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1. THE FUNDAMENTAL FORMS OF A SURFACE

a,B,...€{1,2}
Summation convention
w: open in R?
6:wCR?—f(w)CE?
0(w): surface

y1, y2: curvilinear
coordinates

O 1= 0/0Ya,
Oap 1= 0°/0ya0ys, etc.

[E3: 3d-Euclidean space

6 c C3(w; E3) is an immersion: at each y € w,

a.(y) & 0,0(y) are linearly independent
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S2 % 12 x 2 symmetric matrices}
S2 def {A € S%; A is positive definite}

def @1 /\a . :
det 917292 . \ector fields defined

. . def
Covariant basis: a, = 9,0, a3 :
|81 A 82|

over w

First fundamental form:  a,g def a,-ag = 0.0 - 030

010 N 0.0
Second fundamental form: b,g &ef Jaap - a3 = Oapl - W
1 2

First fundamental form: “metric notions”, such as lengths,

areas, angles .. a.k.a. metric tensor
(a45): w — S%: symmetric positive-definite matrix field defined

over w

Second fundamental form: “curvature notions’
(bap): w — S2: symmetric matrix field defined over w

Remark. ag-az = 0 implies bag = (9a35 -a3 = —ag- 8a33.

Philippe G. CIARLET

4/ 55



a g
length of O(y /\/aag df df ( )dt

area@(wp) = / det(aqp(y))dy
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Curvature of 0(v) at §(y), y = f(t), when 0(v) lies in a plane
normal to the surface f(w) at 6(y):

a B
L baslf(e ))ddft (050
R are  dfP

205 (F(£)) 1 () (1)

1
When the normal plane rotates around asz(y), the curvature I
1

1
Ri(y)’ w} where Ri(y) and Ry(y) are

the (signed) principal radii of curvature at 6(y).

varies in an interval [
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Portion of a cylinder

R cos ¢
0:(p,z) = | Rsingp
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Portion of a torus

rsiny

(R + rcos x) cos gp)

0:(o,x) — ((R—l—rcosx)sincp
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Portion of a sphere
Cartesian coordinates

_ Yy
x
X
0:(x,y)— y
R — (x* + y?)
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Spherical coordinates

R cos ) cosp

0:(¢,9) — | Recosysinp
Rsiny
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Stereographic coordinates
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Let (a*%) o (2a3)~! and be % 278 by, (a: row index)

wfl 5 1/1 1Y

H = 2tr(boé) =3 <R1 + R ) mean curvature,
1

K d:efdet(bg) = Rk : Gaussian curvature

Third fundamental form: c.3 def 0aa3 - Ogaz

(cap): symmetric nonnegative-definite matrix field defined over w;
may be viewed as the metric tensor of the GauBB map:

y € w — az(y) € {unit sphere in E3}

Cap = 2Hbaﬁ — Kaag in w
Cap = baga® brg = bwbg in w
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2. RECOVERY OF A SURFACE FROM ITS
FUNDAMENTAL FORMS IN THE SPACE C3(w)

Preliminary observation: Let an open set w C R? and an
immersion 8 € C3(w; E3) be given. Then the components
2 € C?(w) and by € C1(w) of the two fundamental forms of the
surface @(w) cannot be arbitrary functions: Let

def

def

(a°7) = (aap)™ Y, Tapr = Onap-ar and

Mg < @ Tagr

The functions 5, € C*(w) and Mo € Cl(w) are the

Christoffel symbols.

aaaa,B rar = aaraBT - rgﬂraTu

8agag a3 = &,baﬁ + F’a‘ﬁbw.

Besides,

8010'50 = 804,6’0'0
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<= Onoap = Ogpas < {

Then it is easy to see that:

- baﬁ ba’r:

Oacap - ar = Onpas - ar
Oncag - a3 = Oppas - a3
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Consequently, the following necessary conditions hold:

8,8ra07' - aUI_a,BT + rgﬁra‘ru - rgarﬁfru = bocUbBT - ba,BbaT inw
GauB3 equations

aﬁboza - aabaﬁ + rgzabﬁ# — I_Z/Bbo'u =0inw
Codazzi-Mainardi equations

It is easy to see that the Christoffel symbols '\, = O,a3 - ar
and I'gﬁ = a°"[ 43, can be expressed solely in terms of the
components of the first fundamental form:

1
Copr = 5(8gam + Oqagr — Oragp) and Mo =3a"Tapr
with (2°7) = (aap) !

Consequently, the GauBB and Codazzi-Mainardi equations are
(nonlinear) compatibility relations that are necessarily satisfied by
the first and second fundamental forms.
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It is a fundamental result that, if w is simply-connected, these
compatibility conditions become also sufficient for the existence of a
surface @(w) with (ang) and (b.g) as its fundamental forms.

0% % { proper orthogonal 3 x 3 matrices }

FUNDAMENTAL THEOREM OF SURFACE THEORY IN THE
SPACE C3(w): w C R2: open and simply-connected. Let there be
given (ang) € C3(w;S2) and (bag) € C*(w;S?) that satisfy the GauB
and Codazzi-Mainardi equations in w. Then there exists an immersion
0 € C3(w; E3) such that:

010 N D0

80¢0 . 5‘50 = aaﬁ’ and 6aﬁ0 . W

:baﬁ inw

Uniqueness holds up to isometric equivalence in E3: All other
solutions 8% € C3(w; E®) are given by:

6*(y) =a+ QO(y),y € w, witha e E3 and Q € 0% « (6*,0) e R

Uniqueness holds if @ is subjected to Cauchy conditions of the form
0()/0) =6 and aao(yO) = aoon

with yo € w,8o € B, and a3, € E? such that a3, - a% = a? 5(vo). O
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Brief outline of the proof: (a) Preliminary observation. Let
an immersion @ € C3(w; E3) be given. Then a, = 9,0 and

ai N\ a

satisfy:
|31 A\ 32‘ Y

asz =

equations of GauB: d,ag = I7 33, + bapaz in w

equations of Weingarten: J,a3 = —a’by,as in w

M = {3 x 3 matrices}

The equations of GauB and Weingarten can be re-written as a

single matrix equation as

OuF = FT with F < (a3]apas) and o &

clearly, F € C?(w;M?) and T, € C*(w; M3)

1
ral

a1

_ ala bcw
_ aZa boco‘
0
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(b) Given (ans) € C?(w;S2) and (byp) € C(w; S?) satisfying
the GauB and Codazzi-Mainardi equations, it is thus natural to
seek a solution F € C?(w; M3) to:

Pfaff system: O0,F = FI, inw

Such a Pfaff system has a solution if w is simply-connected and
the matrix fields I, satisfy

compatibility conditions: 0,Ig — 0l + Tl g — gl =0 in w,

which are precisely equivalent to the GauB and Codazzi-Mainardi
equations!

Remark. If F is invertible in w, these compatibility conditions
are clearly necessary, since they simply express that J,3F = 0goF
in w.

Pfaff systems: See, e.g., Sect. 6.20 in
P.G. Ciarlet: Linear and Nonlinear Functional Analysis with
Applications, SIAM (2013).
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(c) Given F = (al‘ag‘ag) € C?(w; M3) found as in (b), it is

then natural to seek a solution 8 € C3(w; E3) to:

Poincaré system: 0,0 = a,, in w.

Such a Poincaré system has a solution if w is simply-connected
and the vector fields a,, satisfy

compatibility conditions: d,ag = dga, in w,

which are equivalent to the symmetries

I‘gﬁ = I’ga and bag = bﬂa-

Poincaré systems: See, e.g., Sect. 6.17 in ibid.

Remark. These compatibility conditions are clearly necessary,
since they simply express that 0,50 = 050 in w.
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(d) One next shows that

010 N 0.0

(=) |68 060 = 2 and Do - 5 G=m

= ba,g inw

Proof relies on uniqueness of solutions to the Cauchy problem for
Pfaff systems (only connectedness of w is used).

(e) One finally shows that, if @ and 6% are two solutions to (x),
then there exist a € E3 and Q € O3 such that

' (y)=a+Qb(y),ycw| <= [(6',0)cR

Proof relies again on uniqueness of solutions to the Cauchy
problem for Pfaff systems and on the implication
0,0 =0 in w = 6 is constant (only connectedness of w is used). [J

Remark. A similar result holds if (a,s) € C*(w;S2) and
(bag) € CO(w; S?):
P. Hartman, A. Wintner: American J. Math (1950).
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3. SOME QUESTIONS AND APPLICATIONS
COROLLARY: There exists a well-defined mapping:

E. { (a0p) € C?(w;S2) satisfying the GauB and

) 3(.) T3
(bap) € CHw;S?) Codazzi-Mainardi egs. } 20 CwE)/R

O
Questions:

1. Is the mapping F continuous when the spaces C™(w) are equipped
with their natural Fréchet topology?

2. Can the fundamental theorem of surface theory be extended to
other function spaces, such as C™(@) or W™P(w)?

3. If so, are the corresponding mappings F Lipschitz-continuous?
Equivalently, do they satisfy nonlinear Korn inequalities on surfaces?
Applications:
1. Differential geometry of surfaces in R per se
2. |Intrinsic nonlinear shell theory
3. Modelling of the Earth surface
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Portion of a hyperboloid of revolution

7

rd
/ sod—p7/
r
r
r
J"
7
rd

rv'1+ z2cosp
0:(p,z) > | rv/1+ 22singp

V4
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Cooling tower: Triangulation.
Reproduced by courtesy of Professor J.H. Argyris.

Cooling tower: Deformed structure under wind load.
Reproduced by courtesy of Professor I.H. Argyris.
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In the intrinsic approach to nonlinear shell theory, one
computes directly the two fundamental forms of the deformed
middle surface of the shell, instead of the displacement vector field
as in the classical approach:

S. Opoka & W. Pietraszkiewicz: Intern. J. Solids Structures (2004)
W. Pietraszkiewicz & M.L. Szwabowicz: Intern. J. Solids
Structures (2007)

Mathematical analysis of the intrinsic approach: Linearly
elastic shells:
P.G. Ciarlet & L. Gratie: Math. Models Methods Appl. Sci. (2005)
C. Amrouche, P.G. Ciarlet, L. Gratie & S. Kesavan: J. Math. Pures
Appl. (2006)
P.G. Ciarlet, L. Gratie, C. Mardare, Shen Ming: Math. Models
Methods Appl. Sci. (2008)
P.G. Ciarlet, O. losifescu: J. Math. Pures Appl. (2014)
P.G. Ciarlet, C. Mardare & Shen Xiaoqin: Anal. Appl. (2015)
Nonlinearly elastic shells: Virgin territory!
Numerical analysis: Virgin territory! (even for linearly elastic shells)
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Modelling of the Earth surface. New numerical methods
have been recently introduced for reconstructing the Earth surface
from the knowledge of its two fundamental forms:

“HASM” = "High-Accuracy Surface Modelling”
“DEM” = "Digital Elevation Model"

Tian-Xiang Yue, Dun-Jiang Song, Zhen-Ping Du & Wei Wang:
Intern. J. Remote Sensing (2010)

Numerical evidence seems to indicate that such methods
perform better than the classical methods for modelling the Earth
surface, using, e.g., splines (see Fig. 4 in ibid.).
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4. CONTINUITY OF A SURFACE AS A FUNCTION OF
ITS FUNDAMENTAL FORMS IN THE SPACE C3(w)

def . : :
|| = Euclidean vector norm in RV and spectral norm of matrices
Kk € w means that k is a compact subset of w
Given f € Cg(w; R) or 6 € C*(w; RY),

sex, Iaa ) 118]e = sup{lyen [0%6(y)]

(multi-index notation a = (aq, ap) with |a| = ag + az is used)

Then, equipped with the semi-norms ||-[|, . for all k € w, the
space Cg(w; ]Rd) becomes a locally convex topological space. The
corresponding topology, which is metrizable but not normable, is
called Fréchet topology. In this topology,

Yk — Y ask = 00 = Vi €w, [PF —llps — 0
k—o0 k—o0
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Equivalence class @ of 0 : w C R2 — R3 modulo R:

6 = {0jj cw C R2 — R3 with Oﬂ(y) =a+Qb(y), y €w,
for some ac E3, Q € @1}

The relation R is called isometric equivalence.

THEOREM: w C R?: open, simply-connected. Given immersions
0k ¢ C3(w;E3), k > 1, and 6 € C3(w; E3), let

610k A 820" .
‘810" A 820"’ n &

B o 00 N 0.0
aap = 0o - 050 and  b,g = 3a69 |016 A 0,0 e

aks =00 050X and  bfg = 0np0~ -

Assume that

VK € w, Hagﬁ — angll2,x kjo 0 and Hbéﬁ — bagll1k kjo 0

Then there exist 8% ¢ ék, k > 1, such that

Philippe G. CIARLET

Vi € w, 0% —8l3. — O 0
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This result implies the following continuity result:

COROLLARY. w C R?: open, simply-connected. Let the spaces
Clw;S?), £ = 1,2, and C3(w; E3) be equipped with their Fréchet
topologies. Then the following mapping is continuous:

_ {(aaﬂ) € C%(w;S2) satisfying the GauB and

) O3(. T3
" | (bag) € CH(w;S?) Codazzi-Mainardi egs. } 20 C(WE)/R

P.G. Ciarlet: J. Math. Pures Appl. (2003)

Proof relies on an analogous result “in 3d": A 3d-deformation
is a continuous function of its metric tensor:
P.G. Ciarlet & F. Laurent: Arch. Rational Mech. Anal. (2003)
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5. RECOVERY OF A SURFACE FROM ITS FUNDAMENTAL
FORMS IN THE SPACE C*(@)

FUNDAMENTAL THEOREM OF SURFACE THEORY
REVISITED, IN THE SPACE C3(w): w C R?: open, bounded,
simply-connected; Lipschitz-continuous boundary. Given

(30p) € C3(w;S2) and (bag) € C*(w;S?) that satisfy the GauB and
Codazzi-Mainardi equations in w, there exists § € C3(w; IE3) such that:

HONDB
1016 A 020]

dapf = 3a0 . (950 and bag = 3a50 .

Uniqueness holds up to isometric equivalence in E3: All other
solutions 0% are given by

6*(y) =a+QO(y), y cw, withacE3and Q€ 03 <=6 c6.| O

P.G. Ciarlet & C. Mardare, Analysis and Applications (2005)

The proof (long and technical) consists in showing that, under the
above assumptions on w, the solution € C3(w; E®) obtained in the
previous existence theorem can be extended, together with all its partial
derivatives %0, |a| < 3, to continuous functions over @.
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6. CONTINUITY OF A SURFACE AS A FUNCTION OF
ITS FUNDAMENTAL FORMS IN THE SPACE C3(@);
A KORN INEQUALITY ON A SURFACE
IN THE SPACE C3(w)

THEOREM: w C R?: open, bounded, simply-connected;
Lipschitz-continuous boundary. Let the spaces C(w; S?), £ = 1,2,
and C3(w; E3) be equipped with their norm topologies. Then the
following mapping F between subsets of Banach spaces is locally
Lipschitz-continuous:

. { (a0p) € C3(w;S2) satisfying the GauB} and }
(bap) € C1(w;S?) Codazzi-Mainardi equations in w

—0eCwE})/R
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Equivalently, the following nonlinear Korn’s inequality on a
surface holds: Given any immersion 8 € C3(w; E3) with
fundamental forms (ang) € C?(;S2) and (bss) € CH(w;S?), there
exist a constant c(@) and a neighborhood V of ((ang), (bag)) in
C?(,S%) x CY(w,S?) with the following property: Given any 0
such that ((3ap), (Pag)) € V (with self-explanatory notations),

there exists an immersion 0 isometrically equivalent to @ such that

St
10" — 0|3 (@3
< c(0){1(dap = aap)llc2@:s?) + I(bap = bag)llcr@is?) }

g

Proof is similar to that of an analogous result “in 3d":
P.G. Ciarlet & C. Mardare: J. Math. Pures Appl. (2004)
Extension to a simply-connected Riemannian space w C RP
isometrically immersed in RPT9:
M. Szopos: Analysis and Applications (2005)
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7. NONLINEAR KORN INEQUALITIES ON A SURFACE IN
THE SOBOLEV SPACES W'P(w), p > 1

The following implications clearly hold if p > 1:
def

0 € WHP(w;E®), aq = 0af 305 = Ao - ag € LP(w)
aiNax#0ae inw — { bog = —Oaaz-ag € LP(w)
def @1 /A\az 1.2 3
a = e WHP(w: E — . p
3= i Al (w; E®) Cap = Onasz - Opas € LP(w)
Notations:

def p l/p def p l/p
18]z 2 / )P dy bl Al & / A)PP dy

1/2
ef
lwsscosy [ (0P + S 10:60)1 ) dy

The following theorems are due to:
P.G. Ciarlet, L. Gratie & C. Mardare: J. Math. Pures Appl. (2006)
P.G. Ciarlet, M. Malin & C. Mardare, in preparation
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THEOREM: w C R? bounded, open, connected; Lipschitz-continuous
boundary. Let 8 € C1(w; E3): immersion such that a3 € C*(w; E3).
Assume that p > 1. Then, given any € > 0, there exists a constant
c(p,8; €) with the following property:
Given any mappinga € Wh2P(w; E3) such that 3, A3y #0 a.e. in w,
33 € Wh2r(w; E3), and

|K’1\ > ¢ and |R’2| >cae inuw,

there exists a mapping 9u isometrically equivalent to @ such that the
following nonlinear Korn inequality on a surface holds:

=4 -
10" — Ol wrrwrs) + ||3§ — a3l wir(wiE?)
< c(p,0,2){11(3ap — 3ap)llie(wis)+ 1 (Bag — bap)lr(uis2)
+||(Eaﬁ - Caﬂ)HLP(w;SZ)}

Remark. We need to assume that § € W'2P(w; E®) and
33 € WL2P(w; E?) so that d.3, bag, Eap € LP(w), even though the
estimates are with respect to the norm |[-[| 1.5 (53
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The proof essentially relies on two ideas:

(a) A "nonlinear 3d-Korn inequality":
P.G. Ciarlet & C. Mardare, J. Nonlinear Sci. (2004).
P.G. Ciarlet & C. Mardare, J. Math. Pures Appl. (2015)

For related ideas, see also:
Y.G. Reshetnyak, Siberian Math. J. (2003)

THEOREM: Q C R3 bounded, open, connected;
Lipschitz-continuous boundary. Let © € C*(Q; E3) be an
immersion with det VO > 0 in Q. Assume that p > 1. Then there
exists a constant C(p,©) with the following property:

Given any mapping © € W1’2P(Q;NE3) such that det VO > 0
a.e. in Q, there exists an immersion ©F isometrically equivalent to
© such that the following nonlinear 3d-Korn inequality holds:

...ﬁ ~ ~
16" — Ol wiriass) < C(p,©)|VOTVO — VOTVO| 1)
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The proof of this nonlinear 3d-Korn inequality relies in
particular on a generalization of the “geometric rigidity lemma”
(which corresponds to © = idg):

Q C R": bounded, open, connected; Lipschitz-continuous
boundary. Then there exists a constant A(f2) such that, for each
6 e HY(Q;R"), there exists R = R(6) € O7 such that

IV6 — R||2(ur) < NQ) Hdist(Vé, 07)

L2(Q)

Ve Q’ }1/2

{fQ |ane©n

G. Friesecke, R.D. James & S. Miiller, Comm. Pure Appl. Math.
(2002).

This lemma was extended to the spaces LP(Q; M"), p > 1, in:
S. Conti, Habilitationsschrift, Universitat Leipzig (2004).
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(b) Any smooth enough immersion 0 : w — E3 can be
canonically extended to an immersion © : Q° — E3, with
Q% = w x |-, [ provided 6 > 0 is small enough, with

O(y, x3) & 0(y) + xsa3(y) for all (y,x3) € Q°

Such an extension © : Q° — E3 of @ : w — E3 is then used in
the left-hand side of the above nonlinear 3d-Korn inequality. This
explains why the vector field a3, resp. a3, appears together with
the immersion @, resp. é in the left-hand side of the nonlinear
Korn inequality on a surface (each mappingé is similarly extended
to a mapping é)
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The assumptions
|Ri| > e and |Ry| > ¢ ae inw,

imply that

|H|—‘2(Rl+;2>’1a nd |K| =

Hence the relations

1

RiR,

| —

IN
N

9

detVO(y,x3) = v/a(y \/1—2H )x3 + K(y)x2 for all (y,x3) € w x R,

det VO(y,x3) = /3 \/172H )x3 + K(y)x2 fora.a. (y,x3) €w xR

show that det VO > 0 in Q% = w x [—4,6] and det VO > 0 a.e. in
Q0 = w x |-4,8[ if § = 6(¢) > 0 is small enough, so that the “nonlinear
3d-Korn inequality” can be applied.
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: def .
The metric tensor (g,-j)ij:l = VOTVO of the extension

O : Q9 — E3 of § : w — E3 appearing in the right-hand side of the
above nonlinear 3d-Korn inequality is then given by

gaﬁ(y,X3) = aaﬁ()/) - 2X3boz,3()/) +X32Caﬁ()/)a
giz(y,x3) = d;3 forall (y,x3) € Q0 =w x |—0,0[

This explains the appearance of the third fundamental form in
the right-hand side of the Korn inequality on a surface, with a
similar expression for the metric tensor VO VO of the extension

6 of .
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Question: Can we dispose of the th

ird fundamental forms in

the above nonlinear Korn inequalities on a surface?
Answer: Yes, if we make appropriate additional assumptions,

as follows: Let:

A= (aaﬁ)v = (baﬁ)a
AY (3,5), BE (bap).
Then € = BA~'B and C = éA_IB

, so that

c-Cc=BA" (B-B)-(A-A)A'B) +(B-B)A'B.

Consequently,

1(Eap — cap)llr(ws?) = 1€ = Cllip(ws2)

~ o~ ~
< IBA i quinez) {11 (Bas = bos) o)

—+

Philippe G. CIARLET
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So we can dispose of |[(Cap — Cap)llp(wis?) if there exists a
constant M such that

£l def £l
IBA (i) = esssup|(BA T)(y)l < M
YEwW

for all the “admissible” immersions 8. Noting that the matrix norm
\Bﬁf (¥)| is related to the norm of the Weingarten map of the
tangent plane T, 6 to the surface 8(w) at the point 8(y) when the
vectors of T, 0 are expanded over its covariant basis, one finds
that, for almost all y € w,

(BA) ()] < A2 A(y) /2 max { w%lty)\’ \f?iy)l }

These considerations yield the following “improved” nonlinear
Korn inequalities on a surface.

P.G. Ciarlet, M. Malin & C. Mardare, in preparation.
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THEOREM: w C R? bounded, open, connected;
Lipschitz-continuous boundary. Let @ € C(w; E3): immersion such
that a3 € C1(w; E3). Assume that p > 1.

Then, given any € > 0, there exists a constant c(p,0; ) with
the following property:

Given any mapping @ € W12P(w; E3) such that 3; N3, # 0 a.e.
inw, 33 € Wh2P(w; E3), and

|Ri| > and |Ry| > ¢ ae. inw,

1 1
’(gaﬁ)’ < g and |(§aﬁ)71‘ < E a.e. in w,

there exists a mapping éﬁ isometrically equivalent to @ such that
the following nonlinear Korn inequality on a surface holds:

Nﬁ -
18" — 61l W) + 1185 — asllwroms)

< <(p,6,2){ (8ap = 208 o) + 1(Bas = bes)ll oo |
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Comments. 1. The assumptions
|Ri| >eand |Ry| >cae inw

mean that the deformed surfaces é(w) should “uniformly stay away
from having folds” (corresponding to the vanishing of a principal
radius of curvature).

2. The assumptions
- 1 . 1 1 )
1(dap)] < = and [(Gap) 7| < - ae. inw
€ €

mean that the “infinitesimal length” along the deformed surfaces
0(w) should uniformly satisfy

df dre  dff )

o] 5 )‘dt < \/5a5(f(t))dt(t) c(de<a t)’dt

for some constants ¢y > 0 and ¢; > 0.

Philippe G. CIARLET 43 / 55



3. The mappings @ and 6 appearing in the above nonlinear
Korn inequalities, or the mappings 6 and 8%% appearing in the
sequential continuity theorem, do not have the same regularity:
Even though the estimates are with respect to the norm
[/ w.p(wmsy of the differences 6" — 6 and ég — a3, the immersions
0 and its unit normal vector field a3 are assumed to be in the space
C(w; E3); this higher regularity assumption seems to be
unavoidable.

4. In the same vein, there is no existence theorem guaranteeing
the existence of an immersion 6 € W12P(w; E3) with
a3 € W12P(w; E3) under the assumption that the fundamental
forms are in the space LP(w;S?) for some p > 1; this is why the
mappings 0 and 6 are assumed to exist a priori.

In this respect, the recourse to higher-order Sobolev spaces
seems to be unavoidable; cf. Section 9.
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5. One can also establish an estimate of the difference between
6 and 6, i.e., without having to introduce a mapping 6
|sometr|cally equivalent to 6 if appropriate terms with lower
regularity than in the left-hand side are added to the right-hand
side. For instance, under the same assumptions as in the previous

theorem, the following nonlinear Korn inequality on a surface
holds:

10 — Ollwrr(wzs) + 1133 — asllwre(Es)

< c(p,6,e){110 — 01l 1p(ui2) + 1133 — 33| 1)

+ ”(504,3 - aaﬁ)”LP(w;S2) + ||(BOéﬁ - baﬁ)HLP(w;Sz)}
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Likewise, if, in addition to the assumptions of the previous
theorem, the mappings 8 are subjected to boundary conditions of
the form

ézoand53:a30n")/0,

where g is a non-empty relatively open subset of the boundary of
w, the following nonlinear Korn inequality on a surface holds:

10 — Ollwrp(w:es) + 133 — asllwir(wEs)

< C(Paa,Ea’YO){H@aB - aaB)HLP(w;S2) + “(Ea,@ - boéﬁ)”LP(w;Sz)}

6. By formal linearization “in a neighborhood of 8", such
nonlinear Korn inequalities reduce to known linear Korn inequalities
on a surface; cf. Section 8.
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8. LINEAR KORN INEQUALITY ON A SURFACE

a,f,...€{1,2} and i,j,... € {1,2,3}
Contravariant basis: a® = a%Pag, (a%) = (apr)~
a'-aj=0o;.

Mo =2 - 0adp

Undeformed surface 0(w): (aap) and (bap)

Deformed surface 8(w): (4n) and (bag)

n=mnia 1w — E3: displacement field
n=(n):w—R?

3

1 a3 =a3. Then

Formal linearization means that the deformations @ considered
are of the form @ = 0 + i) with 7, or equivalently 5, “small”.

in def . . . .
[...]" < linear part with respect to 7 in the expression ...
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Point of departure: there exists a constant ¢ such that

10 = Ollwrp(wms) + 133 — a3llwrp(mes)

< {110 — 61| 1p(ms) + 1133 — a3l o)

+11(3ap — 20|l o(wis?) + 1 (Bag = bap)llir(wis2) }
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Formal linearization:

[ — 6]" =5 and [33 — a3]"™ = —(Ju1p3 + bIn,)a”

1 1 ~
5 [das — aap]" = 5(0at) - a5 + 051 - aq)

1
= 5(0ans + 9pna) = 3410 — bapis

Linearized change of metric tensor

def It i ~ o ~
paﬁ(n) = [baﬂ - baB]I "= (804,6"'7 - ragaan) a3

= Dapm + A%00mi + Bl g

Linearized change of curvature tensor

Philippe G. CIARLET
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It is then easy to establish the equivalence (denoted ~) of the following
norms, defined for sufficiently smooth vector fields 5 = (1;) : w — R3:

116 — 0]1inHW1vP(w;E3) + [I[35 — as]™ lw. P(w;E3) Z mallwrew) + In3llwze(w
116 — e]lin||LP(cu;]E3) + |[35 — as]"™|1r (wiE?) =2 Z Ml Lo (w) + 13w (w)
Besides, by definition of the functions v,(n) and pas(n),
1[(Fas = 2™ llo(we2) Hl(Bap = bap)]™ lrws?)

=~ Z as@ o) + Y loasmllire)

a,p
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When p = 2, the resulting linear Korn inequality on a surface can be
established directly; its proof hinges on J.L. Lions lemma:

THEOREM: LINEAR KORN INEQUALITY ON A SURFACE:
w C R? bounded, open, connected; Lipschitz-continuous boundary.
Let @ € C3(w; E3) be an immersion. Then there exists a constant c
such that

S el + 1l < { S ez + Imsllnco)

+ 2 sy + 2 ol |

a,f a,B

for all p = (1;) € HY(w) x HY(w) x H?(w)

(note that § € H'(w) x H}(w) x H?(w) implies that v,5(n) € L?(w)
and pus(n) € 7))

M. Bernadou & P.G. Ciarlet (1976)

M. Bernadou, P.G. Ciarlet & B. Miara: J. Elasticity (1994)

A. Blouza & H. Le Dret: Quart. Appl. Math. (1999)

P.G. Ciarlet & S. Mardare: Math. Models Methods Appl. Sci. (2001)
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9. RECOVERY OF A SURFACE FROM ITS FUNDAMENTAL
FORMS IN THE SOBOLEV SPACES W?P(w),p > 2

FUNDAMENTAL THEOREM OF SURFACE THEORY
REVISITED, IN THE SPACE W?P(w),p > 2:

w C R2: open, bounded, simply-connected; Lipschitz-continuous
boundary. Let p > 2 (so that W1P(w) < C%(w) and W1P(w) is an
algebra). Let there be given (ans) € WHP(w,S2) and (bag) € LP(w,S?)
that satisfy the GauB and Codazzi-Mainardi equations in D'(w), i.e.,
for all ¢ € D(w),

/(raﬁrao(;ﬁ - raoraﬁgo + riﬁ rm’/ﬁp - ng r,BT/L‘P) dy

- /(baob,BT - baﬁbo-r)@dy, O
w

/ (bapOo — bagbsp + Ty bip — T by 0) dy = 0
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Then there exists € W?P(w;E3) such that 010 A 320 # 0 a.e. in
w and

010 N 0,0

8a0 . 859 = dap and aaﬁa . m =

g 1IN W

Uniqueness holds up to isometric equivalence in E3: All other
solutions 6% are:

0'(y) =a+ Qb(y),y € w,
with a € E3 and Q € 03 < (6*,0) e R
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Brief outline of the proof: Same ideas as in the “classical”
case, where (a,5) € C?(w;S2) and (byg) € CH(w;S?), except that
now C-spaces are replaced by W™P-spaces.

(a) First, one seeks a solution F € W1P(w; M3) to a Cauchy
problem for a Pfaff system of the form

OuF = FT o, in w with [, € LP(w; M3).
(b) Second, one seeks a solution § € W?P(w;E3) to a Cauchy
problem for a Poincaré system of the form
0.0 = a, in w with a, € Wl’p(w;E3).
Such solutions exist, thanks to deep results due to:

S. Mardare, J. Math. Pures Appl. (2005)
S. Mardare, Adv. Diff. Egs. (2007) O
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