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Photodynamic Therapy (PDT)
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PDT involves the interactions of three individually non-toxic components, 
namely a photosensitizer, light of an appropriate wavelength, and endogenous 
oxygen to cause cellular and tissue damage. 

Hamblin et al. Nat. Rev. Cancer 2006, 6, 535-545.
Yoon et al. Chem. Rev. 2021, 121, 13454-13619.

Antitumor Mechanisms
 Direct cell damage
 Vascular shutdown
 Activation of immune response



Approved PDT Drugs

3Algorri et al. Cancers 2021, 13, 4447 (1-29).



Potential Advantages of PDT 
over Conventional Anticancer Therapies
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It is comparatively non-invasive.
It has spatiotemporal selectivity through precise application of the 
light with modern fiber-optic systems and various types of endoscopy.
Repeated doses can be given without the total-dose limitations 
associated with radiotherapy.
It does not have the multidrug resistance problem in chemotherapy.
The healing process results in little or no scarring.
It can usually be done in an outpatient or day-care setting.
It has no significant side-effects.



Some Challenges of PDT
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Low initial selectivity between the tumor and healthy tissues

Long drug-to-light intervals (up to 48-96 h) 

Prolonged skin photosensitivity

Oxygen dependence

Light penetration depth

Chen et al. Chem. Soc. Rev. 2016, 45, 6597-6626.



Different Approaches for Targeted PDT
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PS
“Always on”

aPS
“On-off”

The photodynamic activities can be turned “on” by
stimuli in the tumor microenvironment
It can enhance the tumor selectivity and target-to-
background ratio.

Development of Activatable Photosensitizers

PS
Vector

proteins, peptides, antibodies, oligonucleotides or folic acidVector

PS PS
PSPS

PSPS
PS

liposomes, polymeric micelles, ceramic- based 
nanoparticles, gold nanoparticles, or polymeric 
nanoparticles

Conjugation of Photosensitizers with Tumor-Targeting Ligands

Encapsulation of Photosensitizers into Nanocarriers
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Different Strategies ……

Kim et al. Coord. Chem. Rev. 2021, 438, 213888.

Chen et al. Chem. Soc. Rev. 2016, 45, 6488-6519.

To enhance the oxygen content in tumorsTo overcome the limited tissue 
penetration of light
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Selected Examples of Molecular-Based Photosensitizers 
Developed by our Group
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Chem. Eur. J. 2018, 24, 5779

Chem. Asian J. 2019, 14, 1059

Adv. Therap. 2021, 4, 2000204 

Chem. Eur. J. 2016, 22, 8273

J. Mater. Chem. B 2018, 6, 3285
Chem. Commun. 2019, 55, 13518

J. Med. Chem. 2018, 61, 3952
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Selected Examples of Nanophotosensitizing Systems
Developed by our Group
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ACS Appl. Mater. Interfaces 2017, 9, 23487

Chem. Eur. J. 2017, 23, 16505

Acta Biomater. 2020, 116, 329

J. Controlled Release 2018, 282, 46
J. Porphyrins Phthalocyanines 2020, 24, 1387

ACS Appl. Bio Mater. 2020, 3, 5463

Angew. Chem. Int. Ed. 2020, 59, 23228Biomater. Sci. 2021, 9, 4936



Dual pH- and Glutathione-Responsive Polymeric 
Micellular Prodrugs for Combined Chemotherapy and PDT

10
J. Controlled Release 2018, 282, 46-61.



Encapsulating ZnPc-Dox and TPZ in Polymeric 
Micelles for Multimodal Cancer Therapy

11Biomater. Sci. 2021, 9, 4936-4951.

Dox = Doxorubicin
TPZ = Tirapazamine



Structural and Spectroscopic Characterization
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ZnPc-Dox@micelles3@micelles ZnPc-Dox/TPZ@micelles

*[3] or [ZnPc-Dox] = 1 μM; [TPZ] = 5.4 μM

-25.3 mV -21.4 mV -13.9 mV

In DMF

In PBS

Absorption Spectra Fluorescence Spectra



Cellular Uptake on HT29 Cells
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*12 h incubation, [ZnPc] = 1 µM

Flow Cytometric Analysis

Confocal Microscopic Studies



ROS Generation and Hypoxic Status
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* 12 h incubation, [ZnPc] = 1 µM, followed by incubation with the ROS probe (1 µM) or the hypoxia probe 
(0.5 µM) for 30 min, and then Hoechst 33342 (10 μg mL-1) for 10 min

* light irradiation for 5 min (λ > 610 nm, total fluence = 5.4 J cm-1)



In Vitro Cytotoxicities on HT29 Cells
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normal condition 
(20% oxygen)

hypoxic condition 
(2% oxygen)

With Light Irradiation 
(λ > 610 nm, 18 mW cm-2, 5.4 J cm-2) 

In Dark



In Vivo Biodistribution
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*intravenous injection of ZnPc-Dox or ZnPc-Dox@micelles (40 nmol)



In Vivo Anti-tumour Efficacy
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*1 nmol of ZnPc-Dox per gram body weight of mouse
* laser irradiation (total fluence = 30 J cm-2) at 24 h of post-injection



Self-Assembled Nanophotosensitizing Systems 
with Peptide-Conjugated ZnPc as Building Blocks
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ACS Appl. Bio. Mater. 2020, 3, 5463-5473.



Fe3+-Driven Assembly of Catalase-Like 
Nanozymes for Combating Hypoxic Tumors

19Angew. Chem. Int. Ed. 2020, 59, 23228-23238.

ACF = Acriflavine



Structural and Spectroscopic Characterization, Fe3+-Promoted 
Conversion of H2O2 to Oxygen and Generation of 1O2
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Fmoc-Cys/Fe@Pc Fmoc-Cys/Fe@Pc/ACF 
161 nm

-23.3 mV
179 nm

-28.6 mV

*upon treatment with 
H2O2 (20 mM) in PBS



Stability and GSH-Responsive Properties
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Fmoc-Cys/Fe@Pc
in water

Fmoc-Cys/Fe@Pc
in RPMI 1640

Fmoc-Cys/Fe@Pc/ACF 
in water

Fmoc-Cys/Fe@Pc/ACF 
in RPMI 1640

Upon treatment with 
GSH (3 mM) in PBS

*GSH
 chelates Fe3+ in the nanovesicles 
disrupts the various noncovalent 
interactions
 disassembly of the nanovesicles
consequently release of ZnPc,
ACF, and Fe3+



In Vitro Studies on HT29 Cells

22Incubation time = 12 h
[ZnPc] = 4 μM

HIF-1α immunostaining 

PDT: light irradiation for 1 min (λ > 610 nm, total fluence = 1.08 J cm-2)

Fmoc-Cys/Fe@Pc and free ZnPc



In Vivo Studies

23*1 nmol of ZnPc per gram body weight of mouse

*2 nmol of ZnPc per gram body weight of mouse



Conclusion

1. A series of polymeric-based nanoparticles have been developed for the
controlled release of ZnPc, DOX, and TPZ for combined PDT,
chemotherapy, and hypoxia-induced chemotherapy. At certain ZnPc/DOX
or ZnPc/TPZ ratios, a synergistic effect could be achieved. The therapeutic
efficacy of PDT could be significantly enhanced in these nanosystems.

2. Several self-assembled nanophotosensitizing systems have been prepared
through noncovalent interactions. ZnPc could be co-assembled with other
therapeutic components, including DOX, ACF, and Fe3+ for multimodal
anticancer therapy, particularly against hypoxic tumors.

24
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