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Sum of powers

Question

For an integer k , is there a formula for

Sk(n) := 1k + 2k + 3k + · · ·+ nk?

S0(n) = 1 + 1 + · · ·+ 1 = n, Definition

S1(n) = 1 + 2 + 3 + · · ·+ n = n(n+1)
2 , Pythagoras(550BC )

S2(n) = 12 + 22 + · · ·+ n2 = n(n+1)(2n+1)
6 , Archimed(250BC )

S3(n) = 13 + 23 + · · ·+ n3 = n2(n+1)2

4 , Aryabhata(476AD)

Shou-Wu Zhang L-functions: its past and future



Sum of powers

Question

For an integer k , is there a formula for

Sk(n) := 1k + 2k + 3k + · · ·+ nk?

S0(n) = 1 + 1 + · · ·+ 1 = n, Definition

S1(n) = 1 + 2 + 3 + · · ·+ n = n(n+1)
2 , Pythagoras(550BC )

S2(n) = 12 + 22 + · · ·+ n2 = n(n+1)(2n+1)
6 , Archimed(250BC )

S3(n) = 13 + 23 + · · ·+ n3 = n2(n+1)2

4 , Aryabhata(476AD)

Shou-Wu Zhang L-functions: its past and future



Sum of powers

Question

For an integer k , is there a formula for

Sk(n) := 1k + 2k + 3k + · · ·+ nk?

S0(n) = 1 + 1 + · · ·+ 1 = n, Definition

S1(n) = 1 + 2 + 3 + · · ·+ n = n(n+1)
2 , Pythagoras(550BC )

S2(n) = 12 + 22 + · · ·+ n2 = n(n+1)(2n+1)
6 , Archimed(250BC )

S3(n) = 13 + 23 + · · ·+ n3 = n2(n+1)2

4 , Aryabhata(476AD)

Shou-Wu Zhang L-functions: its past and future



Sum of powers

Question

For an integer k , is there a formula for

Sk(n) := 1k + 2k + 3k + · · ·+ nk?

S0(n) = 1 + 1 + · · ·+ 1 = n, Definition

S1(n) = 1 + 2 + 3 + · · ·+ n = n(n+1)
2 , Pythagoras(550BC )

S2(n) = 12 + 22 + · · ·+ n2 = n(n+1)(2n+1)
6 , Archimed(250BC )

S3(n) = 13 + 23 + · · ·+ n3 = n2(n+1)2

4 , Aryabhata(476AD)

Shou-Wu Zhang L-functions: its past and future



Sum of powers

Question

For an integer k , is there a formula for

Sk(n) := 1k + 2k + 3k + · · ·+ nk?

S0(n) = 1 + 1 + · · ·+ 1 = n, Definition

S1(n) = 1 + 2 + 3 + · · ·+ n = n(n+1)
2 , Pythagoras(550BC )

S2(n) = 12 + 22 + · · ·+ n2 = n(n+1)(2n+1)
6 , Archimed(250BC )

S3(n) = 13 + 23 + · · ·+ n3 = n2(n+1)2

4 , Aryabhata(476AD)

Shou-Wu Zhang L-functions: its past and future



Sum of powers

Question

For an integer k , is there a formula for

Sk(n) := 1k + 2k + 3k + · · ·+ nk?

S0(n) = 1 + 1 + · · ·+ 1 = n, Definition

S1(n) = 1 + 2 + 3 + · · ·+ n = n(n+1)
2 , Pythagoras(550BC )

S2(n) = 12 + 22 + · · ·+ n2 = n(n+1)(2n+1)
6 , Archimed(250BC )

S3(n) = 13 + 23 + · · ·+ n3 = n2(n+1)2

4 , Aryabhata(476AD)

Shou-Wu Zhang L-functions: its past and future



General formula

General formulae were obtained by Fermat, Pascal, Bernoulli etc:
For each k , there is a general expression

1k + 2k + 3k + · · ·+ nk = ak1n + ak2n2 + · · ·+ akknk+1, aki ∈ Q

Hua Luogeng (1910-1985)
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Art of Conjecturing

Jacobi Bernoulli
(1655–1705)

Bernoulli numbers Bj :
z

ez−1 =
∑∞

j=0 Bj
z j

j! .

Sk(n) = 1
k+1

∑k
j=0(−1)jC k+1

j Bjn
k+1−j = (B+n)k+1−Bk+1

k+1 .
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Yang Hui – Pascal triangle

Yang Hui (1238–1298)

n − (n − 1) = 1
n2 − (n − 1)2 = −1 + 2n
n3−(n−1)3 = 1−3n+3n2

nk − (n − 1)k =
ck1 + ck2n + ck3n2 + · · ·
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Sk(n) = ak1n + ak2n2 + · · ·+ akknk+1

nk − (n − 1)k = ck1 + ck2n + ck3n2 + · · ·+ ckknk−1


a11 0 0 0 · · ·
a21 a22 0 0 · · ·
a31 a32 a33 0 · · ·

...
...

...
...

...

 =


c11 0 0 0 · · ·
c21 c22 0 0 · · ·
c31 c32 c33 0 · · ·

...
...

...
...

...


−1
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proof

Set G (z , n) =
∑∞

k=0 Sk(n) z
k

k! .

Then

G (z , n) =
1− enz

e−z − 1
=
∞∑
j=0

Bj
(−z)j−1

j!

∞∑
i=1

−(nz)i

i !

=
∞∑
k=0

zk

k!

1

k + 1

k∑
j=0

(−1)jC j
k+1Bjn

k+1−j .

Shou-Wu Zhang L-functions: its past and future



proof

Set G (z , n) =
∑∞

k=0 Sk(n) z
k

k! .Then

G (z , n) =
1− enz

e−z − 1
=
∞∑
j=0

Bj
(−z)j−1

j!

∞∑
i=1

−(nz)i

i !

=
∞∑
k=0

zk

k!

1

k + 1

k∑
j=0

(−1)jC j
k+1Bjn

k+1−j .

Shou-Wu Zhang L-functions: its past and future



Sum of negative powers

How about negative powers

S−k(n) = 1 +
1

2k
+ · · ·+ 1

nk
?

Do these values extend to nice (smooth, analytic, etc) function
S(x)? Amazingly, this is solved by Euler (1707–1783) when he was
26 years old.

For any nice function f (x), the
sum S(n) =

∑n
i=1 f (i) extends

to a nice function S(x).
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Euler formula

The relation between f (x) and S(x) is given by difference equation:

f (x) = S(x)− S(x − 1).

Using the Taylor expansion

S(x − 1) = S(x)− S ′(x) +
1

2
S ′′(x) + · · · = e−DS(x), D =

d

dx
,

then

f (x) = (1− e−D)S(x) =
1− e−D

D
DS(x)
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Thus we obtain a differential equation

DS(x) =
D

1− e−D
f (x) =

∞∑
i=0

(−1)iBi
D i

i!
f (x).

S(x) =

∫
f (x)dx +

∞∑
i=1

(−1)iBi
D i−1

i!
f (x).

For f (x) = xk with k ≥ 0 an integer, Euler’s formula recovers
Bernoulli’s formula.
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For each k < 0, one needs to determine a constant in the formula:

S−1(n) = γ + log n +
1

2n
− 1

12n2
+ · · · , (γ = 0.57721...)

S−k(n) = S−k(∞) +
1

(k − 1)nk−1 +
1

2nk
+ · · · , (k > 1)

Question

For each real k > 1, how to evaluate the infinite sum:

ζ(k) := S−k(∞) = 1 +
1

2k
+

1

3k
+ · · ·?
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Basel problem

In 1735, Euler made the first major contribution to this problem:
he solved the case k = 2 which was called Basel problem:

∞∑
n=1

1

n2
=
π2

6
.

He observed the fact sin x = 0 if and only if x = 0,±π,±2π · · ·
which leads to a product formula:

sin x = x
∞∏
k=1

(1− x2

k2π2
).
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On the other hand, there is also an addition formula:

sin x = x − x3

3!
+

x5

5!
+ · · · .

Comparing the coefficients of x3 in these two expressions gives

∞∑
k=1

1

k2π2
=

1

3!
.

The argument also applies to symmetric functions of 1/π2k2 and
thus gives a formula for ζ(2k). More precisely, two expansions of
cot x = (log sin x)′ will give

ζ(2k) =
(−1)k−1B2k(2π)2k

2(2k)!
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Euler product

In 1737, Euler discovered another amazing property of ζ(s) when
he was 30 years old:

ζ(s) =
∏
p

1

1− 1
ps
. (s > 1)

Its immediate application is to take the expansion of log ζ(s) to
give

log ζ(s) = −
∑
p

log(1− 1

ps
) =

∑
p

1

ps
+ O(1).

Take s = 1 to give ∑ 1

p
=∞.

This is a major refinement of the infiniteness of primes proved by
Euclid (300 BC).
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Euler zeta function for positive reals

Euler extended ζ(s) to reals in (0, 1) by the following methods:

ζ(s)− 2 · 2−sζ(s) = 1− 1

2s
+

1

3s
− · · · .

Thus define

ζ(s) =
1

1− 21−s
(1− 1

2s
+

1

3s
− · · · ), (s > 0).

It has an asymptotic behavior near s = 1:

ζ(s) =
1

s − 1
+ O(1).

He further extended it to negative of s when the limit exists:

ζ(s) =
1

1− 21−s
lim

x→1−
(x − x2

2s
+

x3

3s
− · · · ).
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Zeta values at negative integers

In 1739, Euler evaluated the values of ζ at negative integers and
obtained

ζ(−k) = (−1)k
Bk+1

k + 1
, k < 0

Euler proved his formula by the following expression:

ζ(−k) = (1− 2k+1)

(
x

d

dx

)k ∣∣∣
x=1

x

1 + x
.

In comparison with ζ(2k) = (−1)k−1B2k (2π)
2k

2(2k)! , there is a “functional

equation” between ζ(s) and ζ(1− s) for integers.
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Arithmetic progress of primes

In 1837, Dirichlet introduced his L-function to study the arithmetic
progress of primes.

Dirichlet (1805–1859)

For two integers N, a coprime to
each other, there are infinitely
many primes p such that p ≡ a
mod N.
Moreover, ∑

p≡a mod N

1

p
=∞.
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Fourier analysis on finite group

Let G be a finite abelian group with uniform probabilistic measure.
Then there is an orthogonal decomposition

L2(G ) =
∑
χ∈Ĝ

Cχ, Ĝ := Hom(G ,C×).

Thus for any function f on G , there is a Fourier expansion

f =
∑
χ

〈f , χ〉χ, 〈f , χ〉 =
1

#G

∑
g∈G

f (g)χ̄(g).
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Fourier analysis on multiplicative group

Apply to G = (Z/NZ)× and f = δa, we obtain

δa =
∑
χ

〈δa, χ〉χ.

Consequently,∑
p≡a mod N

1

p
=
∑
p

δa(p)

p
=
∑
χ

〈δa, χ〉
∑
p

χ(p)

p
.

When χ = 1,
∑

p
χ(p)
p =∞ by Euler, it suffices to show when

χ 6= 1 ∑
p

χ(p)

p
6=∞
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Dirichlet L-function

For χ a character of (Z/NZ)×, Dirichlet introduce his function

L(χ, s) =
∑
n

χ(n)

ns
=
∏
p

1

1− χ(p)
ps

, s > 1.

Then

log L(χ, 1) =
∑ χ(p)

p
+ O(1).

So is suffices to show that L(χ, 1) is finite and nonzero.
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Fourier analysis on additive group

Now we apply Fourier analysis to M = Z/NZ.

L2(M) =
∑
M̂

Cψ, M̂ := Hom(M,C×).

Extend G ⊂ M, then we have Fourier expansion

χ =
∑
〈χ, ψ〉ψ, 〈χ, ψ〉 =

1

N

∑
m∈M

ψ(m)χ̄(m).

This implies

L(χ, s) =
∑
ψ

〈χ, ψ〉L(ψ, s), L(ψ, s) =
∑
n

ψ(n)

ns
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Dirichlet special value formula

The value L(ψ, 1) is computable:

L(ψ, 1) =
∞∑
n=1

ψ(1)n

n
= − log(1− ψ(1)).

Thus, there is an important special value formula:

L(χ, 1) = − log
∏
ψ

(1− ψ(1))〈χ,ψ〉.

This would imply that L(χ, 1) is nonzero and finite, and completes
the proof of Dirichlet’s theorem.
Example: N = 4, χ : (Z/4Z)× → {±1}, then

L(χ, 1) = 1− 1

3
+

1

5
· · · =

π

4
.

Shou-Wu Zhang L-functions: its past and future



Dirichlet special value formula

The value L(ψ, 1) is computable:

L(ψ, 1) =
∞∑
n=1

ψ(1)n

n
= − log(1− ψ(1)).

Thus, there is an important special value formula:

L(χ, 1) = − log
∏
ψ

(1− ψ(1))〈χ,ψ〉.

This would imply that L(χ, 1) is nonzero and finite, and completes
the proof of Dirichlet’s theorem.
Example: N = 4, χ : (Z/4Z)× → {±1}, then

L(χ, 1) = 1− 1

3
+

1

5
· · · =

π

4
.

Shou-Wu Zhang L-functions: its past and future



Dirichlet special value formula

The value L(ψ, 1) is computable:

L(ψ, 1) =
∞∑
n=1

ψ(1)n

n
= − log(1− ψ(1)).

Thus, there is an important special value formula:

L(χ, 1) = − log
∏
ψ

(1− ψ(1))〈χ,ψ〉.

This would imply that L(χ, 1) is nonzero and finite, and completes
the proof of Dirichlet’s theorem.

Example: N = 4, χ : (Z/4Z)× → {±1}, then

L(χ, 1) = 1− 1

3
+

1

5
· · · =

π

4
.

Shou-Wu Zhang L-functions: its past and future



Dirichlet special value formula

The value L(ψ, 1) is computable:

L(ψ, 1) =
∞∑
n=1

ψ(1)n

n
= − log(1− ψ(1)).

Thus, there is an important special value formula:

L(χ, 1) = − log
∏
ψ

(1− ψ(1))〈χ,ψ〉.

This would imply that L(χ, 1) is nonzero and finite, and completes
the proof of Dirichlet’s theorem.
Example: N = 4, χ : (Z/4Z)× → {±1}, then

L(χ, 1) = 1− 1

3
+

1

5
· · · =

π

4
.

Shou-Wu Zhang L-functions: its past and future



Riemann’s memoire

In 1859, in his memoire ”on the number of primes less than a given
quantity”, consider zeta function with complex variable Re(s) > 1:

Riemann (1826–1866)

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

1

1− 1
ps
.

Riemann discovered several
extremely important properties
using Fourier analysis on R and
R×.
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Continuation and functional equation

Using Γ(s) := 〈e−x , x s−1〉 =
∫∞
0 e−xx s dx

x , one obtains ζ(s) as the
Mellin transform of a theta function:

ξ(s) := π−s/2Γ(s/2)ζ(s) =

∫ ∞
0

f (t)ts/2
dt

t
, f (t) :=

∞∑
n=1

e−πn
2t .

Writing
∫∞
0 =

∫ 1
0 +

∫∞
1 and using Poisson summation formula, we

have

ξ(s) =

∫ ∞
1

f (t)(ts/2 + t(1−s)/2)
dt

t
−
(

1

s
+

1

1− s

)
.

This gives the meromorphic continuation and the functional
equation ξ(s) = ξ(1− s). This somehow explains the relation
between ζ(1− k) and ζ(k) given by Euler.
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Riemann hypothesis

There is another product formula of ζ(s) in terms of its zeros (as
sin x).

Together with the Euler product formula, there is an explicit
relation between the zeros and the distribution of primes.
Then Riemann bravely made a hypothesis that all zeros of ξ(x) lies
on the line Re(s) = 1/2.
Riemann Hypothesis is equivalent to an asymptotic formula for the
number of primes

π(x) := #{p ≤ x} =

∫ x

2

dt

log t
+ Oε(x

1
2
+ε)

which is a conjectural stronger form of the prime number theorem.
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Dirichlet series

A general Dirichlet series takes a form

L(s) =
∞∑
n=1

an
ns

=
∏
p

1

Fp(s)
an ∈ C.

with Fp a polynomial of p−s with leading coefficient 1 and of a
fixed degree.

It should have meromorphic continuation to the complex plane,
and satisfies a functional equation.
How to find a general L-series?
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Dedekind

In 1877, Dedekind generalized Dirichlet’s work to number fields K .

ζK (s) =
∑
a

1

N(a)s
=
∏
p

1

1−Np−s
.

He has managed to prove the meromorphic continuation and a
functional equation.
In particular, ζK (s) has a simple pole at s = 1 with residue given by

2r1(2π)r2hR

w
√

dK
.
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Hecke and Tate on Grossen character

The work of Dedekind was generalized by Hecke (1918) by taking
Grossencharacters: L(s, χ).

Dedekind’s work was reformulated by
Tate (1950) using harmonic analysis on adeles.
There are two different ways to generalize L(s, χ) with χ replaced
by automorphic representations and Galois representations.
The Langlands program says that these two constructions give
essentially the same set of L-functions.
Analytic properties of L(s) can be studied using Fourier analysis on
GLn and Mn×n.
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Relation with arithmetic geometry

The cohomology of algebraic varieties provides many Galois
representations and thus many L-functions.

A web of conjectures assert that the special values of these
L-functions often give crucial information about the Diophantine
properties of the varieties, such as BSD, Tate, etc.
Riemann hypothesis, Langlands program, and special values of
L-series are three major topics of number theory in the 21st
century.
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