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For an integer k, is there a formula for

Si(n) :==1K 42k 1 3k ... 4 pk?
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For an integer k, is there a formula for

Si(n) :==1K 42k 1 3k ... 4 pk?

So(n)=1+1+---4+1=n, Definition
Si(n)=14+2+3+---+n= w, Pythagoras(550BC)
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For an integer k, is there a formula for

Si(n) :==1K 42k 1 3k ... 4 pk?

So(n)=1+1+---4+1=n, Definition
Si(n)=14+243+---+n= "(nzﬂ), Pythagoras(550BC)
So(n) =12+ 22 4 ... 4 p? = 2HDCED - Archimed(250BC)
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For an integer k, is there a formula for

Si(n) :==1K 42k 1 3k ... 4 pk?

So(n)=1+1+---4+1=n, Definition
Si(n)=14+243+---+n= "(nzﬂ), Pythagoras(550BC)
(n)
(n)

= 12422 ... 4 g2 = 2mEDEIHD)  Archimed (250BC)

n)=1342% 4.4 nd =" Anaphata(476AD)
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General formula
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General formula

General formulae were obtained by Fermat, Pascal, Bernoulli etc:
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General formula

General formulae were obtained by Fermat, Pascal, Bernoulli etc:
For each k, there is a general expression

1542k 435+ 0k = agin+agen® + -+ an aki €Q
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General formula

General formulae were obtained by Fermat, Pascal, Bernoulli etc:
For each k, there is a general expression

kb 3k ok = agndaen® + -+ an* T, a € Q

—— 3
e .
Hua Luogeng (1910-1985)
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General formula

General formulae were obtained by Fermat, Pascal, Bernoulli etc:
For each k, there is a general expression

1542k 435+ 0k = agin+agen® + -+ an aki €Q
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Hua Luogeng (1910-1985) Py 8
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Art of Conjecturing
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Art of Conjecturing

Jacobi Bernoulli
(1655-1705)
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Art of Conjecturing

Bernoulli numbers B;:
V4
ez—1 Z BJJ'

Jacobi Bernoulli
(1655-1705)
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rt of Conjecturing

JACOBI BERNOULLI,

Bernoulli numbers B;:

z _ o p.Z
-1 Zj:o B iR

Jacobi Bernoulli

(1655-1705)

k . o B k+1_Bk+1
Sk(n) = 725 b o (-1Y ¢kt = (Bl =B
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Yang Hui — Pascal triangle
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Yang Hui — Pascal triangle

Yang Hui (1238-1298)
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Yang Hui — Pascal triangle

n—(n—-1)=1

Yang Hui (1238-1298)
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Yang Hui — Pascal triangle

n—(n—-1)=1
n?>—(n—1)2=-1+2n

Yang Hui (1238-1298)

Shou-Wu Zhang L-functions: its past and future



Yang Hui — Pascal triangle

n—(n—-1)=1
n?>—(n—1)2=-1+2n
n3—(n—1)3 = 1-3n+3n?

Yang Hui (1238-1298)
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Yang Hui — Pascal triangle

n—(n—-1)=1
n?>—(n—1)2=-1+2n
n3—(n—1)3 = 1-3n+3n?
nk —(n—1)k =

Ck1 + Ckan + Ch3n® + - - -

Yang Hui (1238-1298)
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Yang Hui — Pascal triangle

n—(n—-1)=1
n?>—(n—1)2=-1+2n
n3—(n—1)3 = 1-3n+3n?
nk —(n—1)k =

Ck1 + Ckan + Ch3n® + - - -

Yang Hui (1238-1298)
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Sk(n) = akyn + agan® + - - + aggen*t?
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Sk(n) = akyn + agan® + - - + aggen*t?

k k 2 k—1
n“—(n—1)" = ck1 + ckan + ck3n” + -+ - + ckn
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Sk(n) = akyn + agan® + - - + aggen*t?

k k 2 k—1
n“—(n—1)" = ck1 + ckan + ck3n” + -+ - + ckn

—1
all 0 0
a1 axn O

d31 432 as3

C11 0 0 0
o1 ¢ 0 0

o O O

|1 32 a3 0
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Set G(z,n) = > %2 Sk(n )

w‘N
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1—-e? K (2 P& (n2)
Glam=rm—3=2 B2~
j=0 i
21§ j k+1
_\N"Z J
_kz 1 Z:( YC . ,Bjn
=0 j=0
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Sum of negative powers

How about negative powers

1 1
Solm) =T+ oot 2
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Sum of negative powers

How about negative powers

1 1
Solm) =T+ oot 2

Do these values extend to nice (smooth, analytic, etc) function

S(x)?
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Sum of negative powers

How about negative powers

1 1
Solm) =T+ oot 2
Do these values extend to nice (smooth, analytic, etc) function
S(x)? Amazingly, this is solved by Euler (1707-1783) when he was
26 years old.
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Sum of negative powers

How about negative powers

1 1
Solm) =T+ oot 2
Do these values extend to nice (smooth, analytic, etc) function
S(x)? Amazingly, this is solved by Euler (1707-1783) when he was
26 years old.

For any nice function f(x), the
sum S(n) = Y7, f(i) extends
to a nice function S(x).
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Euler formula

The relation between f(x) and S(x) is given by difference equation:

f(x) =S(x)—S(x—1).
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Euler formula

The relation between f(x) and S(x) is given by difference equation:
f(x) =S(x)—S(x—1).

Using the Taylor expansion

S(x—1) = S(x) = S'(x) + %S’I(X) fomePs), D=2
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Euler formula

The relation between f(x) and S(x) is given by difference equation:
f(x) =S(x)—S(x—1).

Using the Taylor expansion

S(x—1) = S(x)— S'(x) + %S”(X) 4o —eDS(x), D= %,
then
-D 1-— e_D
) = (1- )50 = 2= DS(x)
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Thus we obtain a differential equation

DS(x) = %f(x) = Z(—1)"B,-gf(x).

- h
i=0 ’
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Thus we obtain a differential equation

DS(x) = %f(x) => (1) Bi—f(x).

S(x) = / x)dx + Z DI f(x).
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Thus we obtain a differential equation

DS(x) = %f(x) = Z(—1)"B,-LZ'f(x).

S(x) = / x)dx + Z DI f(x).

For f(x) = x* with k > 0 an integer, Euler's formula recovers
Bernoulli’s formula.
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For each k < 0, one needs to determine a constant in the formula:
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For each k < 0, one needs to determine a constant in the formula:

1 1
S_1(n) =~ +logn+ —

— = 0.57721...
o pm T (y=057721)
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For each k < 0, one needs to determine a constant in the formula:

1 1
5,1(n)—7+|ogn+%—m+--- , (y =0.57721...)
S k(n) =S_( )+71 +71 + (k>1)

—kA) = 9-k50 (k —1)nk=1 = 2nk ’
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For each k < 0, one needs to determine a constant in the formula:

1 1
5,1(n)—7+|ogn+%—m+--- , (y =0.57721...)
S k(n) =S_( )+71 +71 + (k>1)

—kA) = 9-k50 (k —1)nk=1 = 2nk ’

For each real k > 1, how to evaluate the infinite sum:
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For each k < 0, one needs to determine a constant in the formula:

1 1
5,1(n)—7+|ogn+%—m+--- , (y =0.57721...)
S k(n) =S_( )+71 +71 + (k>1)

—kA) = 9-k50 (k —1)nk=1 = 2nk ’

For each real k > 1, how to evaluate the infinite sum:

¢(k) I=S,k(oo):1+2lk+ L 4.7

3k
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Basel problem

In 1735, Euler made the first major contribution to this problem:
he solved the case k = 2 which was called Basel problem:

> p =%

n=1
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Basel problem

In 1735, Euler made the first major contribution to this problem:
he solved the case k = 2 which was called Basel problem:

72 = —.
“—~n 6

He observed the fact sinx = 0 if and only if x =0, +7,+27---
which leads to a product formula:
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Basel problem

In 1735, Euler made the first major contribution to this problem:
he solved the case k = 2 which was called Basel problem:

Pl
“—~n 6

He observed the fact sinx = 0 if and only if x =0, +7,+27---
which leads to a product formula:

smx—xH k2 2
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On the other hand, there is also an addition formula:

x> x°

smx—x—y—k——i—
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On the other hand, there is also an addition formula:

x> x°

smx—x—y—kf—i-

Comparing the coefficients of x3 in these two expressions gives

o0
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On the other hand, there is also an addition formula:

x> x°

smx—x—y—kf—i-

Comparing the coefficients of x3 in these two expressions gives

o0

k=1

The argument also applies to symmetric functions of 1/72k? and
thus gives a formula for {(2k). More precisely, two expansions of

cot x = (logsin x)" will give

(_1)k71 ng(27T)2k

6(2k) = 2(2k)!
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Euler product

In 1737, Euler discovered another amazing property of {(s) when
he was 30 years old:
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Euler product

In 1737, Euler discovered another amazing property of {(s) when
he was 30 years old:

() =I[— (>1)
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Euler product

In 1737, Euler discovered another amazing property of {(s) when
he was 30 years old:

1
@-Il=g (>

Its immediate application is to take the expansion of log ((s) to

give
log {(s Zlog _7)_274_0()
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Euler product

In 1737, Euler discovered another amazing property of {(s) when
he was 30 years old:

1
@-Il=g (>

Its immediate application is to take the expansion of log ((s) to

give
log {(s Zlog _7)_274_0()

Take s =1 to give
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Euler product

In 1737, Euler discovered another amazing property of {(s) when
he was 30 years old:

1

¢(s) = Iis (s> 1)

Its immediate application is to take the expansion of log ((s) to

give
log ¢(s Zlogl——)—zf+0()

Take s =1 to give

Yl

p

This is a major refinement of the infiniteness of primes proved by
Euclid (300 BC).
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Euler zeta function for positive reals

Euler extended ((s) to reals in (0, 1) by the following methods:

1 1

0(5) =2 27%() =1— g+ 55—+

Shou-Wu Zhang L-functions: its past and future



Euler zeta function for positive reals

Euler extended ((s) to reals in (0, 1) by the following methods:

1 1
()= 2-275¢(s) =1 o s =+
Thus define
1 1 1
¢(s) = 1_21_5( 5 T35~ )s (s>0)
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Euler zeta function for positive reals

Euler extended ((s) to reals in (0, 1) by the following methods:

1 1

0(5) =2 27%() =1— g+ 55—+

Thus define

It has an asymptotic behavior near s = 1:

1

C(S)_j‘FO()
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Euler zeta function for positive reals

Euler extended ((s) to reals in (0, 1) by the following methods:

_ 1 1
() =2-27%¢(s) = 1= s+ 35—+
Thus define
1 1 1
¢(s) 1ot - ( 5 T35~ )s (s>0)
It has an asymptotic behavior near s = 1:
1

¢(s) = P O(1).
He further extended it to negative of s when the limit exists:

1 2 3

(s) = ——— lim (x—i+i—--.).

1-— 21 S x—1— 3
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Zeta values at negative integers

In 1739, Euler evaluated the values of ( at negative integers and
obtained

_ 1k Bk
(K = (D k<o
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Zeta values at negative integers

In 1739, Euler evaluated the values of ( at negative integers and
obtained

_ 1k Bk
(K = (D k<o

Euler proved his formula by the following expression:

c@«r=a—2“w(ai>k

X
X:11+X‘
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Zeta values at negative integers

In 1739, Euler evaluated the values of ( at negative integers and
obtained

_ 1k Bk
(K = (D k<o

Euler proved his formula by the following expression:

X
X:11+X‘

c@«r=a—2“w(ai>k

In comparison with ((2k) = %, there is a “functional

equation” between ((s) and (1 — s) for integers.
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Arithmetic progress of primes

In 1837, Dirichlet introduced his L-function to study the arithmetic
progress of primes.

&7 ._
Dirichlet (1805-1859)

Shou-Wu Zhang L-functions: its past and future



Arithmetic progress of primes

In 1837, Dirichlet introduced his L-function to study the arithmetic
progress of primes.

For two integers N, a coprime to
each other, there are infinitely
many primes p such that p = a
mod N.
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Arithmetic progress of primes

In 1837, Dirichlet introduced his L-function to study the arithmetic
progress of primes.

For two integers N, a coprime to
each other, there are infinitely
many primes p such that p = a
mod N.

Moreover,
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Fourier analysis on finite group

Let G be a finite abelian group with uniform probabilistic measure.
Then there is an orthogonal decomposition

[%(G) = Z Cx, G := Hom(G,C*).

xeG
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Fourier analysis on finite group

Let G be a finite abelian group with uniform probabilistic measure.
Then there is an orthogonal decomposition

[%(G) = Z Cx, G := Hom(G,C*).

xeG

Thus for any function f on G, there is a Fourier expansion

F=> (f.0x  (F,X) #sz g)x(g

X geG
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Fourier analysis on multiplicative group

Apply to G = (Z/NZ)* and f = §,, we obtain

0a =Y (day X)X

X
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Fourier analysis on multiplicative group

Apply to G = (Z/NZ)* and f = §,, we obtain

0a =Y (day X)X

Consequently,
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Fourier analysis on multiplicative group

Apply to G = (Z/NZ)* and f = §,, we obtain

0a =Y (32, X)X
Consequently,

mod N

:Z(Saip) :Z<587X>ZXEDP)

X

T =

p=a

When x =1, > X(p) — o by Euler, it suffices to show when

X#1 P )
X(pP)
2, P
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Dirichlet L-function

For x a character of (Z/NZ)*, Dirichlet introduce his function

X)) 1
LoGs) =) =3 _Hl—x(">’ s> 1.
P ps

n
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Dirichlet L-function

For x a character of (Z/NZ)*, Dirichlet introduce his function

o x(n) 1
L(x.s) = pe _Hl_M, s> 1.
n P PS

Then
log L(x, 1) =) _ xi)p) +0(1).
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Dirichlet L-function

For x a character of (Z/NZ)*, Dirichlet introduce his function

) 1
L(x,s) = ?—Hm, s> 1.

n p T ps
Then
log L(x,1 Z — + O(1

So is suffices to show that L(x,1) is f|n|te and nonzero.
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Fourier analysis on additive group

Now we apply Fourier analysis to M = Z/NZ.

[(M)=>"C¢, M :=Hom(M,C*).
7

Extend G C M, then we have Fourier expansion

X=> e, (o) = % > (m)x(m).
meM
This implies

L(x,s) = Z<X>¢>L(¢75), L(,s) = Z ¥(n)

(] n
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Dirichlet special value formula

The value L(%), 1) is computable:

L) =3 P ioga - wy),
n=1
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Dirichlet special value formula

The value L(%), 1) is computable:
oo 1 n
L) =30 P~ g1 - (1)),
n=1

Thus, there is an important special value formula:

L(x,1) = —log [ J(1 — w(1))x*".
¥
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Dirichlet special value formula

The value L(%), 1) is computable:
oo 1 n
L) =30 P~ g1 - (1)),
n=1

Thus, there is an important special value formula:

L(x,1) = —log [ J(1 — w(1))x*".
¥

This would imply that L(x, 1) is nonzero and finite, and completes
the proof of Dirichlet’'s theorem.
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Dirichlet special value formula

The value L(%), 1) is computable:
oo 1 n
L) =30 P~ g1 - (1)),
n=1

Thus, there is an important special value formula:

L(x,1) = —log [ J(1 — w(1))x*".
¥

This would imply that L(x, 1) is nonzero and finite, and completes
the proof of Dirichlet’'s theorem.
Example: N =4, x : (Z/AZ)* — {1}, then

1 1

s
L(x,1)=1—Z4=-.=—.
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Riemann’'s memoire

In 1859, in his memoire "on the number of primes less than a given
quantity”, consider zeta function with complex variable Re(s) > 1:

Riemann (1826-1866)
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Riemann’'s memoire

In 1859, in his memoire "on the number of primes less than a given
quantity”, consider zeta function with complex variable Re(s) > 1:

)= =Tl

n=1 o E

Riemann (1826-1866)
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Riemann’'s memoire

In 1859, in his memoire "on the number of primes less than a given
quantity”, consider zeta function with complex variable Re(s) > 1:

(=Y -+

n=1 E

Riemann discovered several
extremely important properties
using Fourier analysis on R and
RX

Riemann (1826-1866)
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Continuation and functional equation

Using I'(s) := (e ™, x = [;7 e*x*%, one obtains ((s) as the
Mellin transform of a theta function:

oo

£(s) = 7521 (s/2)C( / f(t 5/2‘” f(t) - Ze*ﬂ" 3
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Continuation and functional equation

Using I'(s) := (e ™, x = [;7 e*x*%, one obtains ((s) as the
Mellin transform of a theta function:

oo

£(s) = 21 (s/2)(( / (OO =3

Writing [ = [+ [ and using Poisson summation formula, we

have
> dt 1 1
— s/2 4 J(1-s)/2y9° (=
&(s) /1 f(e)(t<+t ) " (s+1s).
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Continuation and functional equation

Using I'(s) := (e ™, x = [;7 e*x*%, one obtains ((s) as the
Mellin transform of a theta function:

oo

£(s) = 7521 (s/2)C( / f(t 5/2‘” f(t) - Ze*ﬂ" 3

Writing [ = [+ [ and using Poisson summation formula, we

have
£(s) = /loo F(1)(t5/2 + t<1*5)/2)$ - (1 +1 i S) .

S

This gives the meromorphic continuation and the functional
equation &(s) = £(1 — s).
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Continuation and functional equation

Using I'(s) := (e ™, x = [;7 e*x*%, one obtains ((s) as the
Mellin transform of a theta function:

oo

£(s) = 7521 (s/2)C( / f(t 5/2‘” f(t) - Ze*ﬂ" 3

Writing [ = [+ [ and using Poisson summation formula, we

have
£(s) = /loo F(1)(t5/2 + t<1*5)/2)$ - (1 +1 i S) .

S

This gives the meromorphic continuation and the functional
equation £(s) = £(1 — s). This somehow explains the relation
between ((1 — k) and ((k) given by Euler.
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Riemann hypothesis

There is another product formula of {(s) in terms of its zeros (as
sin x).
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Riemann hypothesis

There is another product formula of {(s) in terms of its zeros (as
sin x).

Together with the Euler product formula, there is an explicit
relation between the zeros and the distribution of primes.
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Riemann hypothesis

There is another product formula of {(s) in terms of its zeros (as
sin x).

Together with the Euler product formula, there is an explicit
relation between the zeros and the distribution of primes.

Then Riemann bravely made a hypothesis that all zeros of £(x) lies
on the line Re(s) = 1/2.
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Riemann hypothesis

There is another product formula of {(s) in terms of its zeros (as
sin x).

Together with the Euler product formula, there is an explicit
relation between the zeros and the distribution of primes.

Then Riemann bravely made a hypothesis that all zeros of £(x) lies
on the line Re(s) = 1/2.

Riemann Hypothesis is equivalent to an asymptotic formula for the
number of primes

0.(x™)

1) = #lp<xt= [ S

Iog t

which is a conjectural stronger form of the prime number theorem.
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Dirichlet series

A general Dirichlet series takes a form

> an 1
L(S):nz_:lnszl;[Fp(s) ap € C.

with F, a polynomial of p~* with leading coefficient 1 and of a
fixed degree.
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Dirichlet series

A general Dirichlet series takes a form

> an 1
L(S):nz_:lnszl;[Fp(s) ap € C.

with F, a polynomial of p~* with leading coefficient 1 and of a
fixed degree.
It should have meromorphic continuation to the complex plane,
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Dirichlet series

A general Dirichlet series takes a form

> an 1
L(S):nz_:lnszl;[Fp(s) ap € C.

with F, a polynomial of p~* with leading coefficient 1 and of a
fixed degree.

It should have meromorphic continuation to the complex plane,
and satisfies a functional equation.
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Dirichlet series

A general Dirichlet series takes a form

> an 1
L(S):nz_:lnszl;[Fp(s) ap € C.

with F, a polynomial of p~* with leading coefficient 1 and of a
fixed degree.

It should have meromorphic continuation to the complex plane,
and satisfies a functional equation.

How to find a general L-series?
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Dedekind

In 1877, Dedekind generalized Dirichlet’s work to number fields K.

1
N 1_[1—Nps

Shou-Wu Zhang L-functions: its past and future



Dedekind

In 1877, Dedekind generalized Dirichlet’s work to number fields K.
1
N H 1—-Np—s’

He has managed to prove the meromorphic continuation and a
functional equation.
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Dedekind

In 1877, Dedekind generalized Dirichlet’s work to number fields K.
1
N H 1—-Np—s’

He has managed to prove the meromorphic continuation and a
functional equation.
In particular, (k(s) has a simple pole at s = 1 with residue given by

21 (27)2hR
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Hecke and Tate on Grossen character

The work of Dedekind was generalized by Hecke (1918) by taking
Grossencharacters: L(s, x).
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Hecke and Tate on Grossen character

The work of Dedekind was generalized by Hecke (1918) by taking
Grossencharacters: L(s, x). Dedekind's work was reformulated by
Tate (1950) using harmonic analysis on adeles.

There are two different ways to generalize L(s, x) with x replaced
by automorphic representations and Galois representations.

The Langlands program says that these two constructions give
essentially the same set of L-functions.

Analytic properties of L(s) can be studied using Fourier analysis on
GL, and M,x,.
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Relation with arithmetic geometry

The cohomology of algebraic varieties provides many Galois
representations and thus many L-functions.
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representations and thus many L-functions.

A web of conjectures assert that the special values of these
L-functions often give crucial information about the Diophantine
properties of the varieties, such as BSD, Tate, etc.

Shou-Wu Zhang L-functions: its past and future



Relation with arithmetic geometry

The cohomology of algebraic varieties provides many Galois
representations and thus many L-functions.

A web of conjectures assert that the special values of these
L-functions often give crucial information about the Diophantine
properties of the varieties, such as BSD, Tate, etc.

Riemann hypothesis, Langlands program, and special values of

L-series are three major topics of number theory in the 21st
century.
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