Convex Optimization

Stephen Boyd

Electrical Engineering
Computer Science
Management Science and Engineering
Institute for Computational Mathematics & Engineering
Stanford University

Institute for Advanced Study City University of Hong Kong 17/2/2017

Outline

Mathematical Optimization

Convex Optimization

Examples

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary

Outline

Mathematical Optimization

Convex Optimization

Examples

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary

Optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0$, $i = 1, ..., m$
 $g_i(x) = 0$, $i = 1, ..., p$

- $x \in \mathbb{R}^n$ is (vector) variable to be chosen
- $ightharpoonup f_0$ is the *objective function*, to be minimized
- f_1, \ldots, f_m are the inequality constraint functions
- $ightharpoonup g_1, \ldots, g_p$ are the equality constraint functions
- ▶ variations: maximize objective, multiple objectives, . . .

Finding good (or best) actions

- x represents some action, e.g.,
 - trades in a portfolio
 - airplane control surface deflections
 - schedule or assignment
 - resource allocation
 - transmitted signal
- constraints limit actions or impose conditions on outcome
- ▶ the smaller the objective $f_0(x)$, the better
 - total cost (or negative profit)
 - deviation from desired or target outcome
 - ▶ risk
 - fuel use

Engineering design

- ▶ x represents a design (of a circuit, device, structure, ...)
- constraints come from
 - manufacturing process
 - performance requirements
- ightharpoonup objective $f_0(x)$ is combination of cost, weight, power, . . .

Finding good models

- x represents the parameters in a model
- constraints impose requirements on model parameters (e.g., nonnegativity)
- ▶ objective $f_0(x)$ is the prediction error on some observed data (and possibly a term that penalizes model complexity)

Inversion

- ► *x* is something we want to estimate/reconstruct, given some measurement *y*
- constraints come from prior knowledge about x
- ightharpoonup objective $f_0(x)$ measures deviation between predicted and actual measurements

Worst-case analysis (pessimization)

- variables are actions or parameters out of our control (and possibly under the control of an adversary)
- constraints limit the possible values of the parameters
- ightharpoonup minimizing $-f_0(x)$ finds worst possible parameter values
- if the worst possible value of $f_0(x)$ is tolerable, you're OK
- ▶ it's good to know what the worst possible scenario can be

Optimization-based models

- model an entity as taking actions that solve an optimization problem
 - ▶ an individual makes choices that maximize expected utility
 - an organism acts to maximize its reproductive success
 - reaction rates in a cell maximize growth
 - currents in a circuit minimize total power

Optimization-based models

- model an entity as taking actions that solve an optimization problem
 - an individual makes choices that maximize expected utility
 - an organism acts to maximize its reproductive success
 - reaction rates in a cell maximize growth
 - currents in a circuit minimize total power
- (except the last) these are very crude models
- ▶ and yet, they often work very well

Summary

summary: optimization arises *everywhere*

Summary

summary: optimization arises everywhere

▶ the bad news: most optimization problems are intractable i.e., we cannot solve them

Summary

summary: optimization arises everywhere

▶ the bad news: most optimization problems are intractable i.e., we cannot solve them

► an exception: convex optimization problems are tractable i.e., we (generally) can solve them

Outline

Mathematical Optimization

Convex Optimization

Examples

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary

Convex optimization

convex optimization problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

- ▶ variable $x \in \mathbf{R}^n$
- equality constraints are linear
- f_0, \ldots, f_m are **convex**: for $\theta \in [0, 1]$,

$$f_i(\theta x + (1-\theta)y) \le \theta f_i(x) + (1-\theta)f_i(y)$$

i.e., f_i have nonnegative (upward) curvature

- ▶ beautiful, nearly complete theory
 - ▶ duality, optimality conditions, ...

- beautiful, nearly complete theory
 - duality, optimality conditions, . . .
- effective algorithms, methods (in theory and practice)
 - get global solution (and optimality certificate)
 - polynomial complexity

- beautiful, nearly complete theory
 - duality, optimality conditions, . . .
- effective algorithms, methods (in theory and practice)
 - get global solution (and optimality certificate)
 - polynomial complexity
- conceptual unification of many methods

- beautiful, nearly complete theory
 - duality, optimality conditions, . . .
- effective algorithms, methods (in theory and practice)
 - get global solution (and optimality certificate)
 - polynomial complexity
- conceptual unification of many methods

▶ lots of applications (many more than previously thought)

Application areas

- machine learning, statistics
- finance
- supply chain, revenue management, advertising
- control
- signal and image processing, vision
- networking
- circuit design
- combinatorial optimization
- quantum mechanics
- ► flux-based analysis

The approach

- ▶ try to formulate your optimization problem as convex
- ▶ if you succeed, you can (usually) solve it (numerically)

The approach

- try to formulate your optimization problem as convex
- ▶ if you succeed, you can (usually) solve it (numerically)
- some tricks:
 - change of variables
 - approximation of true objective, constraints
 - relaxation: ignore terms or constraints you can't handle

Outline

Mathematical Optimization

Convex Optimization

Examples

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary

Radiation treatment planning

- \triangleright radiation beams with intensities x_i are directed at patient
- ▶ radiation dose y_i received in voxel i
- ightharpoonup y = Ax
- $ightharpoonup A \in \mathbf{R}^{m \times n}$ comes from beam geometry, physics
- ▶ goal is to choose *x* to deliver prescribed radiation dose *d_i*
 - $ightharpoonup d_i = 0$ for non-tumor voxels
 - $d_i > 0$ for tumor voxels
- ightharpoonup y = d not possible, so we'll need to compromise
- ▶ typical problem has $n = 10^3$ beams, $m = 10^6$ voxels

Radiation treatment planning via convex optimization

minimize
$$\sum_{i} f_i(y_i)$$

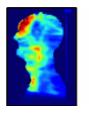
subject to $x \ge 0$, $y = Ax$

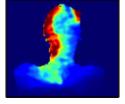
- ▶ variables $x \in \mathbf{R}^n$, $y \in \mathbf{R}^m$
- objective terms are

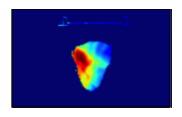
$$f_i(y_i) = w_i^{\text{over}}(y_i - d_i)_+ + w_i^{\text{under}}(d_i - y_i)_+$$

- \triangleright w_i^{over} and w_i^{under} are positive weights
- ▶ i.e., we charge linearly for over- and under-dosing
- ► a convex optimization problem

Example

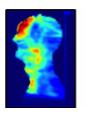


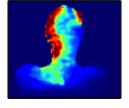


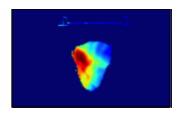


- ▶ real patient case with n = 360 beams, m = 360000 voxels
- optimization-based plan essentially the same as plan used

Example







- real patient case with n = 360 beams, m = 360000 voxels
- ▶ optimization-based plan essentially the same as plan used
- ▶ (but we computed the plan in a few seconds, not many hours)

Image in-painting

- guess pixel values in obscured/corrupted parts of image
- ▶ total variation in-painting: choose pixel values $x_{ij} \in \mathbb{R}^3$ to minimize total variation

$$\mathsf{TV}(x) = \sum_{ij} \left\| \left[\begin{array}{c} x_{i+1,j} - x_{ij} \\ x_{i,j+1} - x_{ij} \end{array} \right] \right\|_{2}$$

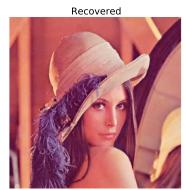
a convex problem

Example

 512×512 color image ($n \approx 800000$ variables)

Corrupted
Lorem ipsum dolor sit amet, adipiscing elit, sed diam non euismod tincidum ut laoreet magna aliquam erat volutpat enim ad minim veniam, quis exerci tation ullamcorper sus lobortis nisl ut aliquip ex ea consequat. Duis autem vel eu dolor in hendrerit in vulputa esse molestie consequat, vel i dolore eu feugiat nulla facilis

Example



Support vector machine

- ▶ goal: predict a Boolean outcome from a set of *n* features
 - e.g., spam filter, fraud detection, customer purchase

Support vector machine

- ▶ goal: predict a Boolean outcome from a set of *n* features
 - e.g., spam filter, fraud detection, customer purchase
- ▶ data (a_i, b_i) , i = 1, ..., m
 - ▶ $a_i \in \mathbb{R}^n$ feature vectors; $b_i \in \{-1, 1\}$ Boolean outcomes
- ▶ linear predictor: $\hat{b} = \operatorname{sign}(w^T a v)$
 - $w \in \mathbf{R}^n$ is weight vector; $v \in \mathbf{R}$ is threshold

Support vector machine

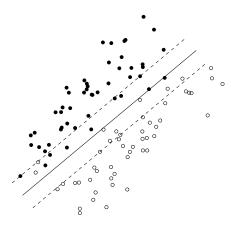
- ▶ goal: predict a Boolean outcome from a set of *n* features
 - e.g., spam filter, fraud detection, customer purchase
- ▶ data $(a_i, b_i), i = 1, ..., m$
 - ▶ $a_i \in \mathbb{R}^n$ feature vectors; $b_i \in \{-1, 1\}$ Boolean outcomes
- ▶ linear predictor: $\hat{b} = \text{sign}(w^T a v)$
 - $w \in \mathbf{R}^n$ is weight vector; $v \in \mathbf{R}$ is threshold
- ► SVM: choose w, v to minimize (convex) objective

$$(1/m)\sum_{i=1}^{m} (1-b_i(w^Ta_i-v))_+ + (\lambda/2)||w||_2^2$$

where $\lambda > 0$ is parameter

SVM

$$w^{T}z - v = 0$$
 (solid); $|w^{T}z - v| = 1$ (dashed)



Sparsity via ℓ_1 regularization

▶ adding ℓ_1 -norm regularization

$$\lambda ||x||_1 = \lambda (|x_1| + |x_2| + \cdots + |x_n|)$$

to objective results in **sparse** x

- $ightharpoonup \lambda > 0$ controls trade-off of sparsity versus main objective
- preserves convexity, hence tractability
- used for many years, in many fields
 - sparse design
 - ▶ feature selection in machine learning (lasso, SVM, ...)
 - total variation reconstruction in signal processing

compressed sensing

Lasso

▶ regression problem with ℓ_1 regularization:

minimize
$$(1/2)||Ax - b||_2^2 + \lambda ||x||_1$$

with $A \in \mathbf{R}^{m \times n}$

▶ useful even when $n \gg m$ (!!); does **feature selection**

Lasso

▶ regression problem with ℓ_1 regularization:

$$\text{minimize} \quad (1/2)\|Ax-b\|_2^2 + \lambda \|x\|_1$$

with $A \in \mathbf{R}^{m \times n}$

- ▶ useful even when $n \gg m$ (!!); does **feature selection**
- cf. ℓ_2 regularization ('ridge regression'):

minimize
$$(1/2)||Ax - b||_2^2 + \lambda ||x||_2^2$$

Lasso

▶ regression problem with ℓ_1 regularization:

minimize
$$(1/2)||Ax - b||_2^2 + \lambda ||x||_1$$

with $A \in \mathbf{R}^{m \times n}$

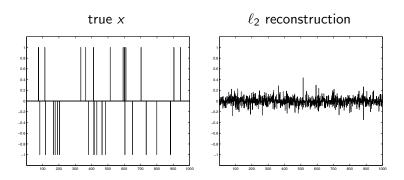
- ▶ useful even when $n \gg m$ (!!); does **feature selection**
- cf. ℓ_2 regularization ('ridge regression'):

minimize
$$(1/2)||Ax - b||_2^2 + \lambda ||x||_2^2$$

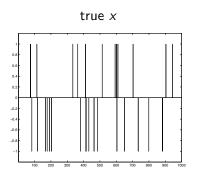
▶ lasso, ridge regression have same computational cost

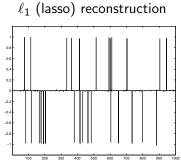
Example

- ▶ m = 200 examples, n = 1000 features
- examples are noisy linear measurements of true x
- ► true *x* is sparse (30 nonzeros)



Example





State of the art — Medium scale solvers

- ▶ 1000s–10000s variables, constraints
- reliably solved by interior-point methods on single machine
- exploit problem sparsity
- not quite a technology, but getting there

State of the art — Modeling languages

- ▶ (new) high level language support for convex optimization
 - describe problem in high level language
 - description is automatically transformed to cone problem
 - solved by standard solver, transformed back to original form

State of the art — Modeling languages

- ▶ (new) high level language support for convex optimization
 - describe problem in high level language
 - description is automatically transformed to cone problem
 - solved by standard solver, transformed back to original form

- enables rapid prototyping (for small and medium problems)
- ideal for teaching (can do a lot with short scripts)

CVX

- parser/solver written in Matlab (M. Grant, 2005)
- ► SVM: minimize

$$(1/m)\sum_{i=1}^{m} (1-b_i(w^Ta_i-v))_+ + (\lambda/2)||w||_2^2$$

CVX specification:

Outline

Mathematical Optimization

Convex Optimization

Examples

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Realt-time embedded optimization

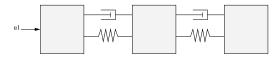
- in many applications, need to solve the same problem repeatedly with different data
 - ► control: update actions as sensor signals, goals change
 - ▶ finance: rebalance portfolio as prices, predictions change
- requires extreme solver reliability, hard real-time execution
- used now when solve times are measured in minutes, hours
 - supply chain, chemical process control, trading

Realt-time embedded optimization

- in many applications, need to solve the same problem repeatedly with different data
 - control: update actions as sensor signals, goals change
 - ▶ finance: rebalance portfolio as prices, predictions change
- ► requires extreme solver reliability, hard real-time execution
- used now when solve times are measured in minutes, hours
 - supply chain, chemical process control, trading

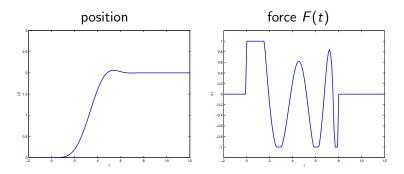
 (using new techniques) can be used for applications with solve times measured in milliseconds or microseconds

Example — Positioning



- ▶ force F(t) moves object, modeled as 3 masses (2 vibration modes)
- ▶ goal: move object to commanded position as quickly as possible, with $|F(t)| \le 1$
- reduces to a (quasi-) convex problem

Optimal force profile



CVXGEN code generator

- handles small, medium size problems transformable to QP (J. Mattingley, 2010)
- accepts high-level problem family description
- uses primal-dual interior-point method
- generates flat library-free C source

CVXGEN code generator

- handles small, medium size problems transformable to QP (J. Mattingley, 2010)
- ▶ accepts high-level problem family description
- uses primal-dual interior-point method
- generates flat library-free C source

▶ typical speed-up over general solver: 100–10000×

CVXGEN example specification — SVM

```
dimensions
 m = 50 % training examples
 n = 10 % dimensions
end
parameters
  a[i] (n), i = 1..m % features
 b[i], i = 1..m  % outcomes
  lambda positive
end
variables
 w (n) % weights
  v % offset
end
minimize
  (1/m)*sum[i = 1..m](pos(1 - b[i]*(w'*a[i] - v))) +
    (lambda/2)*quad(w)
end
```

CVXGEN sample solve times

problem	SVM	Positioning
variables	61	590
constraints	100	742
CVX, Intel i3	270 ms	2100 ms
CVXGEN, Intel i3	230 μ s	4.8 ms

Outline

Mathematical Optimization

Convex Optimization

Examples

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Large-scale distributed optimization

- ► *large-scale* optimization problems arise in many applications
 - machine learning/statistics with huge datasets
 - dynamic optimization on large-scale networks
 - image, video processing

Large-scale distributed optimization

- ► large-scale optimization problems arise in many applications
 - machine learning/statistics with huge datasets
 - dynamic optimization on large-scale networks
 - image, video processing
- we'll use distributed optimization
 - split variables/constraints/objective terms among a set of agents/processors/devices
 - agents coordinate to solve large problem, by passing relatively small messages
 - can target modern large-scale computing platforms
 - ▶ long history, going back to 1950s

Consensus optimization

want to solve problem with N objective terms

minimize
$$\sum_{i=1}^{N} f_i(x)$$

e.g., f_i is the loss function for ith block of training data

consensus form:

minimize
$$\sum_{i=1}^{N} f_i(x_i)$$

subject to $x_i - z = 0$

- \triangleright x_i are local variables
- z is the global variable
- $x_i z = 0$ are **consistency** or **consensus** constraints

Consensus optimization via ADMM

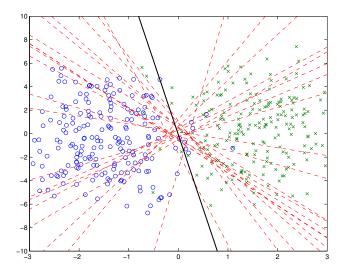
with
$$\overline{x}^k = (1/N) \sum_{i=1}^N x_i^k$$
 (average over local variables)
$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + (\rho/2) \|x_i - \overline{x}^k + u_i^k\|_2^2 \right)$$
$$u_i^{k+1} := u_i^k + (x_i^{k+1} - \overline{x}^{k+1})$$

- ▶ get **global** minimum, under very general conditions
- \triangleright u^k is running sum of inconsistencies (PI control)
- minimizations carried out independently and in parallel
- \triangleright coordination is via averaging of local variables x_i

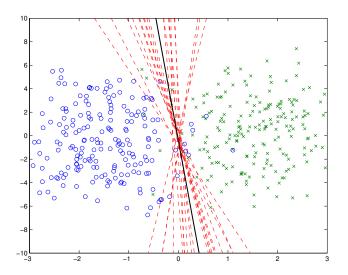
Example — Consensus SVM

- ▶ baby problem with n = 2, m = 400 to illustrate
- \triangleright examples split into N=20 groups, in worst possible way: each group contains only positive or negative examples

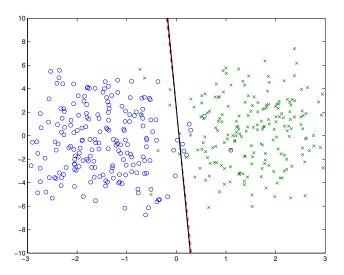
Iteration 1



Iteration 5



Iteration 40



Outline

Mathematical Optimization

Convex Optimization

Examples

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary

Summary

- convex optimization problems arise in many applications
- convex optimization problems can be solved effectively
 - small problems at microsecond/millisecond time scales
 - medium-scale problems using general purpose methods
 - arbitrary-scale problems using distributed optimization
- ▶ high level language support (CVX) makes prototyping easy

References

many researchers have worked on the topics covered

- Convex Optimization (Boyd & Vandenberghe)
- CVX: Matlab software for disciplined convex programming (Grant & Boyd)
- CVXGEN: A code generator for embedded convex optimization (Mattingley & Boyd)
- ► Distributed optimization and statistical learning via the alternating direction method of multipliers (Boyd, Parikh, Chu, Peleato, & Eckstein)

all available (with code) from stanford.edu/~boyd