
Domain Specific Languages
for Convex Optimization

Stephen Boyd
joint work with M. Grant, S. Diamond

Electrical Engineering Department, Stanford University

Institute for Advanced Study, City University of Hong Kong
September 12 2017

1

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Modeling frameworks

Conclusions

2

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Modeling frameworks

Conclusions

Convex optimization 3

Convex optimization problem — standard form

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

with variable x ∈ Rn

I objective and inequality constraints f0, . . . , fm are convex
for all x , y , θ ∈ [0, 1],

fi (θx + (1− θ)y) ≤ θfi (x) + (1− θ)fi (y)

i.e., graphs of fi curve upward
I equality constraints are linear

Convex optimization 4

Convex optimization problem — conic form

minimize cT x
subject to Ax = b

x ∈ K

with variable x ∈ Rn

I K is convex cone
I x ∈ K is a generalized nonnegativity constraint

I linear objective, equality constraints

I special cases:
I K = Rn

+: linear program (LP)
I K = Sn

+: semidefinite program (SDP)
I the modern canonical form

Convex optimization 5

How do you solve a convex problem?

I use someone else’s (‘standard’) solver (LP, QP, SOCP, . . .)
I easy, but your problem must be in a standard form
I cost of solver development amortized across many users

I write your own (custom) solver
I lots of work, but can take advantage of special structure

I transform your problem into a standard form, and use a
standard solver

I extends reach of problems solvable by standard solvers

I this talk: methods to formalize and automate last approach

Convex optimization 6

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Modeling frameworks

Conclusions

Constructive convex analysis 7

How can you tell if a problem is convex?

approaches:

I use basic definition, first or second order conditions, e.g.,
∇2f (x) � 0

I via convex calculus: construct f using
I library of basic functions that are convex
I calculus rules or transformations that preserve convexity

Constructive convex analysis 8

Convex functions: Basic examples

I xp (p ≥ 1 or p ≤ 0), −xp (0 ≤ p ≤ 1)
I ex , − log x , x log x
I aT x + b
I xT Px (P � 0)
I ‖x‖ (any norm)
I max(x1, . . . , xn)

Constructive convex analysis 9

Convex functions: Less basic examples

I xT x/y (y > 0), xT Y−1x (Y � 0)
I log(ex1 + · · ·+ exn)
I − log Φ(x) (Φ is Gaussian CDF)
I log det X−1 (X � 0)
I λmax(X) (X = XT)
I f (x) = x[1] + · · ·+ x[k] (sum of largest k entries)

Constructive convex analysis 10

Calculus rules

I nonnegative scaling: f convex, α ≥ 0 =⇒ αf convex

I sum: f , g convex =⇒ f + g convex

I affine composition: f convex =⇒ f (Ax + b) convex

I pointwise maximum: f1, . . . , fm convex =⇒ maxi fi (x) convex

I partial minimization: f (x , y) convex =⇒ infy f (x , y) convex

I composition: h convex increasing, f convex =⇒ h(f (x)) convex

Constructive convex analysis 11

A general composition rule

h(f1(x), . . . , fk(x)) is convex when h is convex and for each i

I h is increasing in argument i , and fi is convex, or
I h is decreasing in argument i , and fi is concave, or
I fi is affine

I there’s a similar rule for concave compositions
I this one rule subsumes most of the others
I in turn, it can be derived from the partial minimization rule

Constructive convex analysis 12

Constructive convexity verification

I start with function given as expression
I build parse tree for expression

I leaves are variables or constants/parameters
I nodes are functions of children, following general rule

I tag each subexpression as convex, concave, affine, constant
I variation: tag subexpression signs, use for monotonicity

e.g., (·)2 is increasing if its argument is nonnegative
I sufficient (but not necessary) for convexity

Constructive convex analysis 13

Example

for x < 1, y < 1
(x − y)2

1−max(x , y)
is convex

I (leaves) x , y , and 1 are affine expressions
I max(x , y) is convex; x − y is affine
I 1−max(x , y) is concave
I function u2/v is convex, monotone decreasing in v for v > 0

hence, convex with u = x − y , v = 1−max(x , y)

Constructive convex analysis 14

Example
analyzed by dcp.stanford.edu (Diamond 2014)

Constructive convex analysis 15

Disciplined convex programming (DCP)

I framework for describing convex optimization problems
I based on constructive convex analysis
I sufficient but not necessary for convexity
I basis for several domain specific languages and tools for

convex optimization

Constructive convex analysis 16

Disciplined convex program: Structure

a DCP has

I zero or one objective, with form
I minimize {scalar convex expression} or
I maximize {scalar concave expression}

I zero or more constraints, with form
I {convex expression} <= {concave expression} or
I {concave expression} >= {convex expression} or
I {affine expression} == {affine expression}

Constructive convex analysis 17

Disciplined convex program: Expressions

I expressions formed from
I variables,
I constants/parameters,
I and functions from a library

I library functions have known convexity, monotonicity, and
sign properties

I all subexpressions match general composition rule

Constructive convex analysis 18

Disciplined convex program

I a valid DCP is
I convex-by-construction (cf. posterior convexity analysis)
I ‘syntactically’ convex (can be checked ‘locally’)

I convexity depends only on attributes of library functions,
and not their meanings

I e.g., could swap
√
· and 4

√
·, or exp · and (·)+, since their

attributes match

Constructive convex analysis 19

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Modeling frameworks

Conclusions

Cone representation 20

Cone representation

(Nesterov, Nemirovsky)
cone representation of (convex) function f :

I f (x) is optimal value of cone program

minimize cT x + dT y + e

subject to A
[

x
y

]
= b,

[
x
y

]
∈ K

I cone program in (x , y), we but minimize only over y
I i.e., we define f by partial minimization of cone program

Cone representation 21

Examples

I f (x) = −(xy)1/2 is optimal value of SDP

minimize −t

subject to
[

x t
t y

]
� 0

with variable t
I f (x) = x[1] + · · ·+ x[k] is optimal value of LP

minimize 1Tλ− kν
subject to x + ν1 = λ− µ

λ � 0, µ � 0

with variables λ, µ, ν

Cone representation 22

SDP representations

Nesterov, Nemirovsky, and others have worked out SDP
representations for many functions, e.g.,

I xp, p ≥ 1 rational
I −(det X)1/n

I
∑k

i=1 λi (X) (X = XT)
I ‖X‖ = σ1(X) (X ∈ Rm×n)
I ‖X‖∗ =

∑
i σi (X) (X ∈ Rm×n)

some of these representations are not obvious . . .

Cone representation 23

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Modeling frameworks

Conclusions

Canonicalization 24

Canonicalization

I start with problem in DCP form, with cone representable
library functions

I automatically transform to equivalent cone program

Canonicalization 25

Canonicalization: How it’s done

I for each (non-affine) library function f (x) appearing in
parse tree, with cone representation

minimize cT x + dT y + e

subject to A
[

x
y

]
= b,

[
x
y

]
∈ K

I add new variable y , and constraints above
I replace f (x) with affine expression cT x + dT y + e

I yields problem with linear equality and cone constaints
I DCP ensures equivalence of resulting cone program

Canonicalization 26

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Modeling frameworks

Conclusions

Modeling frameworks 27

Example

I constrained least-squares problem with `1 regularization

minimize ‖Ax − b‖22 + γ‖x‖1
subject to ‖x‖∞ ≤ 1

I variable x ∈ Rn

I constants/parameters A, b, γ > 0

Modeling frameworks 28

CVX

I developed by M. Grant
I embedded in Matlab; targets multiple cone solvers

I CVX specification for example problem:

cvx_begin
variable x(n) % declare vector variable
minimize sum(square(A*x-b)) + gamma*norm(x,1)
subject to norm(x,inf) <= 1

cvx_end

I here A, b, γ are constants

Modeling frameworks 29

Some functions in the CVX library

function meaning attributes
norm(x, p) ‖x‖p, p ≥ 1 cvx
square(x) x2 cvx
square_pos(x) (x+)2 cvx, nondecr
pos(x) x+ cvx, nondecr
sum_largest(x,k) x[1] + · · ·+ x[k] cvx, nondecr
sqrt(x)

√
x , x ≥ 0 ccv, nondecr

inv_pos(x) 1/x , x > 0 cvx, nonincr
max(x) max{x1, . . . , xn} cvx, nondecr
quad_over_lin(x,y) x2/y , y > 0 cvx, nonincr in y
lambda_max(X) λmax(X), X = X T cvx

huber(x)

{
x2, |x | ≤ 1
2|x | − 1, |x | > 1

cvx

Modeling frameworks 30

CVXPY

I developed by S. Diamond
I embedded in Python; targets multiple cone solvers

I CVXPY specification for example problem:

from cvxpy import *
x = Variable(n)
cost = sum_squares(A*x-b) + gamma*norm(x,1)
obj = Minimize(cost)
constr = [norm(x,"inf") <= 1]
prob = Problem(obj,constr)
opt_val = prob.solve()
solution = x.value

Modeling frameworks 31

Parameters in CVXPY

I symbolic representations of constants
I can specify sign
I change value of constant without re-parsing problem

I computing a trade-off curve for example problem:

x_values = []
for val in numpy.logspace(-4, 2, num=100):

gamma.value = val
prob.solve()
x_values.append(x.value)

Modeling frameworks 32

Signed DCP in CVXPY

function meaning attributes

norm(x, p) ‖x‖p, p ≥ 1 cvx, nondecr for x ≥ 0,
nonincr for x ≤ 0

square(x) x2 cvx, nondecr for x ≥ 0,
nonincr for x ≤ 0

huber(x)

{
x2, |x | ≤ 1
2|x | − 1, |x | > 1

cvx, nondecr for x ≥ 0,
nonincr for x ≤ 0

Modeling frameworks 33

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Modeling frameworks

Conclusions

Conclusions 34

Conclusions

I DCP is a formalization of constructive convex analysis
I simple method to certify problem as convex
I basis of several domain specific languages for convex

optimization

I modeling frameworks make rapid prototyping easy

Conclusions 35

References

I Disciplined Convex Programming (Grant, Boyd, Ye)
I Graph Implementations for Nonsmooth Convex Programs

(Grant, Boyd)

I CVX (Grant, Boyd)
I CVXPY (Diamond, Boyd)

Conclusions 36

	Convex optimization
	Constructive convex analysis
	Cone representation
	Canonicalization
	Modeling frameworks
	Conclusions

