L-functions: its past and future

Shou-Wu Zhang

Princeton University

Question

$$S_k(n) := 1^k + 2^k + 3^k + \cdots + n^k$$
?

Question

$$S_k(n) := 1^k + 2^k + 3^k + \cdots + n^k$$
?

$$S_0(n) = 1 + 1 + \dots + 1 = n$$
, Definition

Question

$$S_k(n) := 1^k + 2^k + 3^k + \cdots + n^k$$
?

$$S_0(n)=1+1+\cdots+1=n,$$
 Definition $S_1(n)=1+2+3+\cdots+n=\frac{n(n+1)}{2},$ Pythagoras(550BC)

Question

$$S_k(n) := 1^k + 2^k + 3^k + \cdots + n^k$$
?

$$S_0(n) = 1 + 1 + \dots + 1 = n$$
, Definition $S_1(n) = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$, Pythagoras(550BC) $S_2(n) = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$, Archimed(250BC)

Question

$$S_k(n) := 1^k + 2^k + 3^k + \cdots + n^k$$
?

$$\begin{array}{l} S_0(n) = 1 + 1 + \dots + 1 = n, & Definition \\ S_1(n) = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}, & Pythagoras(550BC) \\ S_2(n) = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}, & Archimed(250BC) \\ S_3(n) = 1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}, & Aryabhata(476AD) \end{array}$$

General formulae were obtained by Fermat, Pascal, Bernoulli etc:

General formulae were obtained by Fermat, Pascal, Bernoulli etc: For each k, there is a general expression

$$1^{k} + 2^{k} + 3^{k} + \dots + n^{k} = a_{k1}n + a_{k2}n^{2} + \dots + a_{kk}n^{k+1}, \quad a_{ki} \in \mathbb{Q}$$

General formulae were obtained by Fermat, Pascal, Bernoulli etc: For each k, there is a general expression

$$1^k + 2^k + 3^k + \dots + n^k = a_{k1}n + a_{k2}n^2 + \dots + a_{kk}n^{k+1}, \quad a_{ki} \in \mathbb{Q}$$

Hua Luogeng (1910-1985)

General formulae were obtained by Fermat, Pascal, Bernoulli etc: For each k, there is a general expression

$$1^k + 2^k + 3^k + \dots + n^k = a_{k1}n + a_{k2}n^2 + \dots + a_{kk}n^{k+1}, \quad a_{ki} \in \mathbb{Q}$$

Hua Luogeng (1910-1985)

Jacobi Bernoulli (1655–1705)

Bernoulli numbers B_j : $\frac{z}{e^z-1} = \sum_{j=0}^{\infty} B_j \frac{z^j}{j!}.$

Bernoulli numbers B_j : $\frac{z}{e^z-1} = \sum_{j=0}^{\infty} B_j \frac{z^j}{j!}$.

Jacobi Bernoulli (1655–1705)

$$S_k(n) = \frac{1}{k+1} \sum_{j=0}^k (-1)^j C_j^{k+1} B_j n^{k+1-j} = \frac{(B+n)^{k+1} - B^{k+1}}{k+1}.$$

$$n-(n-1)=1$$

$$n - (n - 1) = 1$$

 $n^2 - (n - 1)^2 = -1 + 2n$

$$n - (n - 1) = 1$$

$$n^{2} - (n - 1)^{2} = -1 + 2n$$

$$n^{3} - (n - 1)^{3} = 1 - 3n + 3n^{2}$$

$$n - (n - 1) = 1$$

$$n^{2} - (n - 1)^{2} = -1 + 2n$$

$$n^{3} - (n - 1)^{3} = 1 - 3n + 3n^{2}$$

$$n^{k} - (n - 1)^{k} =$$

$$c_{k1} + c_{k2}n + c_{k3}n^{2} + \cdots$$

$$n - (n - 1) = 1$$

$$n^{2} - (n - 1)^{2} = -1 + 2n$$

$$n^{3} - (n - 1)^{3} = 1 - 3n + 3n^{2}$$

$$n^{k} - (n - 1)^{k} =$$

$$c_{k1} + c_{k2}n + c_{k3}n^{2} + \cdots$$

$$S_k(n) = a_{k1}n + a_{k2}n^2 + \cdots + a_{kk}n^{k+1}$$

$$S_k(n) = a_{k1}n + a_{k2}n^2 + \cdots + a_{kk}n^{k+1}$$

$$n^{k} - (n-1)^{k} = c_{k1} + c_{k2}n + c_{k3}n^{2} + \cdots + c_{kk}n^{k-1}$$

$$S_k(n) = a_{k1}n + a_{k2}n^2 + \cdots + a_{kk}n^{k+1}$$

$$n^{k} - (n-1)^{k} = c_{k1} + c_{k2}n + c_{k3}n^{2} + \dots + c_{kk}n^{k-1}$$

$$\begin{pmatrix} a_{11} & 0 & 0 & 0 & \cdots \\ a_{21} & a_{22} & 0 & 0 & \cdots \\ a_{31} & a_{32} & a_{33} & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix} = \begin{pmatrix} c_{11} & 0 & 0 & 0 & \cdots \\ c_{21} & c_{22} & 0 & 0 & \cdots \\ c_{31} & c_{32} & c_{33} & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}^{-1}$$

proof

Set
$$G(z, n) = \sum_{k=0}^{\infty} S_k(n) \frac{z^k}{k!}$$
.

Set
$$G(z, n) = \sum_{k=0}^{\infty} S_k(n) \frac{z^k}{k!}$$
. Then
$$G(z, n) = \frac{1 - e^{nz}}{e^{-z} - 1} = \sum_{j=0}^{\infty} B_j \frac{(-z)^{j-1}}{j!} \sum_{i=1}^{\infty} -\frac{(nz)^i}{i!}$$

$$= \sum_{k=0}^{\infty} \frac{z^k}{k!} \frac{1}{k+1} \sum_{j=0}^{k} (-1)^j C_{k+1}^j B_j n^{k+1-j}.$$

How about negative powers

$$S_{-k}(n) = 1 + \frac{1}{2^k} + \cdots + \frac{1}{n^k}$$
?

How about negative powers

$$S_{-k}(n) = 1 + \frac{1}{2^k} + \cdots + \frac{1}{n^k}$$
?

Do these values extend to nice (smooth, analytic, etc) function S(x)?

How about negative powers

$$S_{-k}(n) = 1 + \frac{1}{2^k} + \cdots + \frac{1}{n^k}$$
?

Do these values extend to nice (smooth, analytic, etc) function S(x)? Amazingly, this is solved by Euler (1707–1783) when he was 26 years old.

How about negative powers

$$S_{-k}(n) = 1 + \frac{1}{2^k} + \cdots + \frac{1}{n^k}$$
?

Do these values extend to nice (smooth, analytic, etc) function S(x)? Amazingly, this is solved by Euler (1707–1783) when he was 26 years old.

For any nice function f(x), the sum $S(n) = \sum_{i=1}^{n} f(i)$ extends to a nice function S(x).

Euler formula

The relation between f(x) and S(x) is given by difference equation:

$$f(x) = S(x) - S(x-1).$$

Euler formula

The relation between f(x) and S(x) is given by difference equation:

$$f(x) = S(x) - S(x-1).$$

Using the Taylor expansion

$$S(x-1) = S(x) - S'(x) + \frac{1}{2}S''(x) + \cdots = e^{-D}S(x), \qquad D = \frac{d}{dx},$$

Euler formula

The relation between f(x) and S(x) is given by difference equation:

$$f(x) = S(x) - S(x-1).$$

Using the Taylor expansion

$$S(x-1) = S(x) - S'(x) + \frac{1}{2}S''(x) + \cdots = e^{-D}S(x), \qquad D = \frac{d}{dx},$$

then

$$f(x) = (1 - e^{-D})S(x) = \frac{1 - e^{-D}}{D}DS(x)$$

Thus we obtain a differential equation

$$DS(x) = \frac{D}{1 - e^{-D}} f(x) = \sum_{i=0}^{\infty} (-1)^i B_i \frac{D^i}{i!} f(x).$$

Thus we obtain a differential equation

$$DS(x) = \frac{D}{1 - e^{-D}} f(x) = \sum_{i=0}^{\infty} (-1)^i B_i \frac{D^i}{i!} f(x).$$

$$S(x) = \int f(x)dx + \sum_{i=1}^{\infty} (-1)^{i} B_{i} \frac{D^{i-1}}{i!} f(x).$$

Thus we obtain a differential equation

$$DS(x) = \frac{D}{1 - e^{-D}} f(x) = \sum_{i=0}^{\infty} (-1)^i B_i \frac{D^i}{i_!} f(x).$$

$$S(x) = \int f(x)dx + \sum_{i=1}^{\infty} (-1)^i B_i \frac{D^{i-1}}{i!} f(x).$$

For $f(x) = x^k$ with $k \ge 0$ an integer, Euler's formula recovers Bernoulli's formula.

$$S_{-1}(n) = \gamma + \log n + \frac{1}{2n} - \frac{1}{12n^2} + \cdots, \qquad (\gamma = 0.57721...)$$

$$S_{-1}(n) = \gamma + \log n + \frac{1}{2n} - \frac{1}{12n^2} + \cdots, \qquad (\gamma = 0.57721...)$$

$$S_{-k}(n) = S_{-k}(\infty) + \frac{1}{(k-1)n^{k-1}} + \frac{1}{2n^k} + \cdots, \qquad (k > 1)$$

$$S_{-1}(n) = \gamma + \log n + \frac{1}{2n} - \frac{1}{12n^2} + \cdots, \qquad (\gamma = 0.57721...)$$

$$S_{-k}(n) = S_{-k}(\infty) + \frac{1}{(k-1)n^{k-1}} + \frac{1}{2n^k} + \cdots, \qquad (k > 1)$$

Question

For each real k > 1, how to evaluate the infinite sum:

$$S_{-1}(n) = \gamma + \log n + \frac{1}{2n} - \frac{1}{12n^2} + \cdots, \qquad (\gamma = 0.57721...)$$

$$S_{-k}(n) = S_{-k}(\infty) + \frac{1}{(k-1)n^{k-1}} + \frac{1}{2n^k} + \cdots, \qquad (k > 1)$$

Question

For each real k > 1, how to evaluate the infinite sum:

$$\zeta(k) := S_{-k}(\infty) = 1 + \frac{1}{2^k} + \frac{1}{3^k} + \cdots$$
?

Basel problem

In 1735, Euler made the first major contribution to this problem: he solved the case k=2 which was called Basel problem:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Basel problem

In 1735, Euler made the first major contribution to this problem: he solved the case k=2 which was called Basel problem:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

He observed the fact $\sin x = 0$ if and only if $x = 0, \pm \pi, \pm 2\pi \cdots$ which leads to a product formula:

Basel problem

In 1735, Euler made the first major contribution to this problem: he solved the case k=2 which was called Basel problem:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

He observed the fact $\sin x = 0$ if and only if $x = 0, \pm \pi, \pm 2\pi \cdots$ which leads to a product formula:

$$\sin x = x \prod_{k=1}^{\infty} (1 - \frac{x^2}{k^2 \pi^2}).$$

On the other hand, there is also an addition formula:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$$

On the other hand, there is also an addition formula:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$$

Comparing the coefficients of x^3 in these two expressions gives

$$\sum_{k=1}^{\infty} \frac{1}{k^2 \pi^2} = \frac{1}{3!}.$$

On the other hand, there is also an addition formula:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$$

Comparing the coefficients of x^3 in these two expressions gives

$$\sum_{k=1}^{\infty} \frac{1}{k^2 \pi^2} = \frac{1}{3!}.$$

The argument also applies to symmetric functions of $1/\pi^2 k^2$ and thus gives a formula for $\zeta(2k)$. More precisely, two expansions of $\cot x = (\log \sin x)'$ will give

$$\zeta(2k) = \frac{(-1)^{k-1} B_{2k} (2\pi)^{2k}}{2(2k)!}$$

In 1737, Euler discovered another amazing property of $\zeta(s)$ when he was 30 years old:

In 1737, Euler discovered another amazing property of $\zeta(s)$ when he was 30 years old:

$$\zeta(s) = \prod_{p} \frac{1}{1 - \frac{1}{p^s}}.$$
 $(s > 1)$

In 1737, Euler discovered another amazing property of $\zeta(s)$ when he was 30 years old:

$$\zeta(s) = \prod_{p} \frac{1}{1 - \frac{1}{p^s}}. \qquad (s > 1)$$

Its immediate application is to take the expansion of $\log \zeta(s)$ to give

$$\log \zeta(s) = -\sum_{p} \log(1 - \frac{1}{p^s}) = \sum_{p} \frac{1}{p^s} + O(1).$$

In 1737, Euler discovered another amazing property of $\zeta(s)$ when he was 30 years old:

$$\zeta(s) = \prod_{p} \frac{1}{1 - \frac{1}{p^s}}.$$
 $(s > 1)$

Its immediate application is to take the expansion of $\log \zeta(s)$ to give

$$\log \zeta(s) = -\sum_{p} \log(1 - \frac{1}{p^s}) = \sum_{p} \frac{1}{p^s} + O(1).$$

Take s = 1 to give

$$\sum \frac{1}{p} = \infty.$$

In 1737, Euler discovered another amazing property of $\zeta(s)$ when he was 30 years old:

$$\zeta(s) = \prod_{p} \frac{1}{1 - \frac{1}{p^s}}.$$
 $(s > 1)$

Its immediate application is to take the expansion of $\log \zeta(s)$ to give

$$\log \zeta(s) = -\sum_{p} \log(1 - \frac{1}{p^s}) = \sum_{p} \frac{1}{p^s} + O(1).$$

Take s = 1 to give

$$\sum \frac{1}{p} = \infty.$$

This is a major refinement of the infiniteness of primes proved by Euclid (300 BC).

Euler extended $\zeta(s)$ to reals in (0,1) by the following methods:

$$\zeta(s) - 2 \cdot 2^{-s} \zeta(s) = 1 - \frac{1}{2^s} + \frac{1}{3^s} - \cdots$$

Euler extended $\zeta(s)$ to reals in (0,1) by the following methods:

$$\zeta(s) - 2 \cdot 2^{-s} \zeta(s) = 1 - \frac{1}{2^s} + \frac{1}{3^s} - \cdots$$

Thus define

$$\zeta(s) = \frac{1}{1-2^{1-s}}(1-\frac{1}{2^s}+\frac{1}{3^s}-\cdots), \qquad (s>0).$$

Euler extended $\zeta(s)$ to reals in (0,1) by the following methods:

$$\zeta(s) - 2 \cdot 2^{-s} \zeta(s) = 1 - \frac{1}{2^s} + \frac{1}{3^s} - \cdots$$

Thus define

$$\zeta(s) = \frac{1}{1-2^{1-s}} (1 - \frac{1}{2^s} + \frac{1}{3^s} - \cdots), \qquad (s > 0).$$

It has an asymptotic behavior near s = 1:

$$\zeta(s)=\frac{1}{s-1}+O(1).$$

Euler extended $\zeta(s)$ to reals in (0,1) by the following methods:

$$\zeta(s) - 2 \cdot 2^{-s} \zeta(s) = 1 - \frac{1}{2^s} + \frac{1}{3^s} - \cdots$$

Thus define

$$\zeta(s) = \frac{1}{1-2^{1-s}} (1 - \frac{1}{2^s} + \frac{1}{3^s} - \cdots), \qquad (s > 0).$$

It has an asymptotic behavior near s = 1:

$$\zeta(s)=\frac{1}{s-1}+O(1).$$

He further extended it to negative of s when the limit exists:

$$\zeta(s) = \frac{1}{1 - 2^{1-s}} \lim_{x \to 1^{-}} (x - \frac{x^2}{2^s} + \frac{x^3}{3^s} - \cdots).$$

Zeta values at negative integers

In 1739, Euler evaluated the values of ζ at negative integers and obtained

$$\zeta(-k) = (-1)^k \frac{B_{k+1}}{k+1}, \quad k < 0$$

Zeta values at negative integers

In 1739, Euler evaluated the values of ζ at negative integers and obtained

$$\zeta(-k) = (-1)^k \frac{B_{k+1}}{k+1}, \quad k < 0$$

Euler proved his formula by the following expression:

$$\zeta(-k) = (1 - 2^{k+1}) \left(x \frac{d}{dx} \right)^k \Big|_{x=1} \frac{x}{1+x}.$$

Zeta values at negative integers

In 1739, Euler evaluated the values of ζ at negative integers and obtained

$$\zeta(-k) = (-1)^k \frac{B_{k+1}}{k+1}, \quad k < 0$$

Euler proved his formula by the following expression:

$$\zeta(-k) = (1 - 2^{k+1}) \left(x \frac{d}{dx} \right)^k \Big|_{x=1} \frac{x}{1+x}.$$

In comparison with $\zeta(2k) = \frac{(-1)^{k-1}B_{2k}(2\pi)^{2k}}{2(2k)!}$, there is a "functional equation" between $\zeta(s)$ and $\zeta(1-s)$ for integers.

Arithmetic progress of primes

In 1837, Dirichlet introduced his *L*-function to study the arithmetic progress of primes.

Dirichlet (1805-1859)

Arithmetic progress of primes

In 1837, Dirichlet introduced his *L*-function to study the arithmetic progress of primes.

Dirichlet (1805-1859)

For two integers N, a coprime to each other, there are infinitely many primes p such that $p \equiv a \mod N$.

Arithmetic progress of primes

In 1837, Dirichlet introduced his *L*-function to study the arithmetic progress of primes.

Dirichlet (1805-1859)

For two integers N, a coprime to each other, there are infinitely many primes p such that $p \equiv a \mod N$.

Moreover,

$$\sum_{p\equiv a \mod N} \frac{1}{p} = \infty.$$

Fourier analysis on finite group

Let G be a finite abelian group with uniform probabilistic measure. Then there is an orthogonal decomposition

$$L^2(G) = \sum_{\chi \in \widehat{G}} \mathbb{C}\chi, \qquad \widehat{G} := \mathrm{Hom}(G, \mathbb{C}^{\times}).$$

Fourier analysis on finite group

Let G be a finite abelian group with uniform probabilistic measure. Then there is an orthogonal decomposition

$$L^2(G) = \sum_{\chi \in \widehat{G}} \mathbb{C}\chi, \qquad \widehat{G} := \mathrm{Hom}(G, \mathbb{C}^{\times}).$$

Thus for any function f on G, there is a Fourier expansion

$$f = \sum_{\chi} \langle f, \chi \rangle \chi, \qquad \langle f, \chi \rangle = \frac{1}{\#G} \sum_{g \in G} f(g) \bar{\chi}(g).$$

Fourier analysis on multiplicative group

Apply to
$$G=(\mathbb{Z}/N\mathbb{Z})^{ imes}$$
 and $f=\delta_a$, we obtain
$$\delta_a=\sum_\chi\langle\delta_a,\chi\rangle\chi.$$

Fourier analysis on multiplicative group

Apply to $G = (\mathbb{Z}/N\mathbb{Z})^{\times}$ and $f = \delta_a$, we obtain

$$\delta_{\mathsf{a}} = \sum_{\chi} \langle \delta_{\mathsf{a}}, \chi \rangle \chi.$$

Consequently,

$$\sum_{p\equiv a \mod N} \frac{1}{p} = \sum_{p} \frac{\delta_a(p)}{p} = \sum_{\chi} \langle \delta_a, \chi \rangle \sum_{p} \frac{\chi(p)}{p}.$$

Fourier analysis on multiplicative group

Apply to $G = (\mathbb{Z}/N\mathbb{Z})^{\times}$ and $f = \delta_a$, we obtain

$$\delta_{\mathsf{a}} = \sum_{\chi} \langle \delta_{\mathsf{a}}, \chi \rangle \chi.$$

Consequently,

$$\sum_{p\equiv a \mod N} \frac{1}{p} = \sum_{p} \frac{\delta_a(p)}{p} = \sum_{\chi} \langle \delta_a, \chi \rangle \sum_{p} \frac{\chi(p)}{p}.$$

When $\chi=1$, $\sum_{p}\frac{\chi(p)}{p}=\infty$ by Euler, it suffices to show when $\chi \neq 1$

$$\sum_{p} \frac{\chi(p)}{p} \neq \infty$$

Dirichlet *L*-function

For χ a character of $(\mathbb{Z}/N\mathbb{Z})^{\times}$, Dirichlet introduce his function

$$L(\chi,s) = \sum_{n} \frac{\chi(n)}{n^s} = \prod_{p} \frac{1}{1 - \frac{\chi(p)}{p^s}}, \qquad s > 1.$$

Dirichlet *L*-function

For χ a character of $(\mathbb{Z}/N\mathbb{Z})^{\times}$, Dirichlet introduce his function

$$L(\chi,s) = \sum_{n} \frac{\chi(n)}{n^s} = \prod_{p} \frac{1}{1 - \frac{\chi(p)}{p^s}}, \qquad s > 1.$$

Then

$$\log L(\chi,1) = \sum \frac{\chi(p)}{p} + O(1).$$

Dirichlet *L*-function

For χ a character of $(\mathbb{Z}/N\mathbb{Z})^{\times}$, Dirichlet introduce his function

$$L(\chi, s) = \sum_{n} \frac{\chi(n)}{n^s} = \prod_{p} \frac{1}{1 - \frac{\chi(p)}{p^s}}, \quad s > 1.$$

Then

$$\log L(\chi,1) = \sum \frac{\chi(p)}{p} + O(1).$$

So is suffices to show that $L(\chi, 1)$ is finite and nonzero.

Fourier analysis on additive group

Now we apply Fourier analysis to $M = \mathbb{Z}/N\mathbb{Z}$.

$$L^2(M) = \sum_{\widehat{M}} \mathbb{C}\psi, \qquad \widehat{M} := \mathrm{Hom}(M, \mathbb{C}^{\times}).$$

Extend $G \subset M$, then we have Fourier expansion

$$\chi = \sum \langle \chi, \psi \rangle \psi, \qquad \langle \chi, \psi \rangle = \frac{1}{N} \sum_{m \in M} \psi(m) \bar{\chi}(m).$$

This implies

$$L(\chi, s) = \sum_{\psi} \langle \chi, \psi \rangle L(\psi, s), \quad L(\psi, s) = \sum_{n} \frac{\psi(n)}{n^{s}}$$

The value $L(\psi, 1)$ is computable:

$$L(\psi, 1) = \sum_{n=1}^{\infty} \frac{\psi(1)^n}{n} = -\log(1 - \psi(1)).$$

The value $L(\psi, 1)$ is computable:

$$L(\psi, 1) = \sum_{n=1}^{\infty} \frac{\psi(1)^n}{n} = -\log(1 - \psi(1)).$$

Thus, there is an important special value formula:

$$L(\chi,1) = -\log \prod_{\psi} (1-\psi(1))^{\langle \chi,\psi
angle}.$$

The value $L(\psi, 1)$ is computable:

$$L(\psi, 1) = \sum_{n=1}^{\infty} \frac{\psi(1)^n}{n} = -\log(1 - \psi(1)).$$

Thus, there is an important special value formula:

$$\mathit{L}(\chi,1) = -\log \prod_{\psi} (1-\psi(1))^{\langle \chi,\psi
angle}.$$

This would imply that $L(\chi,1)$ is nonzero and finite, and completes the proof of Dirichlet's theorem.

The value $L(\psi, 1)$ is computable:

$$L(\psi, 1) = \sum_{n=1}^{\infty} \frac{\psi(1)^n}{n} = -\log(1 - \psi(1)).$$

Thus, there is an important special value formula:

$$L(\chi,1) = -\log \prod_{\psi} (1-\psi(1))^{\langle \chi,\psi
angle}.$$

This would imply that $L(\chi,1)$ is nonzero and finite, and completes the proof of Dirichlet's theorem.

Example: N= 4, $\chi:(\mathbb{Z}/4\mathbb{Z})^{\times} \to \{\pm 1\}$, then

$$L(\chi,1) = 1 - \frac{1}{3} + \frac{1}{5} \cdots = \frac{\pi}{4}.$$

Riemann's memoire

In 1859, in his memoire "on the number of primes less than a given quantity", consider zeta function with complex variable Re(s) > 1:

Riemann (1826-1866)

Riemann's memoire

In 1859, in his memoire "on the number of primes less than a given quantity", consider zeta function with complex variable Re(s) > 1:

Riemann (1826-1866)

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} \frac{1}{1 - \frac{1}{p^s}}.$$

Riemann's memoire

In 1859, in his memoire "on the number of primes less than a given quantity", consider zeta function with complex variable Re(s) > 1:

Riemann (1826-1866)

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} \frac{1}{1 - \frac{1}{p^s}}.$$

Riemann discovered several extremely important properties using **Fourier analysis** on $\mathbb R$ and $\mathbb R^\times$.

Using $\Gamma(s):=\langle e^{-x},x^{s-1}\rangle=\int_0^\infty e^{-x}x^s\frac{dx}{x}$, one obtains $\zeta(s)$ as the Mellin transform of a theta function:

$$\xi(s) := \pi^{-s/2} \Gamma(s/2) \zeta(s) = \int_0^\infty f(t) t^{s/2} \frac{dt}{t}, \qquad f(t) := \sum_{n=1}^\infty e^{-\pi n^2 t}.$$

Using $\Gamma(s):=\langle e^{-x},x^{s-1}\rangle=\int_0^\infty e^{-x}x^s\frac{dx}{x}$, one obtains $\zeta(s)$ as the Mellin transform of a theta function:

$$\xi(s) := \pi^{-s/2} \Gamma(s/2) \zeta(s) = \int_0^\infty f(t) t^{s/2} \frac{dt}{t}, \qquad f(t) := \sum_{n=1}^\infty e^{-\pi n^2 t}.$$

Writing $\int_0^\infty = \int_0^1 + \int_1^\infty$ and using Poisson summation formula, we have

$$\xi(s) = \int_1^\infty f(t)(t^{s/2} + t^{(1-s)/2})\frac{dt}{t} - \left(\frac{1}{s} + \frac{1}{1-s}\right).$$

Using $\Gamma(s):=\langle e^{-x},x^{s-1}\rangle=\int_0^\infty e^{-x}x^s\frac{dx}{x}$, one obtains $\zeta(s)$ as the Mellin transform of a theta function:

$$\xi(s) := \pi^{-s/2} \Gamma(s/2) \zeta(s) = \int_0^\infty f(t) t^{s/2} \frac{dt}{t}, \qquad f(t) := \sum_{n=1}^\infty e^{-\pi n^2 t}.$$

Writing $\int_0^\infty = \int_0^1 + \int_1^\infty$ and using Poisson summation formula, we have

$$\xi(s) = \int_1^\infty f(t)(t^{s/2} + t^{(1-s)/2})\frac{dt}{t} - \left(\frac{1}{s} + \frac{1}{1-s}\right).$$

This gives the meromorphic continuation and the functional equation $\xi(s) = \xi(1-s)$.

Using $\Gamma(s):=\langle e^{-x},x^{s-1}\rangle=\int_0^\infty e^{-x}x^s\frac{dx}{x}$, one obtains $\zeta(s)$ as the Mellin transform of a theta function:

$$\xi(s) := \pi^{-s/2} \Gamma(s/2) \zeta(s) = \int_0^\infty f(t) t^{s/2} \frac{dt}{t}, \qquad f(t) := \sum_{n=1}^\infty e^{-\pi n^2 t}.$$

Writing $\int_0^\infty = \int_0^1 + \int_1^\infty$ and using Poisson summation formula, we have

$$\xi(s) = \int_1^\infty f(t)(t^{s/2} + t^{(1-s)/2})\frac{dt}{t} - \left(\frac{1}{s} + \frac{1}{1-s}\right).$$

This gives the meromorphic continuation and the functional equation $\xi(s) = \xi(1-s)$. This somehow explains the relation between $\zeta(1-k)$ and $\zeta(k)$ given by Euler.

There is another product formula of $\zeta(s)$ in terms of its zeros (as $\sin x$).

There is another product formula of $\zeta(s)$ in terms of its zeros (as $\sin x$).

Together with the Euler product formula, there is an explicit relation between the zeros and the distribution of primes.

There is another product formula of $\zeta(s)$ in terms of its zeros (as $\sin x$).

Together with the Euler product formula, there is an explicit relation between the zeros and the distribution of primes.

Then Riemann bravely made a hypothesis that all zeros of $\xi(x)$ lies on the line Re(s) = 1/2.

There is another product formula of $\zeta(s)$ in terms of its zeros (as $\sin x$).

Together with the Euler product formula, there is an explicit relation between the zeros and the distribution of primes.

Then Riemann bravely made a hypothesis that all zeros of $\xi(x)$ lies on the line Re(s) = 1/2.

Riemann Hypothesis is equivalent to an asymptotic formula for the number of primes

$$\pi(x) := \#\{p \le x\} = \int_2^x \frac{dt}{\log t} + O_{\epsilon}(x^{\frac{1}{2} + \epsilon})$$

which is a conjectural stronger form of the prime number theorem.

A general Dirichlet series takes a form

$$L(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} = \prod_{p} \frac{1}{F_p(s)} \qquad a_n \in \mathbb{C}$$

with F_p a polynomial of p^{-s} with leading coefficient 1 and of a fixed degree.

A general Dirichlet series takes a form

$$L(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} = \prod_p \frac{1}{F_p(s)}$$
 $a_n \in \mathbb{C}$

with F_p a polynomial of p^{-s} with leading coefficient 1 and of a fixed degree.

It should have meromorphic continuation to the complex plane,

A general Dirichlet series takes a form

$$L(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} = \prod_p \frac{1}{F_p(s)}$$
 $a_n \in \mathbb{C}$

with F_p a polynomial of p^{-s} with leading coefficient 1 and of a fixed degree.

It should have meromorphic continuation to the complex plane, and satisfies a functional equation.

A general Dirichlet series takes a form

$$L(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} = \prod_p \frac{1}{F_p(s)} \qquad a_n \in \mathbb{C}$$

with F_p a polynomial of p^{-s} with leading coefficient 1 and of a fixed degree.

It should have meromorphic continuation to the complex plane, and satisfies a functional equation.

How to find a general L-series?

Dedekind

In 1877, Dedekind generalized Dirichlet's work to number fields K.

$$\zeta_{\mathcal{K}}(s) = \sum_{\mathfrak{a}} \frac{1}{\mathrm{N}(\mathfrak{a})^s} = \prod_{\mathfrak{p}} \frac{1}{1 - \mathrm{N}\mathfrak{p}^{-s}}.$$

Dedekind

In 1877, Dedekind generalized Dirichlet's work to number fields K.

$$\zeta_{\mathcal{K}}(s) = \sum_{\mathfrak{a}} \frac{1}{\mathrm{N}(\mathfrak{a})^s} = \prod_{\mathfrak{p}} \frac{1}{1 - \mathrm{N}\mathfrak{p}^{-s}}.$$

He has managed to prove the meromorphic continuation and a functional equation.

Dedekind

In 1877, Dedekind generalized Dirichlet's work to number fields K.

$$\zeta_{\mathcal{K}}(s) = \sum_{\mathfrak{a}} \frac{1}{\mathrm{N}(\mathfrak{a})^s} = \prod_{\mathfrak{p}} \frac{1}{1 - \mathrm{N}\mathfrak{p}^{-s}}.$$

He has managed to prove the meromorphic continuation and a functional equation.

In particular, $\zeta_{\mathcal{K}}(s)$ has a simple pole at s=1 with residue given by

$$\frac{2^{r_1}(2\pi)^{r_2}hR}{w\sqrt{d_K}}.$$

The work of Dedekind was generalized by Hecke (1918) by taking Grossencharacters: $L(s, \chi)$.

The work of Dedekind was generalized by Hecke (1918) by taking Grossencharacters: $L(s,\chi)$. Dedekind's work was reformulated by Tate (1950) using harmonic analysis on adeles.

The work of Dedekind was generalized by Hecke (1918) by taking Grossencharacters: $L(s,\chi)$. Dedekind's work was reformulated by Tate (1950) using harmonic analysis on adeles.

There are two different ways to generalize $L(s,\chi)$ with χ replaced by automorphic representations and Galois representations.

The work of Dedekind was generalized by Hecke (1918) by taking Grossencharacters: $L(s,\chi)$. Dedekind's work was reformulated by Tate (1950) using harmonic analysis on adeles.

There are two different ways to generalize $L(s,\chi)$ with χ replaced by automorphic representations and Galois representations.

The Langlands program says that these two constructions give essentially the same set of L-functions.

The work of Dedekind was generalized by Hecke (1918) by taking Grossencharacters: $L(s,\chi)$. Dedekind's work was reformulated by Tate (1950) using harmonic analysis on adeles.

There are two different ways to generalize $L(s,\chi)$ with χ replaced by automorphic representations and Galois representations.

The Langlands program says that these two constructions give essentially the same set of L-functions.

Analytic properties of L(s) can be studied using Fourier analysis on GL_n and $M_{n\times n}$.

Relation with arithmetic geometry

The cohomology of algebraic varieties provides many Galois representations and thus many L-functions.

Relation with arithmetic geometry

The cohomology of algebraic varieties provides many Galois representations and thus many L-functions.

A web of conjectures assert that the special values of these *L*-functions often give crucial information about the Diophantine properties of the varieties, such as BSD, Tate, etc.

Relation with arithmetic geometry

The cohomology of algebraic varieties provides many Galois representations and thus many L-functions.

A web of conjectures assert that the special values of these *L*-functions often give crucial information about the Diophantine properties of the varieties, such as BSD, Tate, etc.

Riemann hypothesis, Langlands program, and special values of *L*-series are three major topics of number theory in the 21st century.