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Rank-one matrices and the Hadamard
jump condition

. oo : :
y . R"™ — R" piecewise affine TN

A, B € RM*" = {real m x n matrices}

Let C = A—-—B. Then Cx =0 if z- N = 0.
Thus C(z — (- N)N) = 0 for all z, and SO  (3nk one

Cz=(CN ® N)z, where (a® N)ij — a,z-Nj. if A%« B
Hadamard
jump condition A—B=b & N




More generally this holds for y piecewise C1,
with Dy jumping across a C1 surface.

N

DyT(a) = A

Dy~ (a) = B A—B=bQ N

Proof: blow up around x using

ys(x) = 6~ t(y(a + 6z) — y(a)).



Martensitic transformations involve a change of
shape of the crystal lattice of some alloy at a critical

temperature.

e.g. cubic to tetragonal

0 > 0. | It 0 <6

cubic =11 three tetragonal variants
. of martensite

austenite

cubic to 0 < 0

orthorhombic Six orthorhombic variants

(e.g. CuAlINi) of martensite 4
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Energy minimization problem for single crystal

Yy

4

reference configuration deformed configuration
Minimize
li(y) = [ ¥(Dy(a),6) da
among (invertible) y : 2 — R3 subject to
Yloo, =Y

where ©Q ¢ R3 is a bounded Lipschitz domain, 021 C 052, and
the free-energy density ¥/(A4, 6) is defined for A € GLT(3), where

GLT(3) = {real 3 x 3 matrices A : det A > 0}. )



Energy-well structure

K(0) = {A € GLT(3) that minimize ¢(A,#)}

Assume /

austenite

a(@)SO(3) 0> 0
K(0) = « 50(3) UUM, SOB)U;(0) 6= 6.
Uz_l SO(3)U (0) 0 < O,
. \ rank-one connections
martensite th(e ) — ::zz?;nd it;eiimgwells

e.g. for cubic to tetragonal M = 3 and

Uy = diag (n2,m1,7m1), Uz = diag (n1,m2,7m1),
Uz = diag (1,11, 12)-
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Theorem
let U =UT >0 vV =vT >0 Then SO(3)U,
SO(3) V are rank-one connected iff

U2 -V2=c¢(N@ N+ N®N) ()

for unit vectors N, N and some c = 0.
If N # +N there are exactly two rank-one
connections between V and SO(3) U given by

RU=V+4+a®N, RU=V+4+axN,
for suitable R, R € SO(3), a,a € R3.

(JB/Carstensen version of standard result cf. Ericksen, Gurtin, JB/James ...)
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Corollaries.

1. There are no rank-one connections between matrices
A, B belonging to the same energy well.

Proof. In this case U =V, contradicting ¢ #= 0.

2. If U;(0),U;(0) are distinct martensitic variants then
SO(3)U;(#) and SO(3)Uj(0) are rank-one connected if
and only if det(U;(6)? — U;(0)?) = 0, and the possible
iInterface normals are orthogonal. Variants separated by
such interfaces are called twins.

3. There is a rank-one connection between pairs
of matrices A € SO(3) and B € SO(3)U;(6.) if and
only if U;(0.) has middle eigenvalue 1.



'.‘. —

SO(3)U;(0) I_.f SO(3)U;(0)

g

The existence of twins implies that the corresponding
Y(-,0) is not rank-one convex (i.e. convex in the direction
of matrices of rank one).

Since quasiconvexity implies rank-one convexity this
means that ¥ (-,0) is not quasiconvex.

Definition (Morrey). f e CO(R™*™) is quasiconvex if

| f(Du(@))de > | f(A) de = L™ (2)£(A)

for all A € R™*™ and smooth u : R” — R™ with u(x) = Az
. 10
for x € 992, where 2 C R" is bounded open.



Quasiconvexity is the central convexity condition of the multi-
dimensional calculus of variations, and is roughly speaking
necessary and sufficient of the existence of minimizers.

Therefore we do not expect minimizers of Iy(y) to exist in
general, the gradients Dy(j) of a minimizing sequence y(j)
typically generating an infinitely fine microstructure in the
limit J — oo.

That the fine microstructures
observed are not infinitely fine
IS because interfacial energy
contributions are ignored in
the elasticity model.

How can we describe infinitely fine microstructures? «



Gradient Young measures

Given a sequence of gradients
Dy\9), fix .z, 6.

For E C GLT(3) define

meas {z € B(x,9) : Dy (2) e E}
meas B(x,d)

V:I:,j,é(E) —

EF)=Ilim |lim - s(F
vz (E) 6—>0j—>oovm’j’6( )

IS the gradient Young measure generated by Dy(j).

[ weak limit of Dy()
N Advy(A) = Dy(x) = { macroscopic
GLT(3) . deformation gradient
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Semiconvex hulls

W RMXM — R is polyconvex if ¥(A) = g(J(A)) for a
convex function g of the minors J(A).

Let G be a convex cone of continuous functions g : R™*"™ — R
containing constants. For K C R™*" compact define (Sverak)

KG = {A:¢y(A) < mf?xw for all ¢ € G}.

Theorem (cf Krucik 2000)

K¢ ={AeR™": 3, e P(K) with g(A) < (i, g) Vg € G}

For G = convex (resp. polyconvex, quasiconvex) functions
we write K& = K¢, (resp. KP¢, K1), and then

K9 c KP¢ c K°.



When a new phase is nucleated in a martensitic phase trans-
formation, it has to fit geometrically onto the parent phase.
This is is both an important ingredient for determining mi-
crostructure morphology, and leads to metastability when
the two phases are geometrically incompatible.

e.g. austenite-martensite interfaces

habit I/m p— 5 1

plane

m

B 1
undary layer

ve = Ao+ (1= A)dp

(Classical) austenite-martensite interface in CuAINi Gives formulae of the crystallographic theory
(courtesy C-H Chu and R.D. James) of martensite (Wechsler, Lieberman, Read)



But why (cf JB/Carstensen 1997) should the martensitic microstructure
be a simple laminate, rather than something more complicated, such as a
double laminate?

nonclassical interface

Dy(xz) =1

Dy(zx) =F=v

F e (UM, SO(3)U;(6:))
(unknown unless M = 2)

Ux = U

suppr C UM, SO(3)U;(6e)

double laminate
of martensite

F=14+bx@m

15



AUSTENITE

Optical
micrograph
(H. Seiner) of
non-classical
Interface
between
austenite and
a martensitic
microstructure

The arrows
indicate the

orientations of
twinning
planes of
Type-Il and
compound
twinning
systems




Nonclassical austenite-martensite interface in CuAINi (H. Seiner);



Nucleation of austenite in martensite
(JB/K. Koumatos/H. Seiner 2013,2014)

Single crystal of CUAINI. Pure variant of martensite. Heated by tip of sol_an. !
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CuZnAl Morin
Cu-14.0wt.%AI-3.9wWwt.%Ni C. Chu & R. D. James




Question: in general, how are the gradients or
gradient Young measures on either side of an
interface related?

Knowledge of this could help in understanding
microstructure morphology.



Limiting sets of gradients for Lipschitz
Maps N

() C R™ open,

y . 2 — R™ locally Lipschitz

a €, [Nl =1,

y € Wb (B(a,d); R™) for some § > 0

Blow up y around a onto the unit ball
B = B(0,1) through

29 (z) = 67 1 (y(a+ §;z) — y(a)),
where 0 < §,; < §, §; = O.
Dz(j)(:r:) = Dy(a + 6;x)




Definition

DENy(a) = {A € R " :36; - 0+ such that, for all € > 0,

liminf L"({z € B* : Dy(a+ 6. jx) € B(A,e)}) > 0}

‘j‘—}DO

Remark: an equivalent definition can be given in terms of
the supports of the Young measures generated by Dy(j).

D*Ny(a) need not be closed. Indeed there exists a Lipschitz
map y : R — R such that DT1y(0) = {; :k=1,2,...}.

Its closure has a slightly simpler characterization

DENy(a) = {A c R™*™ : for all e >0

nmérlfﬁ“({a: € B* : Dy(a+ dz) € B(A,¢)}) > 0]



Remark: The definition can be
rephrased in terms of interfaces:

Similar definitions for microstructures.

B a,c?j)

For an open E C R™ define the set of essential gradients

Dy(E) = {K closed, Dy(z) € K a.e. z € E}.

Then DENy(a) C Ngeees Dy(a+eB¥), but in general the
iInclusion is strict.

For example let m =n =1,a = 0, and 1

y(2) = S 270uw((a - j~1)29).
j=1 -1 1

Then RHS = {0,+1}, but DT1y(0) = {0}.




Generalized Hadamard conditions

Interface problem on a half ball.

Given a fixed N € S" 1 consider the half-ball

Q=BT ={zeB(0,1):z-N >0}

and its flat boundary portion
r={zxe B(0,1):2-N =0}

\

y = Ax

Let y € W1 (Q; R™) satisfy the affine
boundary condition

y(x) = Ax for x € I",

where A € R™*" js given.



QRuestion: Does there exist b € R™ such that

A4+b® N € Dy()7?

The answer is no, and counterexamples can be
found (JB/James) among maps y such that

Dy(z) € {A1,..., Ay}
for M > 3, where none of the matrices A; is of
the form A+b0Q N.

But see recent work of Della Porta, who
describes a situation relevant to low hys-
teresis materials in which such a result is

generically true.




T heorem At every point a in an open set
Q C R", for any direction N € S*"1 and for
any locally Lipschitz y : €2 — R"™, we have

0 € [DytTV(a)(1-N®N)]9—[Dy N (a) (1-NN)]9C.

Idea of proof. First consider the case of y defined on a half ball
BT(0,1) with y(z) = Az on I = {& € B(0,1) : - N = 0}, and take
weak limits of the maps y% (z) = y(a’/,2;) for a sequence z; — O+.
Then reduce the general case to this one by doing a second blow-up.

Corollary. There exists b € R such that
b N € DyTV(a)¢ — Dy=N(a)".
Proof. By the theorem

0 € [Dy™(a)(1 - N®N)]°—[DyN(a)(1 - N N)
= [DyT™(a)° - Dy N (a)l(1 - N ® N).



T heorem
Let €2 C R™ be an arbitrary open set with boundary

point a, through which passes a sphere exterior to {2
having exterior normal N. Let y : Q — R™ be Lipschitz
with y(x) = Az for all z € 92 N B(a,d), § > 0. Then
there exists b € R™ with A4+b® N € Dy(2nN B(a,d))C.



T heorem
Let m = n = 2, Q C R? be open, a € R?,
N € S1. Then there exists b € R? with

b® N € [D™Vy(a)]P® — [DTNy(a)]P".
The proof uses results on quasiregular maps.

The result was shown to be false for n = 2,
m > 3 by Iwaniec, Verchota & Vogel (2002).



Compatibility across grain boundaries
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BaTiO3 ceramic: G. Arlt, J. Materials Science, 25 (1990) 2655-2666.



Zero-energy microstructures for a bicrystal

=

Energy wells K = SO(3)U; USO(3)U-

Uy = diag (n2,7m1,13), Uz = diag (n1,12,13),
no>mn1 >0,n13 >0

Grain 1 Grain 2
Q) = wiy x (0,d) (22 =w2 x (0,d)
suppry C K a.e. € Qq SUPPrz C KR(a) a.e. z €<

33

R(a)ez = e3



Always possible to have zero-energy
microstructure with Dy = by = (n1non3)1/31.

Question: Is it true that every zero-energy microstructure
is nontrivial (i.e. not a pure phase v; = §4) in each of
the grains?

Result 1. If the interface is planar then whatever its
normal n there always exists a zero-energy microstructure
which has a pure phase (i.e. vy = d4) in one of the grains.

Therefore the interface needs to be curved in order to
show that the microstructure has to be nontrivial. Write
the normal to the interface as n = (cos#,sin9,0).

34



Result 2. Suppose that a« = w/4. Then it is
Impossible to have a zero-energy microstruc-
ture with a pure phase in one of the grains
If the boundary between the grains contains a
normal with 6 € D1 and another normal with

0 € Do.

/8

—7/8
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Proofs use:
1. A reduction to 2D using the plane strain result for

the two-well problem (JB/James).

2. The characterization of the quasiconvex hull of two
wells (JB/James), which equals their polyconvex hull.
3. Use of the generalized Hadamard jump condition in
2D to show that there has to be a rank-one connection
b® N between the polyconvex hulls for each grain.

4. Long and detailed calculations.

For the details see, JB & C. Carstensen, Interaction of
martensitic microstructures in adjacent grains, ICOMAT
2017 Proceedings.
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Zﬂ4515«U30CU2 ultra-low
hysteresis alloy satisfy-
ing cofactor conditions
Song, Chen, Dabade,
Shield, James, 2013

‘Moving mask’ approximation
analyzed by Della Porta (2018),
who has also identified further
conditions on the U; allow-
ing new microstructures, closely
satisfied in this allov.
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A probabilistic model for martensitic avalanches.

JB/P. Cesana/B. Hambly 2015

General branching random walk analysis
(Cesana/Hambly) predicts approximate power
laws for plate lengths, as observed for acoustic

emissions.
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