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Diamond as the hardest (tooling) material
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Covalent bond, sp3 hybridization

Drilling Cutting Grinding/polishing

“harder than (natural) diamond…” --- YSU, JLU…



Also, “Mount Everest” of Electronic/Photonic Materials…

4

Si-diamond-Si integrated circuit

Science 319, 1491 (2008)

Diamond photonic structures

Nat. Photonics. 5, 397–405 (2011)

Ultrawide bandgap semiconductor with high thermal conductivity, dielectric 
breakdown strength, carrier mobility… (& NV center)

Sci. Adv. 2016, 2, e1600911 Nat. Commun. 2014, 5, 4429

Data storage MEMS; Quantum Nanomechanical Resonator



Ultimate Semiconductor for High Power/Frequency Applications
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Parameters Si SiC GaN Diamond

Bandgap Eg (eV) 1.11 3.26 3.39 5.47

Breakdown field Ec (MV/cm) 0.3 3.5 3.4 10.0

Electron mobility μe (cm2/Vs) 1,500 800 900 2,200

Thermal conductivity (W/cmK) 1.5 4.9 2.2 21.3

The properties that make diamond shine..
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https://www.wired.com/insights/2015/01/the-rise-of-diamond-technology/

John Bardeen, William 
Shockley and Walter 
Brattain, the inventors 
of the transistor, 1948 
-- the birth of Silicon 
Valley. 

https://www.wired.com/insights/2015/01/the-rise-of-diamond-technology/


Obstacle in realization diamond electronics
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Doping for diamond is difficult, especially N type

Metals Semiconductor Insulator

Tight crystal 
lattice; 

Small atomic 
number (limited 
doper);

Large bandgap 
energy…
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An alternative strategy --- elastic strain engineering

Wikipedia

Applying lattice/elastic strain can considerably change the materials’ properties!

http://www.eetimes.com/document.asp?doc_id=1217259

http://www.eetimes.com/document.asp?doc_id=1217259


Deform diamond elastically?
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If you manage to deform a bulk diamond, it usually means you have broken it

Crazy Hidraulic Press https://youtu.be/YHU0aM9rCFA

What about nanoscale?  

https://youtu.be/YHU0aM9rCFA


Firstly, diamond nanoneedles  --- from COSDAF Prof. WJ Zhang
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Plasma-induced etching of diamond thin films etching of diamond thin films

1332 cm-1: sp3 hybridized C-C bond structure

single-crystalline nanoneedles

HRTEM 
SAED

Micro-Raman

Conical-shaped
<111>-oriented

Atomic-level smooth surface

CrystEngComm, 2015, 17, 2791



Size effect

Experiment challenge: using a nanoindenter, however…

diamond indenter tip 

diamond nanoneedle

shield VS. spear 
paradox…



“Push-to-Bend” strategy
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Quantitative force-displacement 
(F-D) data recorded;

in situ SEM imaging of real-time 
deformation geometry

Push-to-Bend



Single-crystalline diamond nanoneedle: deep elastic bending
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Bending of a single-crystalline diamond nanoneedle inside SEM, with 

fully recoverable flexural deformation

Local max
tensile stress 
~ 98 GPa
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Reducing size for enhanced elasticity



Allowing electronic property modulation through deep straining

15https://news.mit.edu/2019/artificial-intelligence-engineer-microchips-0211

“These discoveries have opened up new avenues to explore how devices can be 
fabricated with even more dramatic changes in the materials’ properties.”

https://news.mit.edu/2019/artificial-intelligence-engineer-microchips-0211


Secondly, for real device application…

16

• Device geometry;  Straining method; Strain distribution…



Tensile Elastic Straining of Silicon Nanowire
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13% global deformation



So, new configuration...
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Uniaxial tensile straining of microfabricated diamond structures



Microfabricated tensile specimen
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Single crystalline diamond microbridge

Side view Top view

FIB-sculpted diamond tensile gripper

Sample fabrication process

---by Bing Dai, Jiaqi Zhu @HIT



in situ TEM tensile straining
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in situ TEM tensile testing setupSample characterization

Hysitron PI 95 TEM PicoIndenter holder



in situ Loading-unloading tensile straining
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Loading-unloading cycles of a single-crystalline diamond bridge sample along 
[101] direction, with fully recoverable deformation (played at 30×speed)



Ultralarge, uniform tensile elastic straining

22

Large, uniform tensile elasticity in the microfabricated diamond bridge



Optimization of sample geometry for extreme
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• Optimized by American Society for Testing and Materials (ASTM) standard
• Up to 10% sample-wide uniform elastic strain --- near ideal limit!

Science 2018



Fracture morphologies
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• Without visible sign of plasticity during tensile deformation
• Retain the overall pristine single-crystalline structures 
• Typical distinct {111} cleavage surfaces



Experiment summary
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• ES: elastic strains from fully reversible runs; FS: failure-run strains 
• 6-9% sample-wide elastic strains with full recovery



Lastly, electronic properties under deep elastic straining
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Diamond has small Poisson contraction and barely has transverse change on non-loaded axis

Brillouin zone of diamond primitive cell

k-point coordinates of primitive cell Calculated bandgap

Calculated energy

-- DFT calculation by Andy Chou, JP Chou, Alice Hu



Band structure evolution upon tensile straining
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Bandgap changes for each loading direction

conduction band 
minimum (CBM)

• [101] direction with the largest reduction rate, down to ~3 eV at 9% strain 
→conventional wide-bandgap semiconductor 

• Indirect-direct bandgap transition with tensile strains >9% along the [111] 
direction → optoelectronics 



EELS characterization of strained diamond specimen
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Measured bandgap energy agrees well with the calculated bandgap decrease trend

--- EELS by Yang Yang, Andy Minor @LBNL

“strained diamond” device 



“Strained diamond” device array
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Complete recover after being uniformly strained to ~5.8%, fractured at ~6%

50×speed

Diamond array samples with multiple bridges (can be scalable)



“Strained diamond” for future microelectronics/optoelectronics
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Pushing to the limit…
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Shi et al. PNAS
116, 4117–4122 
(2020)

Nie et al. 
Nat. Commun. 
10, 5533 (2019)

Li, Shan, Ma 
et al. MRS 
Bull. 39, 108 
(2014)



A new diamond age…
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Thank you

Q&A




