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Algebra of Linear Programming

minimizex cTx

subject to Ax = b,
x ≥ 0,

where given constraint matrix A is an m × n matrix, the right-hand b
is an m-dimensional vector, the objective coefficients c is an
n-dimensional vector.

This is a Standard Primal LP form, where variables x is an
n-dimensional vector and need to be optimally decided.

LP is a data-driven computation/decision model that is one of the
most used computational problems.
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Geometry of Linear Programming
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LP Algorithms: the Simplex Method
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LP Algorithms: the Interior-Point Method
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The Markov Decision/Game Process

Markov decision processes (MDPs) provide a mathematical
framework for modeling sequential decision-making in situations
where outcomes are partly random and partly under the control
of a decision maker.

Markov game processes (MGPs) provide a mathematical
framework for modeling sequential decision-making of
two-person turn-based zero-sum game.

MDGPs are useful for studying a wide range of
optimization/game problems solved via dynamic programming,
where it was known at least as early as the 1950s (cf. Shapley
1953, Bellman 1957).

Modern applications include dynamic planning under uncertainty,
reinforcement learning, social networking, and almost all other
stochastic dynamic/sequential decision/game problems in
Mathematical, Physical, Management and Social Sciences.
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The Markov Decision/Game Process

Markov decision processes (MDPs) provide a mathematical
framework for modeling sequential decision-making in situations
where outcomes are partly random and partly under the control
of a decision maker.

Markov game processes (MGPs) provide a mathematical
framework for modeling sequential decision-making of
two-person turn-based zero-sum game.

MDGPs are useful for studying a wide range of
optimization/game problems solved via dynamic programming,
where it was known at least as early as the 1950s (cf. Shapley
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Modern applications include dynamic planning under uncertainty,
reinforcement learning, social networking, and almost all other
stochastic dynamic/sequential decision/game problems in
Mathematical, Physical, Management and Social Sciences.

Ye, Yinyu (Stanford) Progresses on MDGP
Jan. 4 2018, IAS, CityU of HK 10 /

46



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The Markov Decision/Game Process

Markov decision processes (MDPs) provide a mathematical
framework for modeling sequential decision-making in situations
where outcomes are partly random and partly under the control
of a decision maker.

Markov game processes (MGPs) provide a mathematical
framework for modeling sequential decision-making of
two-person turn-based zero-sum game.

MDGPs are useful for studying a wide range of
optimization/game problems solved via dynamic programming,
where it was known at least as early as the 1950s (cf. Shapley
1953, Bellman 1957).

Modern applications include dynamic planning under uncertainty,
reinforcement learning, social networking, and almost all other
stochastic dynamic/sequential decision/game problems in
Mathematical, Physical, Management and Social Sciences.

Ye, Yinyu (Stanford) Progresses on MDGP
Jan. 4 2018, IAS, CityU of HK 10 /

46



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The Markov Decision/Game Process

Markov decision processes (MDPs) provide a mathematical
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two-person turn-based zero-sum game.

MDGPs are useful for studying a wide range of
optimization/game problems solved via dynamic programming,
where it was known at least as early as the 1950s (cf. Shapley
1953, Bellman 1957).

Modern applications include dynamic planning under uncertainty,
reinforcement learning, social networking, and almost all other
stochastic dynamic/sequential decision/game problems in
Mathematical, Physical, Management and Social Sciences.
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An MDGP Toy Example I

2 31 4

1’ 3’ 4’2’

0

+1

0.5

0.5

0.25

0.25

0.5

0.125

0.125
0.25

0.5

Actions are in red, blue and black; and all actions have zero cost
except the state 4 to the termination state (Melekopoglou and
Condon 1990). Which actions to take from every state to minimize
the total cost?
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Toy Example: Simplified Representation

2 31 4

1’ 3’ 4’2’

0

+1

0.5 0.5

0.5 0.50.5

0.5

Actions are in red, blue and black; and all actions have immediate
zero cost except the state 4 to the termination state.
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Toy Example: Game Setting

2 31 4

1’ 3’ 4’2’

0

+1

0.5 0.5

0.5 0.50.5

0.5

States {0, 1, 2} minimize, while States {3, 4} maximize.
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The Markov Decision Process/Game continued

At each time step, the process is in some state i = 1, ...,m, and
the decision maker chooses an action j ∈ Ai that is available in
state i , and giving the decision maker an immediate
corresponding cost cj .

The process responds at the next time step by randomly moving
into a new state i ′. The probability that the process enters i ′ is
influenced by the chosen action in state i . Specifically, it is given
by the state transition distribution probability pj ∈ Rm.

But given state/action j , the distribution is conditionally
independent of all previous states and actions; in other words,
the state transitions of an MDP possess the Markov property.
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The Markov Decision Process/Game continued

At each time step, the process is in some state i = 1, ...,m, and
the decision maker chooses an action j ∈ Ai that is available in
state i , and giving the decision maker an immediate
corresponding cost cj .

The process responds at the next time step by randomly moving
into a new state i ′. The probability that the process enters i ′ is
influenced by the chosen action in state i . Specifically, it is given
by the state transition distribution probability pj ∈ Rm.

But given state/action j , the distribution is conditionally
independent of all previous states and actions; in other words,
the state transitions of an MDP possess the Markov property.
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The Markov Decision Process/Game continued

At each time step, the process is in some state i = 1, ...,m, and
the decision maker chooses an action j ∈ Ai that is available in
state i , and giving the decision maker an immediate
corresponding cost cj .

The process responds at the next time step by randomly moving
into a new state i ′. The probability that the process enters i ′ is
influenced by the chosen action in state i . Specifically, it is given
by the state transition distribution probability pj ∈ Rm.

But given state/action j , the distribution is conditionally
independent of all previous states and actions; in other words,
the state transitions of an MDP possess the Markov property.
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MDP Stationary Policy and Cost-to-Go Value

A stationary policy for the decision maker is a function
π = {π1, π2, · · · , πm} that specifies an action in each state,
πi ∈ Ai , that the decision maker will always choose; which also
lead to a cost-to-go value for each state

The MDP is to find a stationary policy to minimize/maximize
the expected discounted sum over the infinite horizon with a
discount factor 0 ≤ γ < 1.

If the states are partitioned into two sets, one is to minimize and
the other is to maximize the discounted sum, then the process
becomes a two-person turn-based zero-sum stochastic game.

Typically, discount factor γ = 1
1+ρ

where ρ is the interest rate,
where we assume it is uniform among all actions.
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MDP Stationary Policy and Cost-to-Go Value

A stationary policy for the decision maker is a function
π = {π1, π2, · · · , πm} that specifies an action in each state,
πi ∈ Ai , that the decision maker will always choose; which also
lead to a cost-to-go value for each state

The MDP is to find a stationary policy to minimize/maximize
the expected discounted sum over the infinite horizon with a
discount factor 0 ≤ γ < 1.

If the states are partitioned into two sets, one is to minimize and
the other is to maximize the discounted sum, then the process
becomes a two-person turn-based zero-sum stochastic game.

Typically, discount factor γ = 1
1+ρ

where ρ is the interest rate,
where we assume it is uniform among all actions.
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MDP Stationary Policy and Cost-to-Go Value

A stationary policy for the decision maker is a function
π = {π1, π2, · · · , πm} that specifies an action in each state,
πi ∈ Ai , that the decision maker will always choose; which also
lead to a cost-to-go value for each state

The MDP is to find a stationary policy to minimize/maximize
the expected discounted sum over the infinite horizon with a
discount factor 0 ≤ γ < 1.

If the states are partitioned into two sets, one is to minimize and
the other is to maximize the discounted sum, then the process
becomes a two-person turn-based zero-sum stochastic game.

Typically, discount factor γ = 1
1+ρ

where ρ is the interest rate,
where we assume it is uniform among all actions.
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MDP Stationary Policy and Cost-to-Go Value

A stationary policy for the decision maker is a function
π = {π1, π2, · · · , πm} that specifies an action in each state,
πi ∈ Ai , that the decision maker will always choose; which also
lead to a cost-to-go value for each state

The MDP is to find a stationary policy to minimize/maximize
the expected discounted sum over the infinite horizon with a
discount factor 0 ≤ γ < 1.

If the states are partitioned into two sets, one is to minimize and
the other is to maximize the discounted sum, then the process
becomes a two-person turn-based zero-sum stochastic game.

Typically, discount factor γ = 1
1+ρ

where ρ is the interest rate,
where we assume it is uniform among all actions.
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The Cost-to-Go Values of the States

2 31 4

1’ 3’ 4’2’

0

+1

0.5 0.5

0.5 0.50.5

1111

1

01/27/8 3/4

0.5

Cost-to-go values on each state when actions in red are taken (the
current policy is not optimal).
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The Optimal Cost-to-Go Value Vector

Let y ∈ Rm represent the cost-to-go values of the m states, one entry
for each state i , of a given policy.

The MDP problem entails choosing the optimal value vector y∗ such
that it is the fixed point:

y ∗
i = min{cj + γpT

j y
∗, ∀j ∈ Ai}, ∀i ,

with optimal policy

π∗
i = argmin{cj + γpT

j y
∗, ∀j ∈ Ai}, ∀i .

In the Game setting, the fixed point becomes:

y ∗
i = min{cj + γpT

j y
∗, ∀j ∈ Ai}, ∀i ∈ I−,

and
y ∗
i = max{cj + γpT

j y
∗, ∀j ∈ Ai}, ∀i ∈ I+.
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The Optimal Cost-to-Go Value Vector

Let y ∈ Rm represent the cost-to-go values of the m states, one entry
for each state i , of a given policy.

The MDP problem entails choosing the optimal value vector y∗ such
that it is the fixed point:

y ∗
i = min{cj + γpT

j y
∗, ∀j ∈ Ai}, ∀i ,

with optimal policy

π∗
i = argmin{cj + γpT

j y
∗, ∀j ∈ Ai}, ∀i .

In the Game setting, the fixed point becomes:

y ∗
i = min{cj + γpT

j y
∗, ∀j ∈ Ai}, ∀i ∈ I−,

and
y ∗
i = max{cj + γpT

j y
∗, ∀j ∈ Ai}, ∀i ∈ I+.
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The Optimal Cost-to-Go Value Vector

Let y ∈ Rm represent the cost-to-go values of the m states, one entry
for each state i , of a given policy.

The MDP problem entails choosing the optimal value vector y∗ such
that it is the fixed point:

y ∗
i = min{cj + γpT

j y
∗, ∀j ∈ Ai}, ∀i ,

with optimal policy

π∗
i = argmin{cj + γpT

j y
∗, ∀j ∈ Ai}, ∀i .

In the Game setting, the fixed point becomes:

y ∗
i = min{cj + γpT

j y
∗, ∀j ∈ Ai}, ∀i ∈ I−,

and
y ∗
i = max{cj + γpT

j y
∗, ∀j ∈ Ai}, ∀i ∈ I+.
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The Linear Programming Form of the MDP

The fixed-point vector can be formulated as

maximizey
∑m

i=1 yi

subject to y1 ≤ cj + γpT
j y, ∀j ∈ A1

. . . . . . . . .
yi ≤ cj + γpT

j y, ∀j ∈ Ai

. . . . . . . . .
ym ≤ cj + γpT

j y, ∀j ∈ Am,

where Ai represents all actions available in state i , and pj is the state
transition probabilities to all states when action j is taken.

This is the Standard Dual LP form.
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yi ≤ cj + γpT

j y, ∀j ∈ Ai
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transition probabilities to all states when action j is taken.
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The Primal LP Form of the MDP

minimizex
∑n

j=1 xj

subject to
∑n

j=1(eij − γpij)xj = 1, ∀i ,
xj ≥ 0, ∀j .

where eij = 1 when j ∈ Ai and 0 otherwise.

Primal variable xj represents the expected jth action flow or
frequency, that is, the expected present value of the number of times
action j is chosen. The cost-to-go values are the “shadow Prices” of
the LP problem.

When discount factor γ becomes γj , then the MDP has a
non-uniform discount factors.
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Primal variable xj represents the expected jth action flow or
frequency, that is, the expected present value of the number of times
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∑n
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∑n

j=1(eij − γpij)xj = 1, ∀i ,
xj ≥ 0, ∀j .

where eij = 1 when j ∈ Ai and 0 otherwise.

Primal variable xj represents the expected jth action flow or
frequency, that is, the expected present value of the number of times
action j is chosen. The cost-to-go values are the “shadow Prices” of
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Algorithmic Events of the MDP Methods

Shapley (1953) and Bellman (1957) developed a method called
the Value-Iteration (VI) method to approximate the optimal
state cost-to-go values and an approximate optimal policy.

Another best known method is due to Howard (1960) and is
known as the Policy-Iteration (PI) method, which generate an
optimal policy in finite number of iterations in a distributed and
decentralized way, where two key procedures are the policy
evaluation and the policy improvement.

de Ghellinck (1960), D’Epenoux (1960) and Manne (1960)
showed that the MDP has an LP representation, so that it can
be solved by the simplex method of Dantzig (1947) in finite
number of steps, and the Ellipsoid method of Kachiyan (1979) in
polynomial time.
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Algorithmic Events of the MDP Methods

Shapley (1953) and Bellman (1957) developed a method called
the Value-Iteration (VI) method to approximate the optimal
state cost-to-go values and an approximate optimal policy.

Another best known method is due to Howard (1960) and is
known as the Policy-Iteration (PI) method, which generate an
optimal policy in finite number of iterations in a distributed and
decentralized way, where two key procedures are the policy
evaluation and the policy improvement.

de Ghellinck (1960), D’Epenoux (1960) and Manne (1960)
showed that the MDP has an LP representation, so that it can
be solved by the simplex method of Dantzig (1947) in finite
number of steps, and the Ellipsoid method of Kachiyan (1979) in
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Algorithmic Events of the MDP Methods

Shapley (1953) and Bellman (1957) developed a method called
the Value-Iteration (VI) method to approximate the optimal
state cost-to-go values and an approximate optimal policy.

Another best known method is due to Howard (1960) and is
known as the Policy-Iteration (PI) method, which generate an
optimal policy in finite number of iterations in a distributed and
decentralized way, where two key procedures are the policy
evaluation and the policy improvement.

de Ghellinck (1960), D’Epenoux (1960) and Manne (1960)
showed that the MDP has an LP representation, so that it can
be solved by the simplex method of Dantzig (1947) in finite
number of steps, and the Ellipsoid method of Kachiyan (1979) in
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The Policy Improvement

2 31 4

1’ 3’ 4’2’

0

+1

0.5 0.5

0.5 0.50.5

1111

1

01/27/8 3/4

0.5

Cost-to-go values on each state when actions in red are taken (the
current policy is not optimal), and each state (except State 4) would
switch to blue actions.
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The Policy Evaluation

2 31 4

1’ 3’ 4’2’

0

+1

0.5 0.5

0.5 0.50.5

1

0

0.5

0

1/21/4

1/21/4

3/8

3/8

New cost-to-go values on each state when the new set of actions are
taken, which are colored in red.
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The Simplex or Simple Policy Iteration: index rule

2 31 4

1’ 3’ 4’2’

0

+1

0.5 0.5

0.5 0.50.5

1

01/27/8 3/4

0.5

1 11

7/8

New cost-to-go values on each state when actions in red are taken
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The Simplex or Simple Policy Iteration: greedy rule

2 31 4

1’ 3’ 4’2’

0

+1

0.5 0.5

0.5 0.50.5

1

01/21/8 1/4

0.5

000

0

New cost-to-go values on each state when actions in red are taken
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More Algorithmic Events of the MDP Methods

For the discounted MDP:

Meister and Holzbaur in 1986 showed that the value iteration
method generates an optimal policy in polynomial time when the
discount γ is fixed, and Bertsekas (1987) and Tseng (1990)
showed similar results.

Puterman in 1994 showed that the policy-iteration method
converges no more slowly than the value iteration method, so
that it is also a polynomial-time algorithm when γ is fixed.

Y (2005) showed that the discounted MDP with fixed discount
γ can be solved in strongly polynomial time by a combinatorial
interior-point method (CIPM).

However, the PI dominates the CIPM In practice.
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More Algorithmic Events of the MDP Methods

For the discounted MDP:

Meister and Holzbaur in 1986 showed that the value iteration
method generates an optimal policy in polynomial time when the
discount γ is fixed, and Bertsekas (1987) and Tseng (1990)
showed similar results.

Puterman in 1994 showed that the policy-iteration method
converges no more slowly than the value iteration method, so
that it is also a polynomial-time algorithm when γ is fixed.

Y (2005) showed that the discounted MDP with fixed discount
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interior-point method (CIPM).

However, the PI dominates the CIPM In practice.
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More Algorithmic Events of the MDP Methods

For the discounted MDP:

Meister and Holzbaur in 1986 showed that the value iteration
method generates an optimal policy in polynomial time when the
discount γ is fixed, and Bertsekas (1987) and Tseng (1990)
showed similar results.

Puterman in 1994 showed that the policy-iteration method
converges no more slowly than the value iteration method, so
that it is also a polynomial-time algorithm when γ is fixed.

Y (2005) showed that the discounted MDP with fixed discount
γ can be solved in strongly polynomial time by a combinatorial
interior-point method (CIPM).

However, the PI dominates the CIPM In practice.
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Polynomial vs Strongly Polynomial

Polynomial-time algorithms: the computation time of an
algorithm, the total number of needed basic arithmetic
operations, of solving the problem with rational data is bounded
by a polynomial in m, n, and the total bits, L, of the encoded
problem data.

Strongly polynomial-time algorithms: the computation time of
an algorithm, the total number of needed basic arithmetic
operations, of solving the problem is bounded by a polynomial in
m and n.

The proof of polynomial-time: when the gap between the
objective value of the current policy (or BFS) and the optimal
one is small than 2−L, the current policy must be optimal.

A proof of a strongly polynomial-time algorithm cannot rely on
this gap argument – it has to be combinatorial.
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operations, of solving the problem with rational data is bounded
by a polynomial in m, n, and the total bits, L, of the encoded
problem data.

Strongly polynomial-time algorithms: the computation time of
an algorithm, the total number of needed basic arithmetic
operations, of solving the problem is bounded by a polynomial in
m and n.

The proof of polynomial-time: when the gap between the
objective value of the current policy (or BFS) and the optimal
one is small than 2−L, the current policy must be optimal.
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Negative Results for the Simplex and

Policy-Iteration Methods

A negative result of Melekopoglou and Condon (1990) showed
that a simple policy-iteration method, where in each iteration
only the action for the state with the smallest index is updated,
needs an exponential number of iterations to compute an optimal
policy for a specific MDP problem regardless of discount rates.

Recently, Fearnley (2010) showed that the policy-iteration
method needs an exponential number of iterations for a
undiscounted finite-horizon MDP.

Friedmann, Hansen and Zwick (2011) gave an MDP example
that the random pivot rule needs exponentially many steps.

Friedman (2011) developed an MDP example that the Zadeh
pivot rule needs exponentially many steps.

Ye, Yinyu (Stanford) Progresses on MDGP
Jan. 4 2018, IAS, CityU of HK 27 /

46



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Negative Results for the Simplex and

Policy-Iteration Methods

A negative result of Melekopoglou and Condon (1990) showed
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only the action for the state with the smallest index is updated,
needs an exponential number of iterations to compute an optimal
policy for a specific MDP problem regardless of discount rates.

Recently, Fearnley (2010) showed that the policy-iteration
method needs an exponential number of iterations for a
undiscounted finite-horizon MDP.
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Complexity of the Policy Iteration and Simplex

Methods

In practice, the policy-iteration method, including the simple
policy-iteration or Simplex method, has been remarkably
successful and shown to be most effective and widely used.

In the past 50 years, many efforts have been made to resolve the
worst-case complexity issue of the policy-iteration method or the
Simplex method, and to answer the question: are they strongly
polynomial-time algorithms?
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Complexity Theorem for MDP with Discount

The classic simplex method (Dantzig pivoting rule)
and the policy iteration method, starting from any
policy, terminate in

m(n −m)

1− γ
· log

(
m2

1− γ

)
iterations (Y MOR10).

The policy-iteration method actually terminates

n

1− γ
· log

(
m

1− γ

)
,

iterations with at most O(m2n) operations per
iteration (Hansen/Miltersen/Zwick ACM12).
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High Level Ideas of the Proof

Create a combinatorial event: a (non-optimal) action will never
enter the (intermediate) policy again.

The event will happen in at most a certain polynomial number
of iterations.

More precisely, after m
1−γ

· log
(

m2

1−γ

)
iterations, a new

non-optimal action would be implicitly eliminated from
appearance in any future policies generated by the simplex or
policy-iteration method.

The event then repeats for another non-optimal state-action,
and there are no more than (n −m) non-optimal actions to
eliminate.

Ye, Yinyu (Stanford) Progresses on MDGP
Jan. 4 2018, IAS, CityU of HK 31 /

46



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

High Level Ideas of the Proof

Create a combinatorial event: a (non-optimal) action will never
enter the (intermediate) policy again.

The event will happen in at most a certain polynomial number
of iterations.

More precisely, after m
1−γ

· log
(

m2

1−γ

)
iterations, a new

non-optimal action would be implicitly eliminated from
appearance in any future policies generated by the simplex or
policy-iteration method.

The event then repeats for another non-optimal state-action,
and there are no more than (n −m) non-optimal actions to
eliminate.

Ye, Yinyu (Stanford) Progresses on MDGP
Jan. 4 2018, IAS, CityU of HK 31 /

46



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

High Level Ideas of the Proof

Create a combinatorial event: a (non-optimal) action will never
enter the (intermediate) policy again.

The event will happen in at most a certain polynomial number
of iterations.

More precisely, after m
1−γ

· log
(

m2

1−γ

)
iterations, a new

non-optimal action would be implicitly eliminated from
appearance in any future policies generated by the simplex or
policy-iteration method.

The event then repeats for another non-optimal state-action,
and there are no more than (n −m) non-optimal actions to
eliminate.

Ye, Yinyu (Stanford) Progresses on MDGP
Jan. 4 2018, IAS, CityU of HK 31 /

46



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

High Level Ideas of the Proof

Create a combinatorial event: a (non-optimal) action will never
enter the (intermediate) policy again.

The event will happen in at most a certain polynomial number
of iterations.

More precisely, after m
1−γ

· log
(

m2

1−γ

)
iterations, a new

non-optimal action would be implicitly eliminated from
appearance in any future policies generated by the simplex or
policy-iteration method.

The event then repeats for another non-optimal state-action,
and there are no more than (n −m) non-optimal actions to
eliminate.

Ye, Yinyu (Stanford) Progresses on MDGP
Jan. 4 2018, IAS, CityU of HK 31 /

46



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The Turn-Based Two-Person Zero-Sum Game

The states are partitioned into two sets where one set is to
maximize and the other is to minimize.

It does not admit a convex programming formulation, and it is
unknown if it can be solved in polynomial time in general.

Strategy-Iteration Method: One player continues policy
iterations from the policy where the other player chooses the
best-response action in every one of his or her state set.

Hansen/Miltersen/Zwick ACM12 proved that the strategy
iteration method also terminates

n

1− γ
· log

(
m

1− γ

)
iterations – the first strongly polynomial time algorithm when
the discount factor is fixed.
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Strategy-Iteration Method

2 31 4

1’ 3’ 4’2’

0

+1

0.5 0.5

0.5 0.50.5

1111

1

01/27/8 3/4

0.5

Recall that states {0, 1, 2} minimize, while States {3, 4} maximize.
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Robust MDP with Discount

In real MDP applications, the state transition distribution may
be uncertain or unknown in advance.

The robust MDP problem would assume that when the decision
maker plays an action, an adversary state would alway choose a
worst distribution to maximize the expected cost-to-go value of
the decision maker.

This can be exactly formulated as the a Turn-Based Two-Person
Zero-Sum Game, so that the strategy iteration method also
terminates

n

1− γ
· log

(
n +m

1− γ

)
iterations.
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Deterministic MDP with Discount

Every probability distribution contains exactly one 1 and 0
everywhere else, where the primal LP problem resembles the
generalized cycle flow problem.

Theorem: The simplex method for deterministic MDP with a
uniform discount factor, regardless the factor value, terminates
in O(m3n2 log2m) iterations (Post/Y MOR2016).

Theorem: The simplex method for deterministic MDP with
non-uniform discount factors, regardless factor values,
terminates in O(m5n3 log2 m) iterations (Post/Y MOR2016).

Hansen/Miltersen/Zwick 15 were able to reduce a factor m from
the bound.
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High Level Ideas of the Proof I

Each chosen action can be either a path-edge or cycle-edge of a
policy, and the expected edge flow value is small when it is a
path-edge and large when it is a cycle edge.
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High Level Ideas of the Proof II

There two types of pivots: the newly chosen action is either on a
path or on a cycle of the new policy.

In every m2n log(m) consecutive pivot steps, there must be at
least one step that is a cycle pivot.

For the uniform discount case, after every m log(m) cycle pivot
steps, there is a non-optimal action that would never be chosen
again, and there are at most n actions for such “implicit
elimination”.

For the non-uniform discount case, there are n different edge
flow value layers...
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The Value-Iteration Method (VI)

Let y0 ∈ Rm represent the initial cost-to-go values of the m states.

The VI for MDP:

y k+1
i = min{cj + γpT

j y
k , ∀j ∈ Ai}, ∀i .

The VI for MGP

y k+1
i = min{cj + γpT

j y
k , ∀j ∈ Ai}, ∀i ∈ I−,

and
y k+1
i = max{cj + γpT

j y
k , ∀j ∈ Ai}, ∀i ∈ I+.

The values inside the parenthesis are the so-called Q-values.
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Value-Iteration Method of MDP

2 31 4

1’ 3’ 4’2’

0

+1

0.5 0.5

0.5 0.50.5

1111

1

01/27/8 3/4

0.5

Assume discount γ = 0.9 and start the value vector (1, 1, 1, 1, 1, 0).
The next would be (0.788, 0.675, 0.45, 0, 1, 0) for MDP, and
(0.788, 0.675, 0.45, 0.9, 1, 0) for MGP.
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Sample Value-Iteration

Rather than compute each quantity pT
j y

k exactly, we
approximate it by sampling, that is, we construct a sparser
sample distribution p̂j for the evaluation. (Thus, the method
does not need to know pj exactly).

Even we know pj exactly, it may be too dense so that the
computation of pT

j y
k takes O(m) up to operations.

We analyze this performance using Hoeffdings inequality and
classic results on contraction properties of value iteration.
Moreover, we improve the final result using Variance Reduction
and Monotone Iteration.

Variance Reduction enables us to update the Q-values so that
the needed number of samples is decreased from iteration to
iteration.
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computation of pT
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We analyze this performance using Hoeffdings inequality and
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Sample Value-Iteration Results

Two results are developed (Sidford, Wang, Wu and Y [2017]):

Knowing pj :

O

(
(mn +

n

(1− γ)3
) log(

1

ϵ
) log(

1

δ
)

)
to compute an ϵ-optimal policy with probability at least 1− δ.

Sampling:

O

(
n

(1− γ)4ϵ2
log(

1

δ
)

)
to compute an ϵ-optimal policy with probability at least 1− δ.

Sample lower bound: O
(

n
(1−γ)3ϵ2

)
.
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More Results and Extensions

The Simplex Method result was extended to general
non-degenerate LP by Kitahara and Mizuno 2012,

Renewed exciting research work on the simplex method, e.g.,
Feinberg/Huang 2013, Lee/Epelman/Romeijn/Smith 2013,
Scherrer 2014, Fearnley/Savani 2014,
Adler/Papadimitriou/Rubinstein 2014, etc.

Lin, Sidford, Wang, Wu and Y 2018 on approximate PI method
to achieve the optimal sample complexity.

Lin, Sidford, Wang, Wu and Y 2018 on approximate PI method
for solving Ergodic MDP where the dependence on γ is removed.

All results are extended to the Markov Game Process.
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Remarks and Open Problems

The performance of the simplex method is very sensitive to the
pivoting rule.

Multi-updates or pivots work better than a single-update does;
policy iteration vs. simplex.

Tatonnement and decentralized iterative process such as PI
works under the Markov property.

Greedy or Steepest descent such as VI works when there is a
discount!

Dynamic sampling over actions in each iteration to deal with a
large number of actions in each state?

Dimension reduction to reduce the number of states?
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Remarks and Open Problems

The performance of the simplex method is very sensitive to the
pivoting rule.

Multi-updates or pivots work better than a single-update does;
policy iteration vs. simplex.

Tatonnement and decentralized iterative process such as PI
works under the Markov property.

Greedy or Steepest descent such as VI works when there is a
discount!
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Remarks and Open Problems continued

A Online MDP algorithms where available actions together with
cost/reward come sequentially (e.g., Agrawal, Wang, and Y
2010)?

Is the policy iteration method that is strongly polynomial for the
deterministic MDP?

Is there a simplex-type method that is (strongly) polynomial for
the deterministic MGP (independent of γ)?

Is there an MDP algorithm whose running time is PTAS for the
general MGP?

Is there a strongly polynomial-time algorithm for MDP regardless
the discount factor?

Is there a strongly polynomial-time algorithm for LP?
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Is there an MDP algorithm whose running time is PTAS for the
general MGP?

Is there a strongly polynomial-time algorithm for MDP regardless
the discount factor?

Is there a strongly polynomial-time algorithm for LP?
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