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Examples of transportation networks

The Silk Road
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Examples of transportation networks

Painting by Latifa Echakhch (detail)

Peter Markowich Continuum Modeling of Transportation Networks



Examples of transportation networks

Leaf venation Neural network Blood capillaries
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Discrete network models

Static and dynamic discrete graph-based models, deterministic
and (geometric) random graphs.
Topological and geometric properties - loops, trees,
connectivity, scale-free graphs [Barabasi&Albert’1999,
Newman’2003, Watts&Strogatz’1998, . . . ]

Solutions obtained by global energy minimization;
combinatorial approach with NP-completness issues.
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Optimal mass transportation network modeling

Based on a transportation cost law and Monge-Kantorovich
theory [Bernot&Caselles&Morel’2009, Villani’2003&’2008, . . . ]
c(x , y) - cost of transport of a unit mass from x to y
Find a measure γ(x , y) which minimizes the total
transportation cost

Cγ :=

∫
Ω×Ω

c(x , y)γ( dx , dy)

where the marginals of γ are given.

River Branching
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Discrete modeling - adaptive dynamics

Flow of a material through the network-graph (V, E)

Pressures Pj on vertices j ∈ V
Conductivities Cij on edges (i , j) ∈ E

Assume low Reynolds number (Poiseuille flow), then

Poiseuille fluxes Qij = −Cij
Pi − Pj

Lij

Conservation of mass - Kirchhoff law with sources Sj ,∑
i

Qij = −
∑
i

Cij
Pi − Pj

Lij
= Sj for each j ∈ V
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Discrete model of [Hu&Cai’2014]

Energy cost functional

E :=
1
2

∑
(i ,j)∈E

(
Q2

ij

Cij
+ νCγij

)
Lij

consisting of
pumping power (Joule’s law: power = potential × current)

(Pi − Pj)Qij =
Q2

ij

Cij
Lij

metabolic cost ∼ Cγij Lij
γ = 1/2 for blood flow
1/2 ≤ γ ≤ 1 for leaf venation

ODE system = gradient flow of E , constrained by the Kirchhoff law:

dCij

dt
=

(
Q2

ij

C 2
ij

− νγCγ−1ij

)
Lij
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Transition to continuum description

Kirchhoff law  Poisson equation

−∇ · (P[m]∇p) = S with S = S(x) given

Formal L2-gradient flow of the continuum energy constrained by the
(highly degenerate) Poisson equation

∂tm = c2(m · ∇p)∇p − |m|2(γ−1)m

−∇ · [(m ⊗m)∇p] = S

The discrete model of [Hu&Cai’2014] is a finite difference
discretization of the PDE system for (m, p)

on an equidistant rectangular mesh.
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Corrections of the PDE model

P1. The Poisson equation −∇ · [(m ⊗m)∇p] = S is
degenerate in directions m⊥ and, in general, unsolvable.
Fix: Introduce isotropic background permeability of the
medium r(x) ≥ r0 > 0,

P[m] := r(x)I + m ⊗m, −∇ · (P[m]∇p) = S

P2. The m-equation is local in x (no network growth).
Fix: Introduce a linear diffusive term D2∆m,

∂tm = D2∆m + c2(m · ∇p)∇p − |m|2(γ−1)m

The energy functional has to be updated as

E =
1
2

∫
D2|∇m|2 + c2r(x)|∇p|2 + c2(m · ∇p)2 +

|m|2γ

γ
dx
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The network formation model [Hu-Cai’2014]

Poisson equation for the pressure p

−∇ · [(r(x)I + m ⊗m)∇p] = S

coupled to the reaction-diffusion system for the conductance m

∂m

∂t
= D2∆m︸ ︷︷ ︸

random effects
in the porous medium

+ c2(m · ∇p)∇p︸ ︷︷ ︸
activation (force)

term

− |m|2(γ−1)m︸ ︷︷ ︸
relaxation term

c > 0 - activation parameter, D ≥ 0 - diffusivity
γ ≥ 1/2 - relaxation exponent
Homogeneous Dirichlet BC for m and p,

m|∂Ω = 0, p|∂Ω = 0 ∀t > 0

Initial condition m(t = 0, x) = mI (x), x ∈ Ω
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PDE simulation results - Trees (D. Hu, 2014)
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PDE simulation results - Loops (D. Hu, 2014)
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Gradient flow structure

L2(Ω)-gradient flow associated with the non-convex energy

E(m) :=
1
2

∫
Ω

(
D2|∇m|2 +

|m|2γ

γ
+ c2|m · ∇p[m]|2 + c2|∇p[m]|2

)
dx

Observe:
∫

Ω

(
D2|∇m|2 + |m|2γ

γ

)
dx is convex for γ ≥ 1/2;

non-convexity due to the coupling with the Poisson equation.

Energy dissipation: Along smooth solutions m, p = p[m],

d
dt
E(m) = −

∫
Ω

(
∂m

∂t
(t, x)

)2

dx .
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Mathematical problems

−∇ · [(I + m ⊗m)∇p] = S

∂m

∂t
= D2∆m + c2(m · ∇p)∇p − |m|2(γ−1)m

Stronger regularity results than Lax-Milgram for the Poisson
equation

−∇ · (A(x)∇p) = ∇ · F in Ω

p = 0 on ∂Ω

require at least A ∈ L∞(Ω).

While the divergence part is controlled, how to control the
rotational part of (m ⊗m)∇p?
Iterating between m and p in the system destroys the energy
dissipation equation.
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Global existence of weak solutions for γ > 1/2

Let S ∈ L2(Ω), mI ∈ L2(Ω).
Leray-Schauder fixed point theorem for the regularized system

−∇ · [∇p + m((m · ∇p)∗ηε)] = S

∂m

∂t
= D2∆m + c2[(m · ∇p)∗ηε]∇p − |m|2(γ−1)m

which preserves the energy dissipation, and the choice
ηε(x) := (4πε)−d/2 exp(−|x |2/4ε) guarantees∫

Rd

(m · ∇p)[(m · ∇p) ∗ ηε] dx ≥ 0

Limit ε→ 0 based on apriori estimates in the energy space
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The case γ = 1/2

relaxation term |m|2(γ−1)m := m
|m| . . . singularity at m = 0

but relaxation energy R(m) :=
∫

Ω |m| dx convex!

We prove the existence of a weak solution of

∂tm ∈ D2∆m + c2(m · ∇p[m])∇p[m]− ∂R(m)

with

∂R(m) = {r ∈ L∞(Ω); r(x) = m(x)/|m(x)| if m(x) 6= 0,
|r(x)| ≤ 1 if m(x) = 0}

Conjecture: m is a slow and very sparse solution, i.e.

m

|m|
=

{
m
|m| for m 6= 0

0 for m = 0

Compact support property of solutions (e.g., [Brezis’1974])
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How are networks generated?

Small diffusion (D � 1) creates substrate layers in Ω
BUT: D = 0 gives, for every fixed x ∈ Ω, the ODE system

∂tm =��
��XXXXD2∆m + c2(m · ∇p)∇p − |m|2(γ−1)m

nonlinearly coupled via ∇p as solution of the Poisson equation.
Thus: For D = 0 the support of m does not grow.

The activation term propagates the thin substrate layers into a
network if c2 is large enough.

The relaxation term makes the network stationary:
For 1/2 ≤ γ ≤ 1: sparse stationary networks
For γ > 1: stationary network fills up Ω
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Network formation and nontrivial stationary states

Trivial stationary state: m0 ≡ 0, −∆p0 = S

For large D > 0, only the trivial stationary state.

For D > 0 small enough, nontrivial stationary states are
constructed as solutions of the fixed point problem

m = βLm + F (m, β)

using the global bifurcation theorem by [Rabinowitz’71],
with β := c2/D2 the bifurcation parameter.

Pattern (network) formation can be seen as a consequence of
(linear) instability of the trivial solution.
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Construction of stationary solutions with D = 0, γ ≥ 1

For γ > 1:

c2(∇p ⊗∇p)m = |m|2(γ−1)m

so that m = λ∇p and p solves

−∇ ·
[(

1 + c
2

γ−1 |∇p(x)|
2

γ−1χA(x)
)
∇p
]

= S ,

which is the Euler-Lagrange equation of a strictly convex
energy functional iff γ > 1.

For γ = 1:

c2(∇p ⊗∇p)m = m

leads to the (even more) nonlinear Poisson equation

−∇ ·
[(

1 +
λ2(x)

c2
χ{c|∇p|=1}(x)

)
∇p
]

= S
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Numerical results
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Numerical results: varying diffusivity

S ≡ −1, c = 50, γ = 1/2

D = 10−2 D = 5× 10−3 D = 10−3
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Numerical results: varying γ

S ≡ −1, c = 50, D = 0.025

γ = 1/2 γ = 3/4 γ = 1
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One source, two sinks
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Outlook: Mesoscopic modelling

The network is described by the time-dependent probability measure
µt = µt(x , θ,C ) to have an edge of conductivity C ≥ 0 in direction
θ ∈ Sd−1+ at location x ∈ Ω. Evolution of C driven by:

Activation ∼ C |θ · ∇p|2, with pressure p subject to the
Poisson equation

−∇ · (P[µt ]∇p) = S , P[µt ](x) =

∫ ∞
0

∫
Sd−1

+

Cθ ⊗ θ µt(x , dθ, dC )

Relaxation ∼ −Cγ

Leads to:
∂tµt + ∂C

[(
c20C |θ · ∇p|2 − Cγ

)
µt
]

= 0

Research program:
Well posedness in the space of probability measures

Connection to branched optimal transport - e.g., [Bernot,
Caselles, Morel, Xia, Santambrogio, ...]

Numerical simulations
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Open problems in network formation

Rigorous transition from discrete to continuum modelling.

Understanding of the branching mechanism in the PDE model.
Is the PDE model capable of producing networks with loops?

Does the PDE system admit fractal solutions (i.e., supported
on sets of Hausdorff dimension < d), in scaling limits as
D → 0, r → 0 and/or c →∞?

Extensions of the model:
PIN-auxin dynamics in leaf venation
Angiogenesis in cancer: Brinkmann instead of Darcy for the
pressure (viscous resistance in the material flow)
Ion transport in neural networks: Coupling with the
Poisson-Nernst-Planck system
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Conclusions

Thank you for your attention!
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