Continuum Modeling of Transportation Networks with Differential Equations

Peter Markowich

King Abdullah University of Science and Technology Thuwal, KSA

Examples of transportation networks

The Silk Road

Examples of transportation networks

Painting by Latifa Echakhch (detail)

Examples of transportation networks

Discrete network models

Static and dynamic discrete graph-based models, deterministic and (geometric) random graphs.
 Topological and geometric properties - loops, trees, connectivity, scale-free graphs [Barabasi&Albert'1999, Newman'2003, Watts&Strogatz'1998, . . .]

 Solutions obtained by global energy minimization; combinatorial approach with NP-completness issues.

Optimal mass transportation network modeling

- Based on a transportation cost law and Monge-Kantorovich theory [Bernot&Caselles&Morel'2009, Villani'2003&'2008, ...]
- c(x, y) cost of transport of a unit mass from x to y
- Find a measure $\gamma(x, y)$ which minimizes the total transportation cost

$$C_{\gamma} := \int_{\Omega \times \Omega} c(x, y) \gamma(\,\mathrm{d} x, \,\mathrm{d} y)$$

where the marginals of γ are given.

River Branching

Discrete modeling - adaptive dynamics

• Flow of a material through the network-graph $(\mathcal{V}, \mathcal{E})$

Pressures
$$P_j$$
 on vertices $j \in \mathcal{V}$
Conductivities C_{ij} on edges $(i,j) \in \mathcal{E}$

Assume low Reynolds number (Poiseuille flow), then

Poiseuille fluxes
$$Q_{ij} = -C_{ij} \frac{P_i - P_j}{L_{ij}}$$

• Conservation of mass - Kirchhoff law with sources S_j ,

$$\sum_i Q_{ij} = -\sum_i C_{ij} rac{P_i - P_j}{L_{ij}} = S_j$$
 for each $j \in \mathcal{V}$

Discrete model of [Hu&Cai'2014]

Energy cost functional

$$E := rac{1}{2} \sum_{(i,j) \in \mathcal{E}} \left(rac{Q_{ij}^2}{C_{ij}} +
u C_{ij}^{\gamma}
ight) L_{ij}$$

consisting of

• pumping power (Joule's law: power = potential × current)

$$(P_i - P_j)Q_{ij} = \frac{Q_{ij}^2}{C_{ij}}L_{ij}$$

- metabolic cost $\sim C_{ij}^{\gamma} L_{ij}$
 - $\gamma = 1/2$ for blood flow
 - $1/2 \le \gamma \le 1$ for leaf venation

ODE system = gradient flow of E, constrained by the Kirchhoff law:

$$\frac{\mathrm{d} C_{ij}}{\mathrm{d} t} = \left(\frac{Q_{ij}^2}{C_{ij}^2} - \nu \gamma C_{ij}^{\gamma-1}\right) L_{ij}$$

Transition to continuum description

Modelling of the permeability tensor in a porous medium:

- Principal directions of network flow (m = conductance vector)
 - ullet m/|m| with principal permeability $\kappa>0$
 - m[⊥] with principal permeability 0
- Carmen–Kozeny equation: $\kappa \sim R^2$
- Therefore:

$$|m| := R$$
 and $\mathbb{P}[m] = m \otimes m$

Identify the discrete and continuum variables:

$$C_{ij} \cong |m(x)|^2$$
, $P_{ij} \cong p(x)$, $Q_{ij} \cong q(x)$

• Darcy's law:

$$q(x) = -\mathbb{P}[m]\nabla p$$

Continuum analogue of the discrete energy

$$E[m] = \frac{1}{2} \int c^2 (m \cdot \nabla p)^2 + \frac{|m|^{2\gamma}}{\gamma} dx$$

Transition to continuum description

Kirchhoff law → Poisson equation

$$-\nabla \cdot (\mathbb{P}[m]\nabla p) = S$$
 with $S = S(x)$ given

Formal L^2 -gradient flow of the continuum energy constrained by the (highly degenerate) Poisson equation

$$\partial_t m = c^2 (m \cdot \nabla p) \nabla p - |m|^{2(\gamma - 1)} m$$
$$-\nabla \cdot [(m \otimes m) \nabla p] = S$$

The discrete model of [Hu&Cai'2014] is a finite difference discretization of the PDE system for (m, p) on an equidistant rectangular mesh.

Corrections of the PDE model

P1. The Poisson equation -∇ · [(m ⊗ m)∇p] = S is degenerate in directions m[⊥] and, in general, unsolvable.
 Fix: Introduce isotropic background permeability of the medium r(x) ≥ r₀ > 0,

$$\mathbb{P}[m] := r(x)I + m \otimes m, \qquad -\nabla \cdot (\mathbb{P}[m]\nabla p) = S$$

• P2. The *m*-equation is local in x (no network growth). Fix: Introduce a linear diffusive term $D^2 \Delta m$,

$$\partial_t m = D^2 \Delta m + c^2 (m \cdot \nabla p) \nabla p - |m|^{2(\gamma - 1)} m$$

The energy functional has to be updated as

$$E = \frac{1}{2} \int D^2 |\nabla m|^2 + c^2 r(x) |\nabla p|^2 + c^2 (m \cdot \nabla p)^2 + \frac{|m|^{2\gamma}}{\gamma} dx$$

The network formation model [Hu-Cai'2014]

Poisson equation for the pressure p

$$-\nabla \cdot [(r(x)I + m \otimes m)\nabla p] = S$$

coupled to the reaction-diffusion system for the conductance m

$$\frac{\partial m}{\partial t} = \underbrace{D^2 \Delta m}_{\substack{\text{random effects} \\ \text{in the porous medium}}} + \underbrace{c^2 (m \cdot \nabla p) \nabla p}_{\substack{\text{activation (force)} \\ \text{term}}} - \underbrace{|m|^{2(\gamma - 1)} m}_{\substack{\text{relaxation term}}}$$

- c > 0 activation parameter, $D \ge 0$ diffusivity
- $\gamma \ge 1/2$ relaxation exponent
- Homogeneous Dirichlet BC for m and p,

$$m|_{\partial\Omega}=0, \qquad p|_{\partial\Omega}=0 \qquad \forall t>0$$

• Initial condition $m(t = 0, x) = m'(x), x \in \Omega$

PDE simulation results - Trees (D. Hu, 2014)

PDE simulation results - Loops (D. Hu, 2014)

Gradient flow structure

 $L^2(\Omega)$ -gradient flow associated with the non-convex energy

$$\mathcal{E}(m) := \frac{1}{2} \int_{\Omega} \left(D^2 |\nabla m|^2 + \frac{|m|^{2\gamma}}{\gamma} + c^2 |m \cdot \nabla p[m]|^2 + c^2 |\nabla p[m]|^2 \right) dx$$

Observe: $\int_{\Omega} \left(D^2 |\nabla m|^2 + \frac{|m|^{2\gamma}}{\gamma} \right) dx$ is convex for $\gamma \geq 1/2$; non-convexity due to the coupling with the Poisson equation.

Energy dissipation: Along smooth solutions m, p = p[m],

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}(m) = -\int_{\Omega} \left(\frac{\partial m}{\partial t}(t,x)\right)^2 \,\mathrm{d}x.$$

Mathematical problems

$$-\nabla \cdot [(I + m \otimes m)\nabla p] = S$$
$$\frac{\partial m}{\partial t} = D^2 \Delta m + c^2 (m \cdot \nabla p)\nabla p - |m|^{2(\gamma - 1)} m$$

Stronger regularity results than Lax-Milgram for the Poisson equation

$$-\nabla \cdot (\mathbf{A}(\mathbf{x})\nabla p) = \nabla \cdot F \quad \text{in } \Omega$$
$$p = 0 \quad \text{on } \partial \Omega$$

require at least $A \in L^{\infty}(\Omega)$.

- While the divergence part is controlled, how to control the rotational part of $(m \otimes m) \nabla p$?
- Iterating between *m* and *p* in the system destroys the energy dissipation equation.

Global existence of weak solutions for $\gamma > 1/2$

- Let $S \in L^2(\Omega)$, $m' \in L^2(\Omega)$.
- Leray-Schauder fixed point theorem for the regularized system

$$-\nabla \cdot [\nabla p + m((m \cdot \nabla p) * \eta_{\varepsilon})] = S$$
$$\frac{\partial m}{\partial t} = D^{2} \Delta m + c^{2} [(m \cdot \nabla p) * \eta_{\varepsilon}] \nabla p - |m|^{2(\gamma - 1)} m$$

which preserves the energy dissipation, and the choice $\eta_{\varepsilon}(x) := (4\pi\varepsilon)^{-d/2} \exp(-|x|^2/4\varepsilon)$ guarantees

$$\int_{\mathbb{R}^d} (m \cdot \nabla p) [(m \cdot \nabla p) * \eta_{\varepsilon}] \, \mathrm{d}x \ge 0$$

ullet Limit arepsilon o 0 based on apriori estimates in the energy space

The case $\gamma = 1/2$

- relaxation term $|m|^{2(\gamma-1)}m:=\frac{m}{|m|}\dots$ singularity at m=0
- but relaxation energy $R(m) := \int_{\Omega} |m| dx$ convex!

We prove the existence of a weak solution of

$$\partial_t m \in D^2 \Delta m + c^2 (m \cdot \nabla p[m]) \nabla p[m] - \partial R(m)$$

with

$$\partial R(m) = \{ r \in L^{\infty}(\Omega); \ r(x) = m(x)/|m(x)| \text{ if } m(x) \neq 0, \\ |r(x)| \leq 1 \text{ if } m(x) = 0 \}$$

Conjecture: m is a slow and very sparse solution, i.e.

$$\frac{m}{|m|} = \begin{cases} \frac{m}{|m|} & \text{for } m \neq 0\\ 0 & \text{for } m = 0 \end{cases}$$

Compact support property of solutions (e.g., [Brezis'1974])

How are networks generated?

• Small diffusion ($D \ll 1$) creates substrate layers in Ω BUT: D=0 gives, for every fixed $x \in \Omega$, the ODE system

$$\partial_t m = D^2 \Delta m + c^2 (m \cdot \nabla p) \nabla p - |m|^{2(\gamma - 1)} m$$

nonlinearly coupled via ∇p as solution of the Poisson equation. Thus: For D=0 the support of m does **not** grow.

- The activation term propagates the thin substrate layers into a network if c^2 is large enough.
- The relaxation term makes the network stationary:
 - For $1/2 \le \gamma \le 1$: sparse stationary networks
 - For $\gamma > 1$: stationary network fills up Ω

Network formation and nontrivial stationary states

Trivial stationary state:
$$m_0 \equiv 0$$
, $-\Delta p_0 = S$

- For large D > 0, only the **trivial** stationary state.
- For D > 0 small enough, nontrivial stationary states are constructed as solutions of the fixed point problem

$$m = \beta Lm + F(m, \beta)$$

using the global bifurcation theorem by [Rabinowitz'71], with $\beta := c^2/D^2$ the bifurcation parameter.

 Pattern (network) formation can be seen as a consequence of (linear) instability of the trivial solution.

Construction of stationary solutions with $D=0, \gamma \geq 1$

• For $\gamma > 1$:

$$c^2(\nabla p \otimes \nabla p)m = |m|^{2(\gamma-1)}m$$

so that $m = \lambda \nabla p$ and p solves

$$-\nabla \cdot \left[\left(1 + c^{\frac{2}{\gamma - 1}} |\nabla p(x)|^{\frac{2}{\gamma - 1}} \chi_{\mathcal{A}}(x) \right) \nabla p \right] = S,$$

which is the Euler-Lagrange equation of a strictly convex energy functional iff $\gamma > 1$.

• For $\gamma = 1$:

$$c^2(\nabla p \otimes \nabla p)m = m$$

leads to the (even more) nonlinear Poisson equation

$$-\nabla \cdot \left[\left(1 + \frac{\lambda^2(x)}{c^2} \chi_{\{c|\nabla p|=1\}}(x) \right) \nabla p \right] = S$$

Numerical results

Numerical results: varying diffusivity

$$S \equiv -1$$
, $c = 50$, $\gamma = 1/2$

Numerical results: varying

$$S \equiv -1$$
, $c = 50$, $D = 0.025$

One source, two sinks

Outlook: Mesoscopic modelling

The network is described by the time-dependent probability measure $\mu_t = \mu_t(x, \theta, C)$ to have an edge of conductivity $C \ge 0$ in direction $\theta \in \mathbb{S}^{d-1}_+$ at location $x \in \Omega$. Evolution of C driven by:

• Activation $\sim C|\theta\cdot\nabla p|^2$, with pressure p subject to the Poisson equation

$$-\nabla \cdot (\mathbb{P}[\mu_t] \nabla p) = S, \qquad \mathbb{P}[\mu_t](x) = \int_0^\infty \int_{\mathbb{S}_+^{d-1}} C\theta \otimes \theta \, \mu_t(x, \, \mathrm{d}\theta, \, \mathrm{d}C)$$

• Relaxation $\sim -C^{\gamma}$

Leads to:

$$\partial_t \mu_t + \partial_C \left[\left(c_0^2 C |\theta \cdot \nabla p|^2 - C^{\gamma} \right) \mu_t \right] = 0$$

Research program:

- Well posedness in the space of probability measures
- Connection to branched optimal transport e.g., [Bernot, Caselles, Morel, Xia, Santambrogio, ...]
- Numerical simulations

Open problems in network formation

- Rigorous transition from discrete to continuum modelling.
- Understanding of the branching mechanism in the PDE model.
- Is the PDE model capable of producing networks with loops?
- Does the PDE system admit fractal solutions (i.e., supported on sets of Hausdorff dimension < d), in scaling limits as $D \to 0$, $r \to 0$ and/or $c \to \infty$?
- Extensions of the model:
 - PIN-auxin dynamics in leaf venation
 - Angiogenesis in cancer: Brinkmann instead of Darcy for the pressure (viscous resistance in the material flow)
 - Ion transport in neural networks: Coupling with the Poisson-Nernst-Planck system

Conclusions

Thank you for your attention!