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1. THE FUNDAMENTAL FORMS OF A SURFACE

α, β, . . . ∈ {1, 2}

Summation convention

ω: open in R2

θθθ : ω ⊂ R2 → θθθ(ω) ⊂ E3

θθθ(ω): surface

y1, y2: curvilinear
coordinates

∂α := ∂/∂yα,
∂αβ := ∂2/∂yα∂yβ, etc.

E3: 3d-Euclidean space

θθθ ∈ C3(ω;E3) is an immersion: at each y ∈ ω,

aaaα(y)
def
= ∂αθθθ(y) are linearly independent
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S2 def
= {2× 2 symmetric matrices}

S2
>

def
= {AAA ∈ S2;AAA is positive definite}

Covariant basis: aaaα
def
= ∂αθθθ, aaa3

def
=

aaa1 ∧ aaa2

|aaa1 ∧ aaa2|
: vector fields defined

over ω

First fundamental form: aαβ
def
= aaaα · aaaβ = ∂αθθθ · ∂βθθθ

Second fundamental form: bαβ
def
= ∂αaaaβ · aaa3 = ∂αβθθθ ·

∂1θθθ ∧ ∂2θθθ

|∂1θθθ ∧ ∂2θθθ|

First fundamental form: “metric notions”, such as lengths,
areas, angles ∴ a.k.a. metric tensor

(aαβ): ω → S2
>: symmetric positive-definite matrix field defined

over ω

Second fundamental form: “curvature notions”
(bαβ): ω → S2: symmetric matrix field defined over ω

Remark. aaaβ · aaa3 = 0 implies bαβ = ∂αaaaβ · aaa3 = −aaaβ · ∂αaaa3.
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length of θθθ(γγγ) =

∫
I

√
aαβ(fff (t))

df α

dt
(t)

df β

dt
(t) dt

areaθθθ(ω0) =

∫
ω0

√
det(aαβ(y)) dy
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Curvature of θθθ(γγγ) at θθθ(y), y = fff (t), when θθθ(γγγ) lies in a plane
normal to the surface θθθ(ω) at θθθ(y):

1

R
=

bαβ(fff (t))
df α

dt
(t)

df β

dt
(t)

aαβ(fff (t))
df α

dt
(t)

df β

dt
(t)

When the normal plane rotates around aaa3(y), the curvature
1

R

varies in an interval

[
1

R1(y)
,

1

R2(y)

]
, where R1(y) and R2(y) are

the (signed) principal radii of curvature at θθθ(y).
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Portion of a cylinder

θθθ : (ϕ, z)→

R cosϕ
R sinϕ

z


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Portion of a torus

θθθ : (ϕ, χ)→

(R + r cosχ) cosϕ
(R + r cosχ) sinϕ

r sinχ


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Portion of a sphere
Cartesian coordinates

θθθ : (x , y)→

 x
y√

R2 − (x2 + y2)


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Spherical coordinates

θθθ : (ϕ,ψ)→

R cosψ cosϕ
R cosψ sinϕ

R sinψ



Philippe G. CIARLET 11 / 55



Stereographic coordinates

θθθ : (u, v)→ 1

(u2 + v2 + R2)

 2R2u
2R2v

R(u2 + v2 − R2)


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Let (aαβ)
def
= (aαβ)−1 and bβα

def
= aσβbασ (α: row index)

H
def
=

1

2
tr(bβα) =

1

2

(
1

R1
+

1

R2

)
: mean curvature,

K
def
= det(bβα) =

1

R1R2
: Gaussian curvature

Third fundamental form: cαβ
def
= ∂αaaa3 · ∂βaaa3

(cαβ): symmetric nonnegative-definite matrix field defined over ω;
may be viewed as the metric tensor of the Gauß map:

y ∈ ω → aaa3(y) ∈ {unit sphere in E3}

cαβ = 2Hbαβ − Kaαβ in ω
cαβ = bασa

στbτβ = bασb
σ
β in ω
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2. RECOVERY OF A SURFACE FROM ITS
FUNDAMENTAL FORMS IN THE SPACE C3(ω)

Preliminary observation: Let an open set ω ⊂ R2 and an
immersion θθθ ∈ C3(ω;E3) be given. Then the components
aαβ ∈ C2(ω) and bαβ ∈ C1(ω) of the two fundamental forms of the
surface θθθ(ω) cannot be arbitrary functions: Let

(aστ )
def
= (aαβ)−1, Γαβτ

def
= ∂αaaaβ · aaaτ and Γσαβ

def
= aστΓαβτ

The functions Γαβτ ∈ C1(ω) and Γσαβ ∈ C1(ω) are the
Christoffel symbols. Then it is easy to see that:

∂ασaaaβ · aaaτ = ∂σΓαβτ − ΓµαβΓστµ − bαβbστ ,

∂ασaaaβ · aaa3 = ∂σbαβ + Γµαβbσµ.

Besides,

∂ασβθθθ = ∂αβσθθθ ⇐⇒ ∂ασaaaβ = ∂αβaaaσ ⇐⇒
{
∂ασaaaβ · aaaτ = ∂αβaaaσ · aaaτ
∂ασaaaβ · aaa3 = ∂αβaaaσ · aaa3
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Consequently, the following necessary conditions hold:

∂βΓαστ − ∂σΓαβτ + ΓµαβΓστµ − ΓµασΓβτµ = bασbβτ − bαβbστ in ω

Gauß equations

∂βbασ − ∂σbαβ + Γµασbβµ − Γµαβbσµ = 0 in ω

Codazzi-Mainardi equations

It is easy to see that the Christoffel symbols Γαβτ = ∂αaaaβ · aaaτ
and Γσαβ = aστΓαβτ can be expressed solely in terms of the
components of the first fundamental form:

Γαβτ =
1

2
(∂βaατ + ∂αaβτ − ∂τaαβ) and Γσαβ = aστΓαβτ

with (aστ ) = (aαβ)−1

Consequently, the Gauß and Codazzi-Mainardi equations are
(nonlinear) compatibility relations that are necessarily satisfied by
the first and second fundamental forms.
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It is a fundamental result that, if ω is simply-connected, these
compatibility conditions become also sufficient for the existence of a
surface θθθ(ω) with (aαβ) and (bαβ) as its fundamental forms.

O3
+

def
= { proper orthogonal 3× 3 matrices }

FUNDAMENTAL THEOREM OF SURFACE THEORY IN THE
SPACE C3(ω): ω ⊂ R2: open and simply-connected. Let there be
given (aαβ) ∈ C2(ω;S2

>) and (bαβ) ∈ C1(ω;S2) that satisfy the Gauß
and Codazzi-Mainardi equations in ω. Then there exists an immersion
θθθ ∈ C3(ω;E3) such that:

∂αθθθ · ∂βθθθ = aαβ and ∂αβθθθ ·
∂1θθθ ∧ ∂2θθθ

|∂1θθθ ∧ ∂2θθθ|
= bαβ in ω

Uniqueness holds up to isometric equivalence in E3: All other
solutions θθθ] ∈ C3(ω;E3) are given by:

θθθ](y) = aaa +QQQθθθ(y), y ∈ ω, with aaa ∈ E3 and QQQ ∈ O3
+ ⇐⇒ (θθθ], θθθ) ∈ R

Uniqueness holds if θθθ is subjected to Cauchy conditions of the form

θθθ(y0) = θθθ0 and ∂αθθθ(y0) = aaa0
α,

with y0 ∈ ω,θθθ0 ∈ E3, and aaa0
α ∈ E3 such that aaa0

α · aaa0
β = aaa0

αβ(y0). �
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Brief outline of the proof: (a) Preliminary observation. Let
an immersion θθθ ∈ C3(ω;E3) be given. Then aaaα = ∂αθθθ and

aaa3 =
aaa1 ∧ aaa2

|aaa1 ∧ aaa2|
satisfy:

equations of Gauß: ∂αaaaβ = Γσαβaaaσ + bαβaaa3 in ω

equations of Weingarten: ∂αaaa3 = −aβσbασaaaβ in ω

M3 = {3× 3 matrices}
The equations of Gauß and Weingarten can be re-written as a

single matrix equation as

∂αFFF = FFFΓΓΓα with FFF
def
=
(
aaa1

∣∣aaa2

∣∣aaa3

)
and ΓΓΓα

def
=

Γ1
α1 Γ1

α2 −a1σbασ
Γ2
α1 Γ2

α2 −a2σbασ
bα1 bα2 0


clearly, FFF ∈ C2(ω;M3) and ΓΓΓα ∈ C1(ω;M3)
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(b) Given (aαβ) ∈ C2(ω;S2
>) and (bαβ) ∈ C1(ω;S2) satisfying

the Gauß and Codazzi-Mainardi equations, it is thus natural to
seek a solution FFF ∈ C2(ω;M3) to:

Pfaff system: ∂αFFF = FFFΓΓΓα in ω

Such a Pfaff system has a solution if ω is simply-connected and
the matrix fields ΓΓΓα satisfy

compatibility conditions: ∂αΓΓΓβ − ∂βΓΓΓα + ΓΓΓαΓΓΓβ − ΓΓΓβΓΓΓα = 000 in ω,

which are precisely equivalent to the Gauß and Codazzi-Mainardi
equations!

Remark. If FFF is invertible in ω, these compatibility conditions
are clearly necessary, since they simply express that ∂αβFFF = ∂βαFFF
in ω.

Pfaff systems: See, e.g., Sect. 6.20 in
P.G. Ciarlet: Linear and Nonlinear Functional Analysis with
Applications, SIAM (2013).
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(c) Given FFF =
(
aaa1

∣∣aaa2

∣∣aaa3

)
∈ C2(ω;M3) found as in (b), it is

then natural to seek a solution θθθ ∈ C3(ω;E3) to:

Poincaré system: ∂αθθθ = aaaα in ω.

Such a Poincaré system has a solution if ω is simply-connected
and the vector fields aaaα satisfy

compatibility conditions: ∂αaaaβ = ∂βaaaα in ω,

which are equivalent to the symmetries

Γσαβ = Γσβα and bαβ = bβα.

Poincaré systems: See, e.g., Sect. 6.17 in ibid.

Remark. These compatibility conditions are clearly necessary,
since they simply express that ∂αβθθθ = ∂βαθθθ in ω.
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(d) One next shows that

(∗) ∂αθθθ · ∂βθθθ = aαβ and ∂αβθθθ ·
∂1θθθ ∧ ∂2θθθ

|∂1θθθ ∧ ∂2θθθ|
= bαβ in ω

Proof relies on uniqueness of solutions to the Cauchy problem for
Pfaff systems (only connectedness of ω is used).

(e) One finally shows that, if θθθ and θθθ] are two solutions to (∗),
then there exist aaa ∈ E3 and QQQ ∈ O3

+ such that

θθθ](y) = aaa +QQQθθθ(y), y ∈ ω ⇐⇒ (θθθ], θθθ) ∈ R

Proof relies again on uniqueness of solutions to the Cauchy
problem for Pfaff systems and on the implication
∂αθθθ = 000 in ω ⇒ θθθ is constant (only connectedness of ω is used). �

Remark. A similar result holds if (aαβ) ∈ C1(ω;S2
>) and

(bαβ) ∈ C0(ω; S2):
P. Hartman, A. Wintner: American J. Math (1950).
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3. SOME QUESTIONS AND APPLICATIONS

COROLLARY: There exists a well-defined mapping:

FFF :

{
(aαβ) ∈ C2(ω;S2

>) satisfying the Gauß and
(bαβ) ∈ C1(ω;S2) Codazzi-Mainardi eqs.

}
→ θ̇θθ ∈ C3(ω;E3)/R

�

Questions:

1. Is the mapping FFF continuous when the spaces Cm(ω) are equipped
with their natural Fréchet topology?

2. Can the fundamental theorem of surface theory be extended to
other function spaces, such as Cm(ω) or Wm,p(ω)?

3. If so, are the corresponding mappings FFF Lipschitz-continuous?
Equivalently, do they satisfy nonlinear Korn inequalities on surfaces?

Applications:

1. Differential geometry of surfaces in R3 per se

2. Intrinsic nonlinear shell theory

3. Modelling of the Earth surface
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Portion of a hyperboloid of revolution

θθθ : (ϕ, z)→

r
√

1 + z2 cosϕ

r
√

1 + z2 sinϕ
z


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In the intrinsic approach to nonlinear shell theory, one
computes directly the two fundamental forms of the deformed
middle surface of the shell, instead of the displacement vector field
as in the classical approach:
S. Opoka & W. Pietraszkiewicz: Intern. J. Solids Structures (2004)
W. Pietraszkiewicz & M.L. Szwabowicz: Intern. J. Solids
Structures (2007)

Mathematical analysis of the intrinsic approach: Linearly
elastic shells:
P.G. Ciarlet & L. Gratie: Math. Models Methods Appl. Sci. (2005)
C. Amrouche, P.G. Ciarlet, L. Gratie & S. Kesavan: J. Math. Pures
Appl. (2006)
P.G. Ciarlet, L. Gratie, C. Mardare, Shen Ming: Math. Models
Methods Appl. Sci. (2008)
P.G. Ciarlet, O. Iosifescu: J. Math. Pures Appl. (2014)
P.G. Ciarlet, C. Mardare & Shen Xiaoqin: Anal. Appl. (2015)
Nonlinearly elastic shells: Virgin territory!
Numerical analysis: Virgin territory! (even for linearly elastic shells)
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Modelling of the Earth surface. New numerical methods
have been recently introduced for reconstructing the Earth surface
from the knowledge of its two fundamental forms:

“HASM” = “High-Accuracy Surface Modelling”

“DEM” = “Digital Elevation Model”

Tian-Xiang Yue, Dun-Jiang Song, Zhen-Ping Du & Wei Wang:
Intern. J. Remote Sensing (2010)

Numerical evidence seems to indicate that such methods
perform better than the classical methods for modelling the Earth
surface, using, e.g., splines (see Fig. 4 in ibid.).

Philippe G. CIARLET 25 / 55



4. CONTINUITY OF A SURFACE AS A FUNCTION OF
ITS FUNDAMENTAL FORMS IN THE SPACE C3(ω)

|·| def
= Euclidean vector norm in RN and spectral norm of matrices

κ b ω means that κ is a compact subset of ω
Given f ∈ C`(ω;R) or θθθ ∈ C`(ω;Rd),

‖f ‖`,κ
def
= sup{ y∈κ

|ααα|≤`
|∂αααf (y)| ‖θθθ‖`,κ

def
= sup{ y∈κ

|ααα|≤`
|∂αααθθθ(y)|

(multi-index notation ααα = (α1, α2) with |ααα| = α1 + α2 is used)
Then, equipped with the semi-norms ‖·‖`,κ for all κ b ω, the

space C`(ω;Rd) becomes a locally convex topological space. The
corresponding topology, which is metrizable but not normable, is
called Fréchet topology. In this topology,

ψk −→
k→∞

ψ as k →∞⇐⇒ ∀κ b ω, ‖ψk − ψ‖`,κ −→
k→∞

0
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Equivalence class θ̇θθ of θθθ : ω ⊂ R2 → R3 modulo R:

θ̇θθ = {θθθ] : ω ⊂ R2 → R3 with θθθ](y) = aaa +QQQθθθ(y), y ∈ ω,
for some aaa ∈ E3, QQQ ∈ O3

+}

The relation R is called isometric equivalence.

THEOREM: ω ⊂ R2: open, simply-connected. Given immersions
θθθk ∈ C3(ω;E3), k ≥ 1, and θθθ ∈ C3(ω;E3), let

akαβ := ∂αθθθ
k · ∂βθθθk and bkαβ := ∂αβθθθ

k · ∂1θθθ
k ∧ ∂2θθθ

k

|∂1θθθk ∧ ∂2θθθk |
in ω,

aαβ := ∂αθθθ · ∂βθθθ and bαβ := ∂αβθθθ ·
∂1θθθ ∧ ∂2θθθ

|∂1θθθ ∧ ∂2θθθ|
in ω

Assume that

∀κ b ω, ‖akαβ − aαβ‖2,κ −→
k→∞

0 and ‖bkαβ − bαβ‖1,κ −→
k→∞

0

Then there exist θθθ]k ∈ θ̇θθk , k ≥ 1, such that

∀κ b ω, ‖θθθ]k − θθθ‖3,κ −→
k→∞

0 �
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This result implies the following continuity result:

COROLLARY. ω ⊂ R2: open, simply-connected. Let the spaces
C`(ω; S2), ` = 1, 2, and C3(ω;E3) be equipped with their Fréchet
topologies. Then the following mapping is continuous:

FFF :

{
(aαβ) ∈ C2(ω; S2

>) satisfying the Gauß and
(bαβ) ∈ C1(ω;S2) Codazzi-Mainardi eqs.

}
→ θ̇θθ ∈ C3(ω;E3)/R

P.G. Ciarlet: J. Math. Pures Appl. (2003)

Proof relies on an analogous result “in 3d”: A 3d-deformation
is a continuous function of its metric tensor:
P.G. Ciarlet & F. Laurent: Arch. Rational Mech. Anal. (2003)
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5. RECOVERY OF A SURFACE FROM ITS FUNDAMENTAL
FORMS IN THE SPACE C3(ω)

FUNDAMENTAL THEOREM OF SURFACE THEORY
REVISITED, IN THE SPACE C3(ω): ω ⊂ R2: open, bounded,
simply-connected; Lipschitz-continuous boundary. Given
(aαβ) ∈ C2(ω;S2

>) and (bαβ) ∈ C1(ω;S2) that satisfy the Gauß and
Codazzi-Mainardi equations in ω, there exists θθθ ∈ C3(ω;E3) such that:

aαβ = ∂αθθθ · ∂βθθθ and bαβ = ∂αβθθθ ·
∂1θθθ ∧ ∂2θθθ

|∂1θθθ ∧ ∂2θθθ|
in ω

Uniqueness holds up to isometric equivalence in E3: All other
solutions θθθ] are given by

θθθ](y) = aaa +QQQθθθ(y), y ∈ ω, with aaa ∈ E3 and QQQ ∈ O3
+ ⇐⇒ θθθ] ∈ θ̇θθ. �

P.G. Ciarlet & C. Mardare, Analysis and Applications (2005)

The proof (long and technical) consists in showing that, under the
above assumptions on ω, the solution θθθ ∈ C3(ω;E3) obtained in the
previous existence theorem can be extended, together with all its partial
derivatives ∂αααθθθ, |ααα| ≤ 3, to continuous functions over ω.
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6. CONTINUITY OF A SURFACE AS A FUNCTION OF
ITS FUNDAMENTAL FORMS IN THE SPACE C3(ω);

A KORN INEQUALITY ON A SURFACE
IN THE SPACE C3(ω)

THEOREM: ω ⊂ R2: open, bounded, simply-connected;
Lipschitz-continuous boundary. Let the spaces C`(ω; S2), ` = 1, 2,
and C3(ω;E3) be equipped with their norm topologies. Then the
following mapping FFF between subsets of Banach spaces is locally
Lipschitz-continuous:

FFF :

{
(aαβ) ∈ C2(ω;S2

>) satisfying the Gauß and

(bαβ) ∈ C1(ω;S2) Codazzi-Mainardi equations in ω

}
→ θ̇θθ ∈ C3(ω;E3)/R
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Equivalently, the following nonlinear Korn’s inequality on a
surface holds: Given any immersion θθθ ∈ C3(ω;E3) with
fundamental forms (aαβ) ∈ C2(ω;S2

>) and (bαβ) ∈ C1(ω;S2), there
exist a constant c(θθθ) and a neighborhood V of ((aαβ), (bαβ)) in

C2(ω,S2
>)× C1(ω,S2) with the following property: Given any θ̃θθ

such that ((ãαβ), (b̃αβ)) ∈ V (with self-explanatory notations),

there exists an immersion θ̃θθ
]

isometrically equivalent to θ̃θθ such that

‖θ̃θθ] − θθθ‖C3(ω;E3)

≤ c(θθθ)
{
‖(ãαβ − aαβ)‖C2(ω;S2) + ‖(b̃αβ − bαβ)‖C1(ω;S2)

} �

Proof is similar to that of an analogous result “in 3d”:
P.G. Ciarlet & C. Mardare: J. Math. Pures Appl. (2004)

Extension to a simply-connected Riemannian space ω ⊂ Rp

isometrically immersed in Rp+q:
M. Szopos: Analysis and Applications (2005)
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7. NONLINEAR KORN INEQUALITIES ON A SURFACE IN
THE SOBOLEV SPACES WWW 1,p(ω), p > 1

The following implications clearly hold if p ≥ 1:

θθθ ∈W 1,2p(ω;E3), aaaα
def
= ∂αθθθ

aaa1 ∧ aaa2 6= 000 a.e. in ω

aaa3
def
=

aaa1 ∧ aaa2

|aaa1 ∧ aaa2|
∈W 1,2p(ω;E3)

 =⇒


aαβ = aaaα · aaaβ ∈ Lp(ω)

bαβ = −∂αaaa3 · aaaβ ∈ Lp(ω)

cαβ = ∂αaaa3 · ∂βaaa3 ∈ Lp(ω)

Notations:

‖θθθ‖Lp(ω;E3)
def
=

{∫
ω
|θθθ(y)|p dy

}1/p

‖AAA‖Lp(ω;S2)
def
=

{∫
ω
|AAA(y)|p dy

}1/p

‖θθθ‖W 1,p(ω;E3)
def
=

{∫
ω

(
|θθθ(y)|p +

∑
α

|∂αθθθ(y)|p
)

dy

}1/2

The following theorems are due to:
P.G. Ciarlet, L. Gratie & C. Mardare: J. Math. Pures Appl. (2006)
P.G. Ciarlet, M. Malin & C. Mardare, in preparation
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THEOREM: ω ⊂ R2 bounded, open, connected; Lipschitz-continuous
boundary. Let θθθ ∈ C1(ω;E3): immersion such that aaa3 ∈ C1(ω;E3).

Assume that p > 1. Then, given any ε > 0, there exists a constant
c(p, θθθ; ε) with the following property:

Given any mapping θ̃θθ ∈W 1,2p(ω;E3) such that ãaa1 ∧ ãaa2 6= 000 a.e. in ω,
ãaa3 ∈W 1,2p(ω;E3), and

|R̃1| ≥ ε and |R̃2| ≥ ε a.e. in ω,

there exists a mapping θ̃θθ
]

isometrically equivalent to θ̃θθ such that the
following nonlinear Korn inequality on a surface holds:

‖θ̃θθ
]
− θθθ‖W 1,p(ω;E3) + ‖ãaa]3 − aaa3‖W 1,p(ω;E3)

≤ c(p, θθθ, ε)
{
‖(ãαβ − aαβ)‖Lp(ω;S2)+‖(b̃αβ − bαβ)‖Lp(ω;S2)

+‖(c̃αβ − cαβ)‖Lp(ω;S2)

}
�

Remark. We need to assume that θ̃θθ ∈W 1,2p(ω;E3) and
ãaa3 ∈W 1,2p(ω;E3) so that ãαβ , b̃αβ , c̃αβ ∈ Lp(ω), even though the
estimates are with respect to the norm ‖·‖W 1,p(ω;E3).
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The proof essentially relies on two ideas:
(a) A “nonlinear 3d-Korn inequality”:

P.G. Ciarlet & C. Mardare, J. Nonlinear Sci. (2004).
P.G. Ciarlet & C. Mardare, J. Math. Pures Appl. (2015)

For related ideas, see also:
Y.G. Reshetnyak, Siberian Math. J. (2003)

THEOREM: Ω ⊂ R3 bounded, open, connected;
Lipschitz-continuous boundary. Let ΘΘΘ ∈ C1(Ω;E3) be an
immersion with det∇∇∇ΘΘΘ > 0 in Ω. Assume that p > 1. Then there
exists a constant C (p,ΘΘΘ) with the following property:

Given any mapping Θ̃ΘΘ ∈W 1,2p(Ω;E3) such that det∇∇∇Θ̃ΘΘ > 0
a.e. in Ω, there exists an immersion Θ̃ΘΘ] isometrically equivalent to
Θ̃ΘΘ such that the following nonlinear 3d-Korn inequality holds:

‖Θ̃ΘΘ] −ΘΘΘ‖W 1,p(Ω;E3) ≤ C (p,ΘΘΘ)‖∇∇∇Θ̃ΘΘT∇∇∇Θ̃ΘΘ−∇∇∇ΘΘΘT∇∇∇ΘΘΘ‖Lp(Ω;E3)

Philippe G. CIARLET 34 / 55



The proof of this nonlinear 3d-Korn inequality relies in
particular on a generalization of the “geometric rigidity lemma”
(which corresponds to ΘΘΘ = idΩ):
Ω ⊂ Rn: bounded, open, connected; Lipschitz-continuous
boundary. Then there exists a constant Λ(Ω) such that, for each
Θ̃ΘΘ ∈ H1(Ω;Rn), there exists RRR = RRR(Θ̃ΘΘ) ∈ On

+ such that

‖∇∇∇Θ̃ΘΘ−RRR‖L2(Ω;Mn) ≤ Λ(Ω)
∥∥∥dist(∇∇∇Θ̃ΘΘ,On

+)
∥∥∥
L2(Ω)︸ ︷︷ ︸

=

{∫
Ω infQQQ∈On

+

∣∣∣∇∇∇Θ̃ΘΘ(x)−QQQ
∣∣∣2 dx

}1/2

G. Friesecke, R.D. James & S. Müller, Comm. Pure Appl. Math.
(2002).

This lemma was extended to the spaces Lp(Ω;Mn), p > 1, in:
S. Conti, Habilitationsschrift, Universität Leipzig (2004).
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(b) Any smooth enough immersion θθθ : ω → E3 can be
canonically extended to an immersion ΘΘΘ : Ωδ → E3, with
Ωδ = ω × ]−δ, δ[ provided δ > 0 is small enough, with

ΘΘΘ(y , x3)
def
= θθθ(y) + x3aaa3(y) for all (y , x3) ∈ Ωδ

Such an extension ΘΘΘ : Ωδ → E3 of θθθ : ω → E3 is then used in
the left-hand side of the above nonlinear 3d-Korn inequality. This
explains why the vector field aaa3, resp. ãaa3, appears together with
the immersion θθθ, resp. θ̃θθ, in the left-hand side of the nonlinear
Korn inequality on a surface (each mapping θ̃θθ is similarly extended
to a mapping Θ̃ΘΘ).
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The assumptions

|R̃1| ≥ ε and |R̃2| ≥ ε a.e. in ω,

imply that

|H̃| =
∣∣∣1
2

( 1

R̃1

+
1

R̃2

)∣∣∣ ≤ 1

ε
and |K̃ | =

∣∣∣ 1

R̃1R̃2

∣∣∣ ≤ 1

ε2

Hence the relations

det∇∇∇ΘΘΘ(y , x3) =
√
a(y)

√
1− 2H(y)x3 + K (y)x2

3 for all (y , x3) ∈ ω × R,

det∇∇∇Θ̃ΘΘ(y , x3) =
√
ã(y)

√
1− 2H̃(y)x3 + K̃ (y)x2

3 for a.a. (y , x3) ∈ ω × R

show that det∇∇∇ΘΘΘ > 0 in Ωδ = ω × [−δ, δ] and det∇∇∇Θ̃ΘΘ > 0 a.e. in
Ωδ = ω × ]−δ, δ[ if δ = δ(ε) > 0 is small enough, so that the “nonlinear
3d-Korn inequality” can be applied.
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The metric tensor (gij)
3
i ,j=1

def
= ∇∇∇ΘΘΘT∇∇∇ΘΘΘ of the extension

ΘΘΘ : Ωδ → E3 of θθθ : ω → E3 appearing in the right-hand side of the
above nonlinear 3d-Korn inequality is then given by

gαβ(y , x3) = aαβ(y)− 2x3bαβ(y) + x2
3 cαβ(y),

gi3(y , x3) = δi3 for all (y , x3) ∈ Ωδ = ω × ]−δ, δ[

This explains the appearance of the third fundamental form in
the right-hand side of the Korn inequality on a surface, with a
similar expression for the metric tensor ∇∇∇Θ̃ΘΘT∇∇∇Θ̃ΘΘ of the extension
Θ̃ΘΘ of θ̃θθ.
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Question: Can we dispose of the third fundamental forms in
the above nonlinear Korn inequalities on a surface?

Answer: Yes, if we make appropriate additional assumptions,
as follows: Let:

AAA
def
= (aαβ), BBB

def
= (bαβ), CCC

def
= (cαβ)

ÃAA
def
= (ãαβ), B̃BB

def
= (b̃αβ), C̃CC

def
= (c̃αβ)

Then CCC = BBBAAA−1BBB and C̃CC = B̃BBÃAA
−1
B̃BB, so that

C̃CC −CCC = B̃BBÃAA
−1
(

(B̃BB −BBB)− (ÃAA−AAA)AAA−1BBB
)

+ (B̃BB −BBB)AAA−1BBB.

Consequently,

‖(c̃αβ − cαβ)‖Lp(ω;S2) = ‖C̃CC −CCC‖Lp(ω;S2)

≤ ‖B̃BBÃAA−1‖L∞(ω;M2)

{
‖(b̃αβ − bαβ)‖Lp(ω;S2) + c(θθθ)‖(ãαβ − aαβ)‖Lp(ω;S2)

}
+ c(θθθ)‖(b̃αβ − bαβ)‖Lp(ω;S2)
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So we can dispose of ‖(c̃αβ − cαβ)‖Lp(ω;S2) if there exists a
constant M such that

‖B̃BBÃAA−1‖L∞(ω;M2)
def
= ess sup

y∈ω
|(B̃BBÃAA−1

)(y)| ≤ M

for all the “admissible” immersions θ̃θθ. Noting that the matrix norm

|B̃BBÃAA−1
(y)| is related to the norm of the Weingarten map of the

tangent plane Ty θ̃θθ to the surface θ̃θθ(ω) at the point θ̃θθ(y) when the

vectors of Ty θ̃θθ are expanded over its covariant basis, one finds
that, for almost all y ∈ ω,

|(B̃BBÃAA−1
)(y)| ≤ |ÃAA(y)|1/2 |ÃAA(y)−1|1/2 max

{
1

|R̃1(y)|
,

1

|R̃2(y)|

}
These considerations yield the following “improved” nonlinear

Korn inequalities on a surface.

P.G. Ciarlet, M. Malin & C. Mardare, in preparation.
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THEOREM: ω ⊂ R2 bounded, open, connected;
Lipschitz-continuous boundary. Let θθθ ∈ C1(ω;E3): immersion such
that aaa3 ∈ C1(ω;E3). Assume that p > 1.

Then, given any ε > 0, there exists a constant c(p, θθθ; ε) with
the following property:

Given any mapping θ̃θθ ∈W 1,2p(ω;E3) such that ãaa1 ∧ ãaa2 6= 0 a.e.
in ω, ãaa3 ∈W 1,2p(ω;E3), and

|R̃1| ≥ ε and |R̃2| ≥ ε a.e. in ω,

|(ãαβ)| ≤ 1

ε
and |(ãαβ)−1| ≤ 1

ε
a.e. in ω,

there exists a mapping θ̃θθ
]

isometrically equivalent to θ̃θθ such that
the following nonlinear Korn inequality on a surface holds:

‖θ̃θθ] − θθθ‖W 1,p(ω;E3) + ‖ãaa]3 − aaa3‖W 1,p(ω;E3)

≤ c(p, θθθ, ε)
{
‖(ãαβ − aαβ)‖Lp(ω;S2) + ‖(b̃αβ − bαβ)‖Lp(ω;S2)

} �
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Comments. 1. The assumptions

|R̃1| ≥ ε and |R̃2| ≥ ε a.e. in ω

mean that the deformed surfaces θ̃θθ(ω) should “uniformly stay away
from having folds” (corresponding to the vanishing of a principal
radius of curvature).

2. The assumptions

|(ãαβ)| ≤ 1

ε
and |(ãαβ)−1| ≤ 1

ε
a.e. in ω

mean that the “infinitesimal length” along the deformed surfaces
θ̃θθ(ω) should uniformly satisfy

c0

∣∣∣dfff
dt

(t)
∣∣∣ dt ≤

√
ãαβ(fff (t))

df α

dt
(t)

df β

dt
(t) dt ≤ c1

∣∣∣dfff
dt

(t)
∣∣∣dt

for some constants c0 > 0 and c1 > 0.
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3. The mappings θθθ and θ̃θθ] appearing in the above nonlinear
Korn inequalities, or the mappings θθθ and θθθ]k appearing in the
sequential continuity theorem, do not have the same regularity:
Even though the estimates are with respect to the norm
‖·‖W 1,p(ω;E3) of the differences θ̃θθ] − θθθ and ãaa]3 − aaa3, the immersions
θθθ and its unit normal vector field aaa3 are assumed to be in the space
C1(ω;E3); this higher regularity assumption seems to be
unavoidable.

4. In the same vein, there is no existence theorem guaranteeing
the existence of an immersion θθθ ∈W 1,2p(ω;E3) with
aaa3 ∈W 1,2p(ω;E3) under the assumption that the fundamental
forms are in the space Lp(ω; S2) for some p > 1; this is why the
mappings θθθ and θ̃θθ are assumed to exist a priori.

In this respect, the recourse to higher-order Sobolev spaces
seems to be unavoidable; cf. Section 9.
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5. One can also establish an estimate of the difference between
θθθ and θ̃θθ, i.e., without having to introduce a mapping θ̃θθ

]

isometrically equivalent to θ̃θθ if appropriate terms with lower
regularity than in the left-hand side are added to the right-hand
side. For instance, under the same assumptions as in the previous
theorem, the following nonlinear Korn inequality on a surface
holds:

‖θ̃θθ − θθθ‖W 1,p(ω;E3) + ‖ãaa3 − aaa3‖W 1,p(ω;E3)

≤ c(p, θθθ, ε)
{
‖θ̃θθ − θθθ‖Lp(ω;E3) + ‖ãaa3 − aaa3‖Lp(ω;E3)

+ ‖(ãαβ − aαβ)‖Lp(ω;S2) + ‖(b̃αβ − bαβ)‖Lp(ω;S2)

}
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Likewise, if, in addition to the assumptions of the previous
theorem, the mappings θ̃θθ are subjected to boundary conditions of
the form

θ̃θθ = θθθ and ãaa3 = aaa3 on γ0,

where γ0 is a non-empty relatively open subset of the boundary of
ω, the following nonlinear Korn inequality on a surface holds:

‖θ̃θθ − θθθ‖W 1,p(ω;E3) + ‖ãaa3 − aaa3‖W 1,p(ω;E3)

≤ c(p, θθθ, ε, γ0)
{
‖(ãαβ − aαβ)‖Lp(ω;S2) + ‖(b̃αβ − bαβ)‖Lp(ω;S2)

}
6. By formal linearization “in a neighborhood of θθθ”, such

nonlinear Korn inequalities reduce to known linear Korn inequalities
on a surface; cf. Section 8.
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8. LINEAR KORN INEQUALITY ON A SURFACE

α, β, . . . ∈ {1, 2} and i , j , . . . ∈ {1, 2, 3}
Contravariant basis: aaaα = aαβaaaβ, (aαβ) = (aστ )−1, aaa3 = aaa3. Then
aaai · aaaj = δij .
Γσαβ = aaaσ · ∂αaaaβ
Undeformed surface θθθ(ω): (aαβ) and (bαβ)

Deformed surface θ̃θθ(ω): (ãαβ) and (b̃αβ)

η̃ηη = ηiaaa
i : ω → E3: displacement field

ηηη = (ηi ) : ω → R3

Formal linearization means that the deformations θ̃θθ considered
are of the form θ̃θθ = θθθ + η̃ηη with η̃ηη, or equivalently ηηη, “small”.

[. . .]lin
def
= linear part with respect to ηηη in the expression . . .
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Point of departure: there exists a constant c such that

‖θ̃θθ − θθθ‖W 1,p(ω;E3) + ‖ãaa3 − aaa3‖W 1,p(ω;E3)

≤ c
{
‖θ̃θθ − θθθ‖Lp(ω;E3) + ‖ãaa3 − aaa3‖Lp(ω;E3)

+ ‖(ãαβ − aαβ)‖Lp(ω;S2) + ‖(b̃αβ − bαβ)‖Lp(ω;S2)

}
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Formal linearization:

[θ̃θθ − θθθ]lin = ηηη and [ãaa3 − aaa3]lin = −(∂αη3 + bσαησ)aaaα

γαβ(ηηη)
def
=

1

2
[ãαβ − aαβ]lin =

1

2
(∂αη̃ηη · aaaβ + ∂βη̃ηη · aaaα)

=
1

2
(∂αηβ + ∂βηα)− Γσαβησ − bαβη3

Linearized change of metric tensor

ραβ(ηηη)
def
= [b̃αβ − bαβ]lin = (∂αβη̃ηη − Γσαβ∂ση̃ηη) · aaa3

= ∂αβη3 + Aσiαβ∂σηi + B i
αβηi

Linearized change of curvature tensor
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It is then easy to establish the equivalence (denoted ') of the following
norms, defined for sufficiently smooth vector fields ηηη = (ηi ) : ω → R3:

‖[θ̃θθ − θθθ]lin‖W 1,p(ω;E3) + ‖[ãaa3 − aaa3]lin‖W 1,p(ω;E3) '
∑
α

‖ηα‖W 1,p(ω) + ‖η3‖W 2,p(ω)

‖[θ̃θθ − θθθ]lin‖Lp(ω;E3) + ‖[ãaa3 − aaa3]lin‖Lp(ω;E3) '
∑
α

‖ηα‖Lp(ω) + ‖η3‖W 1,p(ω)

Besides, by definition of the functions γαβ(ηηη) and ραβ(ηηη),

‖[(ãαβ − aαβ)]lin‖Lp(ω;S2)+‖[(b̃αβ − bαβ)]lin‖Lp(ω;S2)

'
∑
α,β

‖γαβ(ηηη)‖Lp(ω) +
∑
α,β

‖ραβ(ηηη)‖Lp(ω)
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When p = 2, the resulting linear Korn inequality on a surface can be
established directly; its proof hinges on J.L. Lions lemma:

THEOREM: LINEAR KORN INEQUALITY ON A SURFACE:
ω ⊂ R2 bounded, open, connected; Lipschitz-continuous boundary.
Let θθθ ∈ C3(ω;E3) be an immersion. Then there exists a constant c
such that∑
α

‖ηα‖H1(ω) + ‖η3‖H2(ω) ≤ c

{∑
α

‖ηα‖L2(ω) + ‖η3‖H1(ω)

+
∑
α,β

‖γαβ(ηηη)‖L2(ω) +
∑
α,β

‖ραβ(ηηη)‖L2(ω)

}
for all ηηη = (ηi ) ∈ H1(ω)× H1(ω)× H2(ω)

(note that ηηη ∈ H1(ω)× H1(ω)× H2(ω) implies that γαβ(ηηη) ∈ L2(ω)
and ραβ(ηηη) ∈ L2(ω))

M. Bernadou & P.G. Ciarlet (1976)
M. Bernadou, P.G. Ciarlet & B. Miara: J. Elasticity (1994)
A. Blouza & H. Le Dret: Quart. Appl. Math. (1999)
P.G. Ciarlet & S. Mardare: Math. Models Methods Appl. Sci. (2001)
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9. RECOVERY OF A SURFACE FROM ITS FUNDAMENTAL
FORMS IN THE SOBOLEV SPACES WWW 2,p(ω), p > 2

FUNDAMENTAL THEOREM OF SURFACE THEORY
REVISITED, IN THE SPACE W 2,p(ω), p > 2:
ω ⊂ R2: open, bounded, simply-connected; Lipschitz-continuous
boundary. Let p > 2 (so that W 1,p(ω) ↪→ C0(ω) and W 1,p(ω) is an
algebra). Let there be given (aαβ) ∈W 1,p(ω,S2

>) and (bαβ) ∈ Lp(ω,S2)
that satisfy the Gauß and Codazzi-Mainardi equations in D′(ω), i.e.,
for all ϕ ∈ D(ω),∫

ω

(Γαβτ∂σϕ− Γαστ∂βϕ+ ΓµαβΓστµϕ− ΓµασΓβτµϕ) dy

=

∫
ω

(bασbβτ − bαβbστ )ϕ dy ,∫
ω

(bαβ∂σϕ− bασbβϕ+ Γµασbβµϕ− Γµαβbσµϕ) dy = 0

�
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Then there exists θθθ ∈W 2,p(ω;E3) such that ∂1θθθ ∧ ∂2θθθ 6= 000 a.e. in
ω and

∂αθθθ · ∂βθθθ = aαβ and ∂αβθθθ ·
∂1θθθ ∧ ∂2θθθ

|∂1θθθ ∧ ∂2θθθ|
= bαβ in ω

Uniqueness holds up to isometric equivalence in E3: All other
solutions θθθ] are:

θθθ](y) = aaa +QQQθθθ(y), y ∈ ω,
with aaa ∈ E3 and QQQ ∈ O3

+ ⇐⇒ (θθθ], θθθ) ∈ R
�
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Brief outline of the proof: Same ideas as in the “classical”
case, where (aαβ) ∈ C2(ω;S2

>) and (bαβ) ∈ C1(ω;S2), except that
now Cm-spaces are replaced by Wm,p-spaces.

(a) First, one seeks a solution FFF ∈W 1,p(ω;M3) to a Cauchy
problem for a Pfaff system of the form

∂αFFF = FFFΓΓΓα in ω with ΓΓΓα ∈ Lp(ω;M3).

(b) Second, one seeks a solution θθθ ∈W 2,p(ω;E3) to a Cauchy
problem for a Poincaré system of the form

∂αθθθ = aaaα in ω with aaaα ∈W 1,p(ω;E3).

Such solutions exist, thanks to deep results due to:
S. Mardare, J. Math. Pures Appl. (2005)
S. Mardare, Adv. Diff. Eqs. (2007) �
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