αT
i βj)

The regularized formulation is

Lλ(α,β) = − 1
n2 log

(
P(G)

)
+ λ0J0(α,β) + λ1J1(α,β)
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Regularization terms

J0(α,β) = ‖α‖2F + ‖β‖2F helps overcome non-identifiability

J1(α,β) encourages community structure,

min
{cout

l }
k1
l=1

n∑
i=1

min
1≤l≤k1

‖αi − cout
l ‖γγ + min

{cin
m}

k2
m=1

n∑
j=1

min
1≤m≤k2

‖βj − cin
m‖γγ ,

which echoes the idea of K -means clustering

Achieved consistencies in both network estimation and com-
munity detection, even when

max
1≤i,j≤n

pij ≤ cue−Tn

with some constant cu and Tn →∞
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Another look at the coauthorship network

Remark: more than 2 co-authors in a paper, leading to hypergraph
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Some toy hypergraphs

Left: Fano plane, a 3-uniform hypergraph; Right: a non-uniform hypergraph
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General hypergraph

In a hypergraph H(V ,E), where V = [n] is a vertex set and
E consists of all hyperedges
A hyperedge is a non-empty subset of [n], and may contain
multiple vertices in V

A hypergraph is called m-uniform if the cardinality of every
hyperedge equals m, denoted by an order-m tensor A =
(ai1...im ) ∈ {0,1}n×...×n

A non-uniform hypergraph contains hyperedges whose car-
dinalities can vary from one to another
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Projection approach (Ghoshdastidar and Dukkipati, 2017)

Binary graph: two nodes are connected if they are both con-
tained in at least one hyperedge
Weighted graph: the weight is proportional to the number of
hyperedges both nodes are contained in
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Decomposition approach (Ke et al., 2021; Yuan et al., 2021)

⇓

+ +

A non-uniform hypergraph is decomposed into three uniform hypergraphs
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General hypergraph embedding (Zhen and W., 2021)

Given H(V ,E) with V = [n] and range m ≥ 2, where range is
the largest hyperedge cardinality

Hypergraph augmentation
Introduce a null vertex vn+1
Any hyperedge with cardinality less than m is augmented to
a multi-set with m elements by adding one or more vn+1

Hypergraph embedding
Embeds all vertices in H into a low-dim Euclidean space
Vertices belonged to the same community tend to have shorter
distance
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Hypergraph augmentation

=⇒

Each augmented hyperedge has 4 vertices, some with mul-
tiple null vertices v6

It becomes a uniform multi-hypergraph, but only v6 can ap-
pear more than once
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Hypergraph augmentation

With the introduced null vertex, H is transformed into an
m-uniform multi-hypergraph
Its adjacency tensor A = (ai1...im ) with entries

ai1...im =

{
1, if {{i1, ..., im}} \ {n + 1} ∈ E ;

0, otherwise

Let P = (pi1...im ) with pi1...im = P(ai1...im = 1), and

θi1...im = log
( pi1...im

sn − pi1...im

)
,

where sn captures network sparsity, and 0 ≤ pi1...im ≤ sn
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Hypergraph embedding

We consider a hypergraph embedding model (HEM),

θi1...im = log
( pi1...im

sn − pi1...im

)
= I ×1 α

T
i1 ×2 ...×m αT

im

I is the m-th order identity tensor of dimension r
αi is an r -dimensional embedding vector of vertex i
αn+1 = 1r is the embedding of the null vertex vn+1

It has an equivalent CP decomposition,

Θ = I ×1 α×2 ...×m α =
r∑

j=1

α.j ◦ ... ◦α.j ,

where α.j is the j-th column of α, and r can be understood
as the symmetric rank of Θ.
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A regularization formulation

With HEM, the negative log-likelihood function ofH becomes

L(Θ;A) =
1

ϕ(n,m)

∑
δn+1,ord

i1...im
=0

L(θi1...im ; ai1...im ),

where ϕ(n,m) =
m∑

k=1

(n
k

)
is # of potential hyperedges, and

L(θ; a) = log
(
1 +

sn

1− sn + e−θ
)
− a log

( sn

1− sn + e−θ
)

The proposed regularized formulation is

Lλ(α;A) = L(Θ;A) + λn min
Z ,C

1
n
||α− ZC||2F ,
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Community detection consistency

Theorem 1

Suppose all the assumptions in Theorem 1 and Assumptions A
and B are satisfied. If limn→+∞ λnεns−2

n (log s−1
n )−1 > 0 and

K = o(γn(snε
−1
n )1/2), then

err(ψ∗, ψ̂) = Op(K εns−1
n ).

Remark: Theorem 2 holds true as long as sn � εn � n1−m log n,
matching up the best sparsity result in literature.
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MeSH hypergraph networks

Medical Subject Headings (MeSH) hypergraph network (Ke
et al., 2021) consists of 318 MeSH terms of two diseases:
Neoplasms (C04) and Never System Diseases (C10)

Each vertex represents a Mesh term and a hyperedge is
a research paper where one or more of the above MeSH
terms are annotated

After pre-processing, we obtain a hypergraph network with
281 vertices and 1057 hyperedges
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SPECT hypergraph networks

The cardiac Single Proton Emission Computed Tomography
(SPECT) hypergraph network (Dua and Graff, 2017) con-
sists of SPECT images of 267 patients, where each image
has been processed to 44 categorical features to discrimi-
nate abnormal patients from the normal ones

Each vertex represents a patient and a hyperedge contain
all the patients sharing a particular set of feature values

After pre-processing, we obtain a hypergraph network with
264 vertices and 2950 hyperedges
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Real examples

HEM Tensor-SCORE SHP WPTG
MeSH 0.0427 0.0819 0.0498 0.3630

SPECT 0.1931 0.3409 0.3181 0.2652
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Take-home messages

LFM provides a general framework for modeling dyadic and
multi-adic relational data
Identification of latent factors improves prediction accuracy
and model interpretability

Other structures beyond low-rank?
Some ongoing work on multi-layer biological networks, dy-
namic social networks ...

Thank you!
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