Genomics of human adipose tissue macrophages in obesity

Lindsey Muir, Ph.D.
Department of Computational Medicine & Bioinformatics
University of Michigan Medical School

July 11, 2018
Obesity is one of the top 3 global social burdens

Globally $2 \text{ trillion} \text{ USD in 2012}$
The global cost of obesity

<table>
<thead>
<tr>
<th>Location</th>
<th>Obesity</th>
<th>Est. cost of obesity Per year</th>
<th>% Health care cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hong Kong1,2</td>
<td>20.7 %</td>
<td>1.5 million</td>
<td>5 billion HKD</td>
</tr>
<tr>
<td>China3</td>
<td>12.9 %</td>
<td>177 million</td>
<td>24 billion Yuan</td>
</tr>
<tr>
<td>United States4</td>
<td>39.8 %</td>
<td>93 million</td>
<td>> 300 billion USD</td>
</tr>
</tbody>
</table>

1Center for Health Protection, HK
2Ko Obesity Reviews 9 Suppl 1:74
3Qin & Pan Health Economics
4Centers for Disease Control and Prevention, USA
The Commonwealth Fund
Insulin resistance
Type 2 diabetes
Fatty liver disease
Atherosclerosis
Hypertension
Stroke

Asthma
Sleep apnea
Cancer
Surgical Outcomes
Kidney Disease
Gall bladder disease

Slide courtesy C.N. Lumeng
Interventions to improve health in obesity

- Manage comorbid disease
- Weight loss

Diabetes response to medical/behavioral weight loss

Schauer et al. 2014, NEJM 370:2002
Interventions to improve health in obesity

- Manage comorbid disease
- Weight loss

Diabetes response to **surgical weight loss**

Kothari et al. 2017, SORD 13(6):972
Interventions to improve health in obesity

- Manage comorbid disease
- Weight loss

Diabetes response to **surgical weight loss**

Kothari et al. 2017, SORD 13(6):972
Obesity in Children: Sustained Risk for Diabetes

<table>
<thead>
<tr>
<th>Duration/age of onset (N = 7,855)†</th>
<th>n (%)‡</th>
<th>BMI at 45 years (kg/m²)</th>
<th>Waist circumference (cm)</th>
<th>HbA₁c ≥7* OR (95% CI)</th>
<th>Unadjusted</th>
<th>Adjusted$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never</td>
<td>5,819 (74.1)</td>
<td>25.1 (25.0–25.2)</td>
<td>86.9 (86.6–87.2)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Childhood only</td>
<td>62 (0.8)</td>
<td>26.3 (25.5–27.0)</td>
<td>90.6 (87.9–93.4)</td>
<td>7.01 (1.89–25.89)</td>
<td>4.95 (1.30–18.93)</td>
<td></td>
</tr>
<tr>
<td>Onset in midadulthood</td>
<td>1,171 (14.9)</td>
<td>32.5 (32.3–32.7)</td>
<td>103.5 (102.8–104.1)</td>
<td>2.99 (1.77–5.03)</td>
<td>1.13 (0.61–2.08)</td>
<td></td>
</tr>
<tr>
<td>Onset in young adulthood</td>
<td>652 (8.3)</td>
<td>35.2 (35.0–35.5)</td>
<td>109.2 (108.3–110.0)</td>
<td>16.04 (10.63–24.17)</td>
<td>3.96 (2.10–7.43)</td>
<td></td>
</tr>
<tr>
<td>Onset in childhood</td>
<td>151 (1.9)</td>
<td>37.8 (37.2–38.4)</td>
<td>113.2 (111.4–115.1)</td>
<td>23.86 (13.52–42.14)</td>
<td>4.38 (1.86–10.31)</td>
<td></td>
</tr>
</tbody>
</table>

Diabetes Care, volume 34, September 2011
Overnutrition & Obesity

- Adipose Tissue Expands
- Adipocyte Insulin Resistance
- Increased FFA
- Peripheral Insulin Resistance
- Metabolic Syndrome

Inflammation
Cross Section of Adipose Tissue

- Adipocytes
- Vascular Endothelial Cells
- Macrophages (ATM)
- Caveolin
- F4/80
- Nuclei
Adipose Tissue in Humans

Obese Patients: Diabetic vs. Non-Diabetic
- Adult 21-60y
- BMI > 30 kg/m²
- Bariatric surgery (University of Michigan & Veterans Administration Hospital)

<table>
<thead>
<tr>
<th></th>
<th>Lean (n=10)</th>
<th>NDM (n=18)</th>
<th>DM (n=18)</th>
<th>p-value (NDM v. DM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex (female)</td>
<td>10%</td>
<td>44%</td>
<td>33%</td>
<td>0.733</td>
</tr>
<tr>
<td>Age (mean, years)</td>
<td>62</td>
<td>45</td>
<td>48</td>
<td>0.465</td>
</tr>
<tr>
<td>BMI (mean, kg/m²)</td>
<td>27</td>
<td>48</td>
<td>44</td>
<td>0.049</td>
</tr>
<tr>
<td>HbA1c (mean)</td>
<td>5.3%</td>
<td>5.7%</td>
<td>7.2%</td>
<td><0.001</td>
</tr>
<tr>
<td>Glucose (mean, mg/dL)</td>
<td>not done</td>
<td>95</td>
<td>144</td>
<td>0.002</td>
</tr>
<tr>
<td>Comorbid conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep apnea</td>
<td>10%</td>
<td>61%</td>
<td>83%</td>
<td>0.264</td>
</tr>
<tr>
<td>Hypertension</td>
<td>40%</td>
<td>56%</td>
<td>89%</td>
<td>0.060</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>40%</td>
<td>28%</td>
<td>78%</td>
<td>0.007</td>
</tr>
<tr>
<td>Average conditions/pt</td>
<td>0.9</td>
<td>1.4</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

Robert O’Rourke, MD
Diabetic Obese Patients Have Inflammatory Signatures

Adipose Tissue Dominant Gene Expression Signatures

Visceral Adipose Tissue Biological Pathway Analysis

- Diabetic vs. Non-Diabetic
- Hematopoietic cell lineage: 2.05652E-06
- Phagosome: 3.64292E-06
- Osteoclast differentiation: 0.000018546
- Chemokine signaling pathway: 4.01278E-05
- Salmonella infection: 5.87082E-05
- HTLV-I infection: 5.87082E-05
- Cytokine-cytokine receptor interaction: 5.87082E-05
- Rheumatoid arthritis: 6.39245E-05
- Tuberculosis: 6.39245E-05
- Complement and coagulation cascades: 8.08137E-05

N=10/group

iPathways (Advaita)

Slide data courtesy C.N. Lumeng
Obesity Activates Adipose Tissue Macrophages

Adipose tissue macrophage (ATM)

Adipose tissue signals in obesity

ATMs in obesity
- Increased quantity
- Altered phenotypes
- Activation of T cells

Tissue dysfunction
- Inflammation
- Diabetes
Isolating and Defining Human ATMs

Methods
1. Collect human adipose tissue
2. Digest tissue to single cell level
3. Isolate all non-adipocytes (called SVCs)
4. Flow cytometry analysis with macrophage markers
Patients With Metabolic Dysfunction Have Higher CD206⁺ ATMs

Visceral Adipose Tissue
RNA-sequencing of Human ATMs Subtypes

ATM subsets

CD206^+
CD11c^+

CD206 APC-Cy7
CD11c PE-Cy7

Flow
Sort
RNA-seq
CD206\(^+\) ATMs Diverge From Other Subsets

A. Differentially expressed genes

<table>
<thead>
<tr>
<th>Comparison</th>
<th>DE genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD206(^+) vs. CD11c(^+)</td>
<td>831</td>
</tr>
<tr>
<td>CD206(^+) vs. DP</td>
<td>656</td>
</tr>
<tr>
<td>CD11c(^+) vs. DP</td>
<td>62</td>
</tr>
</tbody>
</table>

B. Principal component analysis

C. Dendrogram

Bioinformatics Core, University of Michigan
• CD206+ ATMs are a distinct type associated with diabetes

• Can we use data to understand their function?
Biological Pathways That Distinguish CD206+ ATMs

Significant Pathways
- Hematopoietic cell lineage
- Regulation of actin cytoskeleton
- Tuberculosis
- Cell adhesion molecules (CAMs)
 - Cytokine-cytokine receptor interaction
- Malaria
- Jak-STAT signaling pathway
- Natural killer cell mediated cytotoxicity
- Glycolysis / Gluconeogenesis
- Endocytosis
- PPAR signaling pathway
- Phagosome
- MAPK signaling pathway
- Focal adhesion

Cytokines
- CD206+ DP CD11c+
 - Log 2 FPKM

Cell metabolism
- Glycolysis / Gluconeogenesis

Internalization
- HLA-DRA
- HLA-DRB
- CD84
- CD1 discriminatory
- CLEC9A
- MARCO
- FCGR2A
- HLA-DQA1
- TUBB3
- STX7
- CD74
- CD97
- LIR1

iPathways (Advaita)
CD206+ ATMs: Greater Expression of Genes Related to Internalization

Scavenger receptors
- CD209
- CD163L1
- MRC1
- COLEC12
- STAB1
- CD163
- MARCO
- SCARB1
- CD14
- CD36
- MSR1
- CD68
- CXCL16
- SCARB2
- CLEC7A
- LY75
- OLR1

Endocytosis
- IL2RA
- DAB2
- FOLR2
- WWP1
- AP2A2
- SNX6
- MVB12B
- PLD1
- CAV1
- CSF1R
- EPS15
- BIN1
- SH3GL1
- SNX2
- CLTC
- RABEP1
- PSD4
- WAS
- HLA-F
- FLT1
- CXCR4
- CCR5
- IL2RG

Phagosome
- CD209
- MRC1
- COLEC12
- MARCO
- NCF4
- CD14
- CD36
- FCGR2B
- FCGR2A
- STX7
- ITGB2
- TCIRG1
- HLA-F
- CORO1A
- TUBA4A
- FCAR
- OLR1

Log fold change
CD206\(^+\) ATMs:

High Expression of Antigen Presentation Gene HLA-DR

HLA-DR\(^{hi}\) are CD206\(^+\)

Gated on all ATMs

![Flow cytometry plots showing CD206+ ATMs have higher HLA-DR across samples.](image)

- **CD206 APC-Cy7**
- **CD11c PE-Cy7**

- **HLA-DR PE-Cy5**

Flow cytometry plots indicate that CD206+ ATMs have higher HLA-DR expression compared to CD206- ATMs, highlighting the role of CD206 in antigen presentation.
Why are CD206+ ATMs increased in human diabetes?

Cues in obesity
- Fatty acids
- Lipoproteins
- GC

↑ CD206+ ATMs
- Detect environmental cues
- Antigen presentation

➢ Tissue dysfunction
➢ Inflammation
➢ Diabetes

MODEL
Human Monocytes

- Find sites of tissue damage
- Differentiate into macrophages, dendritic cells
- Modulate inflammation
Three Subtypes of Human Circulating Blood Monocytes

Gated on Live CD45+ PBMCs

CD14 FITC

CD16 PE

Mo^{NC}

Mo^{INT}

Mo^{C}
Reprogramming Human Blood Monocytes

• Polymer nanoparticles interact with mouse monocytes through scavenger receptors*
 – PLA: Poly(lactic acid)
 – PLG: Poly(lactide-co-glycolide)

• Goal: Test interaction with human monocytes from obese patients

*Getts et al. 2014 Science Translational Medicine 6(219)
Classical Monocytes Interact Most with NPs
Human Diabetic Obese Monocytes Have Unique Interaction with Nanoparticles

Gating: all monocytes

5 μg/ml PLG $^{-20\,\text{mV}}$

Obese
OB^{DM} Diabetic Obese
• Genomics characterization of human monocytes in disease
 – RNA-seq, Hi-C
 – Identify distinct functional phenotypes identified by transcription factor (TF) networks
 – Modulate phenotypes via NPs, TFs
Prevent chronic obesity!

1. Higher risk of disease: Cardiovascular, diabetes
2. Sustained disease risk in 50% of bariatric surgery patients
3. Can **permanently** damage adipose tissue
 – inflammation may not resolve with weight loss
4. Obesity can reprogram immune cells into a potentially harmful phenotype (“metabolic phenotype”)

Weight loss may not resolve damage from chronic obesity – but not known
Conclusions

Using data to understand function and programming of human immune cells

ATMs:
1. CD206+ ATMs are a distinct type that is associated with metabolic disease
2. CD206+ ATMs primary function in environment detection, internalization, and antigen presentation

Monocytes:
1. Have distinct response to obesity
2. Interact differently with nanoparticles in metabolic disease
Acknowledgements

Laboratories
Carey N. Lumeng MD PhD
Robert W. O’Rourke MD
Indika Rajapakse PhD

Affiliated
Kanakadurga Singer, MD
Jonathan F. Finks, MD
Oliver A. Varban, MD

Bioinformatics team
Rich McEachin, Ph.D.
Rebecca Tagett

Funding

T32 DK101357 (LAM)
F32 DK105676 (LAM)
R01 DK115190 (RWO)
R01 DK097449 (RWO)
R01 DK090262 (CNL)

Pilot Grants