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Multilayer multimodal networks

Many edge types Many vertex types Dynamic edges

Multilayer multimodal networks

• Engineered multilayered communications networks (Salus and Vinton [1995],
Addison-Wesley)

• Multiplex social networks (Verbrugge [1979], J. Social Forces)

• Multirelational terrorist networks (Carley [2005], Unpublished)

• Infection and prevention layers in epidemic networks (Jo et al. [2006], Physica A)
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Integrative multiomic biology
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5D Nucleome

The genome is contained in the cell nucleus and has five dimensions:

• form (spatial organization) - chromatin layer

• function (transcription) - gene expression layer

• time (growth/cell-cycle) - temporal layers

Source: 4D Nucleome (Dekker et al. [2017], Nature)
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Network observation models

(Hsiao et al. [2014], ACM Data Mining) (Chen et al. [2016a], Bioinformatics)

Two basic types of network data
• Edges are observed relations between vertex pairs

• Friendships, kinships, email exchanges btwn agents in a social network
• Contacts between genes in chromosomal regions from HiC

• Edges are observed similarities between attributes of vertex pairs
• Inner product of pairs of preference vectors in a recommendation system
• Correlation between mRNA expression levels of gene pairs from RNAseq
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Network analysis ojectives

Objectives of analyst
• Find vertices of high centrality

• Determine degree centrality, betweenness centrality, eigencentrality
• Detect clusters of tightly connected vertices

• Extract connected componnts, perfrom deep community detection
• Perform statistical inference

• Hypothesis testing, change detection, prediction

Source: Ortiz-Arroyo, 2010
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Example: betweeness centrality for virus strain genotyping

Finding: High centrality nodes are virus strains that bridge between genotypes.
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Example: central vertex nomination for network disruption

Finding: Degree entropy of cancer PPI network predicts treatment resistance
and 5 year cancer survivability.

Figure: Protein-Protein interaction network for basal cell carcinoma pathway as
constructed from KEGG. Yellow nodes have highest betweenness centrality and can be
targeted for disruption.

H. Breitkreutz, E. Rietman, J. Tuszynski (2012). ”Molecular signaling network

complexity is correlated with cancer patient survivability,” Proceedings of the National

Academy of Sciences, 109(23), 9209-9212.
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Example: HiC network centrality analysis

Finding: Centrality of HiC gene-gene network related to RNAseq expression

Liu et al. [2017], Genome architecture leads a bifurcation in cell identity, BioRxv
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Example: HiC multiplex degree centrality over cell cycle
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Three clusters of multiplex degree centrality (GO)

• Cluster 1 (FHIT): high centrality nodes governing pre-mitosis (G1/S)

• Cluster 2 (TGFA): lower centrality nodes governing mitosis (G2/M)

Oselio et al. [2018], Multilayer relevance networks, IEEE SPAWC
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HiC degree-centrality trajectories

Oselio et al. [2018], Multilayer relevance networks, IEEE SPAWC
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Community detection methods

Main approaches

• Combinatorial: MINcut, MAXflow, normalized cut, cut ratio (Cheng& Wei
[1991], Shi&Malik [2001])

• Parametric: Stochastic Block Models, Back Propagation (Hastings [2006],
Airoldi [2008], Decelle [2011], Bickel [2012], Zhang [2014])

• Data driven: spectral methods, dendogram splitting, Louvain merging
(Fiedler [1973], Ding [2001], Girvan [2002], Blondel [2008])

⇒ Principal questions: robustness to noise, finding #communities, prediction
of detection accuracy

Chen and Hero [2018], Phase transitions and a model order selection . . . , IEEE TSP
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Detecting communities with noisy edges

Random interconnection model (RIM): G = {V, E}, |V | = p, E = {eij}i>j

• Binary p × p adjacency matrix A is corrupted by spurrious edges Cij

A =

 A1 C12 C13

C21 A2 C23

C31 C32 A3

 =

 A1 0 0
0 A2 0
0 0 A3


︸ ︷︷ ︸

A0

+

 0 C12 C13

C21 0 C23

C31 C32 0


︸ ︷︷ ︸

∆

• Ground truth graph has very sparse Cij ’s: A0 (nearly) block diagonal
⇒ Can perfectly recover communities w.h.p.

• Observed graph has noisy edges: entries of Cij ’s are random
⇒ Cannot reliably recover communities

Chen and Hero [2018], Phase transitions and a model order selection . . . , IEEE TSP
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Spectral graph clustering: algebraic connectivity methods

• Fiedler’s spectral partitioning method (Fiedler [1973], Czechoslovak
Mathematical Journal)

• Compute graph Laplacian L = D− A
• Find second smallest eigenvalue λ2 and eigenvector y = y2nd of L
• Perform K -means clustering on Fiedler vector y with K = 2 groups
• Re-partition sub-clusters until suffiicent #communities found

• Fiedler partitioning gives balanced mincut when communities well
separated (Ding et al. [2005], SIAM Data Mining)

• Other related approaches
• Modularity method (Newman [2006], PNAS)
• Non-backtracking method (Krzakala et al. [2013], PNAS)
• Bethe free energy method (Saade et al. [2014], NIPS)

All of these methods are sensitive to spurious edges
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Phase transitions: graph extraction from thresholded sample correlations

Graph G obtained by thresholding p × p sample correlation matrix R at level
ρ ∈ [0, 1]

· · ·

Number of degree d (hub) nodes in G : Nd,ρ =
∑p

i=1 I (di ≥ d)

I (di ≥ d) =

{
1, card{j : j 6= i , |Rij | ≥ ρ} ≥ d
0, o.w .

where
R = diag(Σ̂)−1/2Σ̂diag(Σ̂)−1/2

is sample correlation matrix based on n i.i.d. sample replicates.

16
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Phase transition in number of false edges and hubs

• p nodes, n samples, ρ threshold on sample correlation graph

• Critical threshold ρc on false positive detections of degree centrality ≥ δ

ρc(δ) =
√

1− cδ,n(p − 1)−2δ/δ(n−2)−2

• cn,δ = O(n−3/2) is only weakly dependent on correlation if���XXXblock sparse

• Hero and Rajaratnam, ”Large scale correlation screening,” J. Am Stat, Assoc., 2011

• Hero and Rajaratnam, ”Hub screening in partial correlation graphs,” IEEE Trans. on Info Theory, 2012

• Wei, Rajaratnam and Hero, ”Correlation screening with relaxed sparsity,” in preparation, 2018
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Extraction of false hubs: critical threshold ρc as function of n
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Extraction of false hubs: critical threshold ρc as function of n
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Phase transitions in community detection from noisy graph

Theorem (Existence of phase transitions)

Let G0 be a graph with p × p block diagonal adjacency matrix A0 and let G be
a graph with random adjacency matrix A = A0 ⊕∆ where ∆ is a random
binary matrix, independent of A0, with Bernoulli(θ) entries.

Then, as p →∞, community detection algorithms exhibit a phase transition
threshold with critical phase transition parameter θ∗: the block diagonal
structure of A0 is recovered if θ < θ∗ while it is not recovered if θ > θ∗.

(Chen and Hero [2015b], Phys Rev E), (Chen and Hero [2015a], IEEE TSP), (Abbe

and Sandon [2015], FOCS), (Nadakuditi and Newman [2012], Phys Rev)
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Example: spectral graph clustering in stochastic block model

Single community in additive noise
2× 2 connection probability matrix

Θ =

[
θin θout
θout θout

]
p × p graph Laplacian matrix,
p = pin + pout

L =

[
Lin + Din −C
−C Lout

]

Fiedler vector y =

[
yin

yout

]
of L • cin: avg within-community degree

• cout : avg btwn-community degree

Theorem (Spectral clustering phase transition)

For fixed θin there exists an asymptotic threshold θ∗out such that (a.s.){ √
ppin
pout

yin → ±1in,
√

ppin
pout

yout → ±1out if θout < θ∗out

1inyin → 0, 1outyout → 0 if θout > θ∗out

as pin →∞, pout →∞ and pin/pout → c > 0.

Chen and Hero [2015a], Deep community detection, IEEE TSP
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Deep community detection via iterative pruning

Algebraic connectivity (Fiedler eigenvalue) depends on E and V

f (E ,V) = λ2(E ,V)

Main idea: denoise community structure by optimal pruning

q-edge pruning q-node pruning
Eq = argmine1....,eq∈E f (E ,V) Vq = argminv1....,vq∈V f (E ,V)

Greedy approximation: prune one at a time.
For k = 1, . . . , q

Greedy edge pruning Greedy node pruning
e(k) = argmine∈E(k) f (E (k),V) v (k) = argminv∈V(k) f (E (k),Vk))

Fact: greedy pruning minimizes Local Fiedler Value Centrality (LFVC)

Edge-LFVC Node-LFVC
∆eij f = (yi − yj)

2 ∆vi f =
∑

j∈Ni
(yi − yj)

2

Property: f (E ,V) is submodular in E and V

Implication: Greedy pruning comes within (1− 1/e) of optimal pruning

Chen and Hero [2015a], Deep community detection, IEEE TSP
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Deep Community Detection Numerical Comparisons

Sensitivity Specificity

• Single-community stochastic block model with p = pin + pout = 200 nodes
• Community size: pin = 40 nodes
• Stochastic block model probability parameters:

• θout = 1/80 (cout = 2)
• θin (cin) varies over a range

• Curves represent averages of 100 trials

Chen and Hero [2015a], Deep community detection, IEEE TSP
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Deep Community Detection application: last.fm social network

Deep community detection applied to last.fm user social network.
Left: Decrease in algebraic connectivity as function of # nodes removed.

Right: Increase in number of discovered communities.

• Node removals selected by greedy maximization of LFVC criterion
• p = 1843 nodes
• |V | = 12668 edges

Chen and Hero [2015a], Deep community detection, IEEE TSP
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Deep Community Detection application: last.fm social network

Residual sum of community similarity: normalized sum of correlations of last.fm

pairwise preference in each discovered community of last.fm user social network

Chen and Hero [2015a], Deep community detection, IEEE TSP
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Community Detection with Adaptive Model Order Selection (AMOS)

• General phase transition results for K communities have been derived

• Bounds on critical phase transition threshold θ∗ can often be found

θLB ≤ θ∗ ≤ θUB

• Community detection with adaptive estimation of K

1 Perform community detection with a hypothesized value K̂ of K
2 Construct statistical (1− α)× 100% confidence interval on θ

3 If confidence interval on θ falls above θUB then reject K̂

Chen and Hero [2018], Phase transions and a model selection. . . , IEEE TSP
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Centrality and community detection in multilayer networks

Focus on L-layer multiplex graphs G = {E ,V}:
• layers that share the same nodes V
• L sets of edges E = E1 × . . .× EL
• A tensor-valued adjacency matrix A = A(1) × · · · × A(L)

Methods for integrative multiplex graph analysis (Kivelä et al. [2014])

• Scalar network aggregation
• Multilayer majority centrality aggregation (Bródka et al. [2011], CASoN)
• Convex layer aggregation (Chen and Hero [2017], IEEE T SIPN)

• Spectral decompoisition
• Multicentrality spectral decomposition (Chen et al. [2016b], IEEE ICASSP)
• Multilayer information diffusion (Mahdizadehaghdam et al. [2016], IEEE T

SIPN)

• Latent variable relevance networks
• MCMC Dynamic Stochastic Block Models (DSBM) (Yang et al. [2011],

Machine Learning), (Xu and Hero [2014], IEEE JSTSP)
• Bayesian model averaging of DSBM (Oselio et al. [2014], IEEE JSTSP)

27
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Multilayer iterative model order selection algorithm (MIMOSA)

Assume L layers have common community structure

A(l) =

 A(l)
1 C(l)

12 C(l)
13

C(l)
21 A(l)

2 C(l)
23

C(l)
31 C(l)

32 A(l)
3

 , l = 1, . . . , L

MIMOSA applies AMOS to convex combination of layers

• w = [w1, . . . ,wL] a set of weights on the simplex
∑L

l=1 wl = 1, wi ≥ 0

• Compute the convex combination A =
∑L

l=1 wlA
(l)

• Apply AMOS spectral clustering to the matrix A

Properties:

• MIMOSA is simple to implement: it flattens multilayer structure

• Phase transition analysis is straightforward

• Analysis suggests automated weight selection procedure

Chen and Hero [2017], Multilayer spectral graph clustering. . . , IEEE T SIPN
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MIMOSA phase transition analysis

Theorem

Let G0 be a L-layer SBM whose layers have block diagonal adjacency matrices
{A(l)

0 }
L
l=1, assumed independent. Let the l-th layer of observed SBM have layer

adjacency matrix A(l) = A(l)
0 ⊕∆(l), where ∆(l) is a random binary matrix with

Bernoulli(θ) entries.

Then, as p →∞, the MIMOSA spectral clustering algorithm has a critical
phase transition with parameter θ∗(w) such that any common community to all
layers is recovered if θ < θ∗(w) while it is not recovered if θ > θ∗(w).

An optimal set of weights can be estimated that provides the most favorable
value of θ(w)

Chen and Hero [2017], Multilayer spectral graph clustering. . . , IEEE T SIPN
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MIMOSA phase transition results

• Detectability regions of 2 layer 1000 node network: θ11 = 0.3, θ12 = 0.2, θ22 = 0.4

Chen and Hero [2017], Multilayer iterative model order selection. . . , IEEE T SIPN
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MIMOSA experimental results

• Human HIV-1: GGI net separated into 5 layers of association - PhAssoc, DirInt,
Coloc, Assoc, SupprGen (De Domenico [2014], J. Complex Networks)

• Paul Auger: cosmologist co-author network separated into 9 research topic layers
(De Domenico [2015], Phys Rev X)

Comparative algorithms

• MIMOSA uniform - MIMOSA with uniform weights

• Louvain(γ) - maximizes multilayer modularity (Mucha et al. [2010], Science)

• SC-ML - multilayer spectral clustering (Dong et al. [2012], IEEE TSP)

• Self-tuning - automated model selection SGC algorithm (Zelnik-Manor and
Perona [2005], NIPS)

Chen and Hero [2017], Multilayer iterative model order selection. . . , IEEE T SIPN
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MIMOSA experimental results

• Voting network of 100 senators in 109th US Congress. Each layer represents a bill.

Chen and Hero [2017], Multilayer iterative model order selection. . . , IEEE T SIPN
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Multimodal relevance networks

A relevance network is a graph G = {E ,V}, E ⊂ V × V, whose edges E capture
a dependency relation between vertices.

Some examples:

• Correlation relevance networks (Lee et al. [1986], LANL TR)

• Partial correlation relevance networks (Lauritzen [1996], Oxford Univ Press)

• Mutual information relevance networks (Butte and Kohane [1999],
Biocomputing)

• Directed information influence networks (Rao et al. [2007], J. Bionf Comp Bio)

• Stochastic block models (Oselio et al. [2014], IEEE JSTSP)

⇒ multimodal relevance network approaches model interlayer dependencies
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Undirected relevance networks: graphical model of conditional dependencies

Nodes U,V ∈ V have edge if they are conditionally
dependent given all other nodes in V
• X , Y , Z are random variables with pdf

f (X ,Y ,Z) = f (X ,Y |Z)f (Z)

⇒ Generally gives a complete graph G
• X ,Y form a community in G if:

f (X ,Y |Z) = f (X ,Y ) 6= f (X )f (Y )

⇒ Remove edges from (X ,Z) and (Y ,Z)

• X , Y are conditionally independent given Z if

f (X ,Y |Z) = f (X |Z)f (Y |Z)

⇒ Remove edge from (X ,Y )

(Lauritzen [1996], Oxford Univ Press)
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Undirected relevance networks: graphical model of conditional dependencies

Natural measure of conditional dependency is MI

MI(X ,Y |Z) =

∫
f (x , y , z) ln (f (x , y |z)/f (x |z)f (y |z)) dxdydz

• X , Y , Z are random variables with pdf

f (X ,Y ,Z) = f (X ,Y |Z)f (Z)

⇒ MI(X ,Y |Z), MI(Z ,X |Y ), MI(Z ,Y |X ) > 0

• X ,Y form a community in G if:

f (X ,Y |Z) = f (X ,Y ) 6= f (X )f (Y )

⇒ MI(X ,Z |Y ) = 0 and MI(Y ,Z |X ) = 0

• X , Y are conditionally independent given Z if

f (X ,Y |Z) = f (X |Z)f (Y |Z)

⇒ MI(X ,Y |Z) = 0

(Butte and Kohane [1999], Biocomputing)
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Undirected relevance networks: graphical model of conditional dependencies

Gaussian case: U = [X ,Y ,Z ] ∼ N (0,Σ)

Σ = cov(U) =

 σ2
X σXY σXZ

σYX σ2
Y σYZ

σZX σZY σ2
Z


The MI takes simple form:

MI(X ,Y |Z) = −1

2
ln |ρXY |Z |

where ρXY |Z is the partial correlation coefficient between
X ,Y

ρXY |Z =
∣∣(P)12

∣∣
for which P is the partial correlation matrix

P = [diag(Σ−1)]−1/2Σ−1[diag(Σ−1)]−1/2

(Lauritzen [1996], Oxford Univ Press)
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Undirected relevance networks: graphical model of conditional dependencies

Stochastic representation of conditional dependencies

a1X + b1Y + c1Z = N1

b2Y + c2Z = N2

c3Z = N3

where [N1,N2,N3] ∼ N (0, I) is isotropic Gaussian noise

Examples:

• X ,Y ,Z dependent: all coefficients a, b, c are non-zero

• X ,Y community: c1 = c2 = 0

• X ,Y conditionally independendent: b1 = 0
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Latent variable multilayer relevance network model

Markov diagram implies

f (W1,W2|A1,A2,Y ) = f (W1|A1)f (W2|A2), f (A1,A2|Y ) = f (A1|Y )f (A2|Y )

• Observed matrices W1,W2: measured/estimated intralayer dependencies

• Adjacency matrices A1,A2: specify sparsity patterns of E[W1] and E[W2]

• Latent variable Y : determines dependencies between A1 and A2

Oselio et al. [2014], Multilayer graph analysis for dynamic social networks, IEEE J

STSP
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5D Nucleome fibroblast proliferation experiment

(Chen et al. [2015], PNAS), (Chen et al. [2016a], Bioinformatics), (Liu et al. [2017],

BioRxv), (Chen et al. [2017], Nucleus), (Liu et al. [2018], BioRxv)
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Chromatin gene structure layer: Chromosome Conformation Capture (Hi-C)

Hi-C matrices for 23 chromosomes at 100 kilo-base pair (Kb) resolution for fibroblast proliferation

[I. Rajapakse, 4D Genome, https://rajapakse.lab.medicine.umich.edu/]

40
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Functional gene expression layer: RNAseq

RNAseq data for Chromosome 4 [I. Rajapakse, 4D Genome, https://rajapakse.lab.medicine.umich.edu/]

Correlation matrix Partial correlation matrix

Correlation screening theory specifies correlation threshold value ρ ⇒ ARNA

• 24 = 8× 3 samples. 764 genes (zero expression genes removed)

• Critical phase transition threshold: ρc = 0.72

• 5% false positive threshold: ρ = 0.87

41
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Latent multilayer community detection: motivation - multiomic networks

RNAseq parcorr and HiC contact graphs for genes in a TAD on chromosome 15

RNAseq correlation graph (Bernoulli) HiC contact graph (Poisson)

Objective: partition genes into common multiomic communities and private
omic communities

Tiomoko Ali et al. [2018], Latent heterogeneous multilayer community detection, arXiv
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Multilayer community model

RNAseq correlation graph HiC contact graph

• Red vertices: shared community in RNAseq and HiC networks

• Green and blue vertices: private communities in RNAseq network

• Black and turquoise vertices: private communities in HiC network

Tiomoko Ali et al. [2018], Latent heterogeneous multilayer community detection, arXiv
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Latent multilayer community model

Graphical model for shared community (left) and private community (right) -
shaded circles represent determinstic parameters.
• g

(1)
i , g

(2)
i community labels of vertex i in layers 1, 2

• θ(1), θ(2): SBM community parameters
• A

(1)
ij and A

(2)
ij are conditionally indep. weighted adjacency matrices

A
(1)
ij ∼ f

A
(1)
ij |θ

(1),g
(1)
i

, A
(2)
ij ∼ f

A
(2)
ij |θ

(2),g
(2)
i

• µ(1), µ(2) and τ (1), τ (2) are generative distributions

Tiomoko Ali et al. [2018], Latent heterogeneous multilayer community detection, arXiv
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Shared community model

SBM community matrices θ(1) and θ(2) for layer 1 and layer 2, respectively.

• Proposed inference algorithm: joint mean field variational Bayes.

• Extends (Wilson et al. [2017], JMLR) to simultaneously extract shared
and private communities

Tiomoko Ali et al. [2018], Latent heterogeneous multilayer community detection, arXiv
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Simulation comparisons

• 500 vertices with Bernoulli or Poisson edges in each layer

• K = 2 shared communities each with 4 vertices

• Multilayer community detection algorithms implemented over 100 trials

• Comparisons for 2nd layer edge noise parameter q
′
∈ [0, 0.5]

• Spectral clustering (Chen and Hero [2017], IEEE T SPISN)
• Single layer mean field (Aicher et al. [2014], JMLR)
• Multilayer extraction (M-E) algorithm (Wilson et al. [2017], JMLR)
• Proposed joint layer mean field (Tiomoko Ali et al. [2018], arXiv 2018)
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HiC/RNAseq fibroblast proliferation data: discovered communities

Tiomoko Ali et al. [2018], Latent heterogeneous multilayer community detection, arXiv
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HiC/RNAseq fibroblast proliferation data: Chromosome 4 communities

Tiomoko Ali et al. [2018], Latent heterogeneous multilayer community detection, arXiv
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Summary

• Community detection and centrality for multimodal multilayer networks

• Multilayer network analysis tools are less mature than single layer tools

• Two basic kinds of multilayer networks
• Dynamic networks: layers are homogeneous (similar dependency

mechanisms)
• Multiomic networks: the layers are inhomogeneous (different dependency

mechanisms)

• Latent multilayer dependency model is a probabilistic model that accounts
for interlayer interactions

• Open problems:
• Centrality measures: beyond multilayer mean and dispersion
• Critical phase transitions: beyond independent layers
• Community detection: beyond universal layer sharing of communiites
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