L-functions: its past and future

Shou-Wu Zhang
Princeton University

Sum of powers

Sum of powers

Question

For an integer k, is there a formula for

$$
S_{k}(n):=1^{k}+2^{k}+3^{k}+\cdots+n^{k} ?
$$

Sum of powers

Question

For an integer k, is there a formula for

$$
S_{k}(n):=1^{k}+2^{k}+3^{k}+\cdots+n^{k} ?
$$

$S_{0}(n)=1+1+\cdots+1=n, \quad$ Definition

Sum of powers

Question

For an integer k, is there a formula for

$$
S_{k}(n):=1^{k}+2^{k}+3^{k}+\cdots+n^{k} ?
$$

$S_{0}(n)=1+1+\cdots+1=n, \quad$ Definition
$S_{1}(n)=1+2+3+\cdots+n=\frac{n(n+1)}{2}, \quad$ Pythagoras $(550 B C)$

Sum of powers

Question

For an integer k, is there a formula for

$$
S_{k}(n):=1^{k}+2^{k}+3^{k}+\cdots+n^{k} ?
$$

$S_{0}(n)=1+1+\cdots+1=n, \quad$ Definition
$S_{1}(n)=1+2+3+\cdots+n=\frac{n(n+1)}{2}, \quad$ Pythagoras $(550 B C)$
$S_{2}(n)=1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}, \quad \operatorname{Archimed}(250 B C)$

Sum of powers

Question

For an integer k, is there a formula for

$$
S_{k}(n):=1^{k}+2^{k}+3^{k}+\cdots+n^{k} ?
$$

$S_{0}(n)=1+1+\cdots+1=n, \quad$ Definition

$$
\begin{array}{lc}
S_{1}(n)=1+2+3+\cdots+n=\frac{n(n+1)}{2}, & \text { Pythagoras }(550 B C) \\
S_{2}(n)=1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}, & \text { Archimed }(250 B C) \\
S_{3}(n)=1^{3}+2^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}, & \text { Aryabhata(} 476 A D)
\end{array}
$$

General formula

General formula

General formulae were obtained by Fermat, Pascal, Bernoulli etc:

General formula

General formulae were obtained by Fermat, Pascal, Bernoulli etc: For each k, there is a general expression
$1^{k}+2^{k}+3^{k}+\cdots+n^{k}=a_{k 1} n+a_{k 2} n^{2}+\cdots+a_{k k} n^{k+1}, \quad a_{k i} \in \mathbb{Q}$

General formula

General formulae were obtained by Fermat, Pascal, Bernoulli etc:
For each k, there is a general expression

$$
1^{k}+2^{k}+3^{k}+\cdots+n^{k}=a_{k 1} n+a_{k 2} n^{2}+\cdots+a_{k k} n^{k+1}, \quad a_{k i} \in \mathbb{Q}
$$

Hua Luogeng (1910-1985)

General formula

General formulae were obtained by Fermat, Pascal, Bernoulli etc:
For each k, there is a general expression

$$
1^{k}+2^{k}+3^{k}+\cdots+n^{k}=a_{k 1} n+a_{k 2} n^{2}+\cdots+a_{k k} n^{k+1}, \quad a_{k i} \in \mathbb{Q}
$$

Hua Luogeng (1910-1985)

Art of Conjecturing

Art of Conjecturing

Jacobi Bernoulli
(1655-1705)

Art of Conjecturing

Bernoulli numbers B_{j} : $\frac{z}{e^{z}-1}=\sum_{j=0}^{\infty} B_{j} \frac{z_{j!}^{j}}{j!}$.

Art of Conjecturing

Bernoulli numbers B_{j} : $\frac{z}{e^{z}-1}=\sum_{j=0}^{\infty} B_{j} z_{j!}^{j!}$.

Jacobi Bernoulli

(1655-1705)
$S_{k}(n)=\frac{1}{k+1} \sum_{j=0}^{k}(-1)^{j} C_{j}^{k+1} B_{j} n^{k+1-j}=\frac{(B+n)^{k+1}-B^{k+1}}{k+1}$.

Yang Hui - Pascal triangle

Yang Hui - Pascal triangle

Yang Hui (1238-1298)

Yang Hui - Pascal triangle

$$
n-(n-1)=1
$$

Yang Hui (1238-1298)

Yang Hui - Pascal triangle

$$
\begin{aligned}
& n-(n-1)=1 \\
& n^{2}-(n-1)^{2}=-1+2 n
\end{aligned}
$$

Yang Hui (1238-1298)

Yang Hui - Pascal triangle

$$
\begin{aligned}
& n-(n-1)=1 \\
& n^{2}-(n-1)^{2}=-1+2 n \\
& n^{3}-(n-1)^{3}=1-3 n+3 n^{2}
\end{aligned}
$$

Yang Hui (1238-1298)

Yang Hui - Pascal triangle

$$
\begin{aligned}
& n-(n-1)=1 \\
& n^{2}-(n-1)^{2}=-1+2 n \\
& n^{3}-(n-1)^{3}=1-3 n+3 n^{2} \\
& n^{k}-(n-1)^{k}= \\
& c_{k 1}+c_{k 2} n+c_{k 3} n^{2}+\cdots
\end{aligned}
$$

Yang Hui (1238-1298)

Yang Hui - Pascal triangle

$$
\begin{aligned}
& n-(n-1)=1 \\
& n^{2}-(n-1)^{2}=-1+2 n \\
& n^{3}-(n-1)^{3}=1-3 n+3 n^{2} \\
& n^{k}-(n-1)^{k}= \\
& c_{k 1}+c_{k 2} n+c_{k 3} n^{2}+\cdots
\end{aligned}
$$

Yang Hui (1238-1298)

$$
S_{k}(n)=a_{k 1} n+a_{k 2} n^{2}+\cdots+a_{k k} n^{k+1}
$$

$$
\begin{gathered}
S_{k}(n)=a_{k 1} n+a_{k 2} n^{2}+\cdots+a_{k k} n^{k+1} \\
n^{k}-(n-1)^{k}=c_{k 1}+c_{k 2} n+c_{k 3} n^{2}+\cdots+c_{k k} n^{k-1}
\end{gathered}
$$

$$
\begin{gathered}
S_{k}(n)=a_{k 1} n+a_{k 2} n^{2}+\cdots+a_{k k} n^{k+1} \\
n^{k}-(n-1)^{k}=c_{k 1}+c_{k 2} n+c_{k 3} n^{2}+\cdots+c_{k k} n^{k-1} \\
\left(\begin{array}{ccccc}
a_{11} & 0 & 0 & 0 & \cdots \\
a_{21} & a_{22} & 0 & 0 & \cdots \\
a_{31} & a_{32} & a_{33} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right)=\left(\begin{array}{ccccc}
c_{11} & 0 & 0 & 0 & \cdots \\
c_{21} & c_{22} & 0 & 0 & \cdots \\
c_{31} & c_{32} & c_{33} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right)^{-1}
\end{gathered}
$$

Set $G(z, n)=\sum_{k=0}^{\infty} S_{k}(n) \frac{z^{k}}{k!}$.

Set $G(z, n)=\sum_{k=0}^{\infty} S_{k}(n) \frac{z^{k}}{k!}$. Then

$$
\begin{aligned}
G(z, n) & =\frac{1-e^{n z}}{e^{-z}-1}=\sum_{j=0}^{\infty} B_{j} \frac{(-z)^{j-1}}{j!} \sum_{i=1}^{\infty}-\frac{(n z)^{i}}{i!} \\
& =\sum_{k=0}^{\infty} \frac{z^{k}}{k!} \frac{1}{k+1} \sum_{j=0}^{k}(-1)^{j} C_{k+1}^{j} B_{j} n^{k+1-j}
\end{aligned}
$$

Sum of negative powers

How about negative powers

$$
S_{-k}(n)=1+\frac{1}{2^{k}}+\cdots+\frac{1}{n^{k}} ?
$$

Sum of negative powers

How about negative powers

$$
S_{-k}(n)=1+\frac{1}{2^{k}}+\cdots+\frac{1}{n^{k}} ?
$$

Do these values extend to nice (smooth, analytic, etc) function $S(x)$?

Sum of negative powers

How about negative powers

$$
S_{-k}(n)=1+\frac{1}{2^{k}}+\cdots+\frac{1}{n^{k}} ?
$$

Do these values extend to nice (smooth, analytic, etc) function $S(x)$? Amazingly, this is solved by Euler (1707-1783) when he was 26 years old.

Sum of negative powers

How about negative powers

$$
S_{-k}(n)=1+\frac{1}{2^{k}}+\cdots+\frac{1}{n^{k}} ?
$$

Do these values extend to nice (smooth, analytic, etc) function $S(x)$? Amazingly, this is solved by Euler (1707-1783) when he was 26 years old.

For any nice function $f(x)$, the sum $S(n)=\sum_{i=1}^{n} f(i)$ extends to a nice function $S(x)$.

Euler formula

The relation between $f(x)$ and $S(x)$ is given by difference equation:

$$
f(x)=S(x)-S(x-1)
$$

The relation between $f(x)$ and $S(x)$ is given by difference equation:

$$
f(x)=S(x)-S(x-1)
$$

Using the Taylor expansion

$$
S(x-1)=S(x)-S^{\prime}(x)+\frac{1}{2} S^{\prime \prime}(x)+\cdots=e^{-D} S(x), \quad D=\frac{d}{d x}
$$

The relation between $f(x)$ and $S(x)$ is given by difference equation:

$$
f(x)=S(x)-S(x-1)
$$

Using the Taylor expansion

$$
S(x-1)=S(x)-S^{\prime}(x)+\frac{1}{2} S^{\prime \prime}(x)+\cdots=e^{-D} S(x), \quad D=\frac{d}{d x}
$$

then

$$
f(x)=\left(1-e^{-D}\right) S(x)=\frac{1-e^{-D}}{D} D S(x)
$$

Thus we obtain a differential equation

$$
D S(x)=\frac{D}{1-e^{-D}} f(x)=\sum_{i=0}^{\infty}(-1)^{i} B_{i} \frac{D^{i}}{i!} f(x)
$$

Thus we obtain a differential equation

$$
\begin{aligned}
D S(x) & =\frac{D}{1-e^{-D}} f(x)=\sum_{i=0}^{\infty}(-1)^{i} B_{i} \frac{D^{i}}{i!} f(x) . \\
S(x) & =\int f(x) d x+\sum_{i=1}^{\infty}(-1)^{i} B_{i} \frac{D^{i-1}}{i!} f(x)
\end{aligned}
$$

Thus we obtain a differential equation

$$
\begin{aligned}
D S(x) & =\frac{D}{1-e^{-D}} f(x)=\sum_{i=0}^{\infty}(-1)^{i} B_{i} \frac{D^{i}}{i!} f(x) . \\
S(x) & =\int f(x) d x+\sum_{i=1}^{\infty}(-1)^{i} B_{i} \frac{D^{i-1}}{i!} f(x)
\end{aligned}
$$

For $f(x)=x^{k}$ with $k \geq 0$ an integer, Euler's formula recovers Bernoulli's formula.

For each $k<0$, one needs to determine a constant in the formula:

For each $k<0$, one needs to determine a constant in the formula:

$$
S_{-1}(n)=\gamma+\log n+\frac{1}{2 n}-\frac{1}{12 n^{2}}+\cdots, \quad(\gamma=0.57721 \ldots)
$$

For each $k<0$, one needs to determine a constant in the formula:

$$
\begin{aligned}
& S_{-1}(n)=\gamma+\log n+\frac{1}{2 n}-\frac{1}{12 n^{2}}+\cdots, \quad(\gamma=0.57721 \ldots) \\
& S_{-k}(n)=S_{-k}(\infty)+\frac{1}{(k-1) n^{k-1}}+\frac{1}{2 n^{k}}+\cdots, \quad(k>1)
\end{aligned}
$$

For each $k<0$, one needs to determine a constant in the formula:

$$
\begin{aligned}
& S_{-1}(n)=\gamma+\log n+\frac{1}{2 n}-\frac{1}{12 n^{2}}+\cdots, \quad(\gamma=0.57721 \ldots) \\
& S_{-k}(n)=S_{-k}(\infty)+\frac{1}{(k-1) n^{k-1}}+\frac{1}{2 n^{k}}+\cdots, \quad(k>1)
\end{aligned}
$$

Question

For each real $k>1$, how to evaluate the infinite sum:

For each $k<0$, one needs to determine a constant in the formula:

$$
\begin{aligned}
& S_{-1}(n)=\gamma+\log n+\frac{1}{2 n}-\frac{1}{12 n^{2}}+\cdots, \quad(\gamma=0.57721 \ldots) \\
& S_{-k}(n)=S_{-k}(\infty)+\frac{1}{(k-1) n^{k-1}}+\frac{1}{2 n^{k}}+\cdots, \quad(k>1)
\end{aligned}
$$

Question

For each real $k>1$, how to evaluate the infinite sum:

$$
\zeta(k):=S_{-k}(\infty)=1+\frac{1}{2^{k}}+\frac{1}{3^{k}}+\cdots ?
$$

Basel problem

In 1735, Euler made the first major contribution to this problem: he solved the case $k=2$ which was called Basel problem:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

Basel problem

In 1735, Euler made the first major contribution to this problem: he solved the case $k=2$ which was called Basel problem:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

He observed the fact $\sin x=0$ if and only if $x=0, \pm \pi, \pm 2 \pi \cdots$ which leads to a product formula:

Basel problem

In 1735, Euler made the first major contribution to this problem: he solved the case $k=2$ which was called Basel problem:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

He observed the fact $\sin x=0$ if and only if $x=0, \pm \pi, \pm 2 \pi \cdots$ which leads to a product formula:

$$
\sin x=x \prod_{k=1}^{\infty}\left(1-\frac{x^{2}}{k^{2} \pi^{2}}\right)
$$

On the other hand, there is also an addition formula:

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots
$$

On the other hand, there is also an addition formula:

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots
$$

Comparing the coefficients of x^{3} in these two expressions gives

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2} \pi^{2}}=\frac{1}{3!}
$$

On the other hand, there is also an addition formula:

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots
$$

Comparing the coefficients of x^{3} in these two expressions gives

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2} \pi^{2}}=\frac{1}{3!}
$$

The argument also applies to symmetric functions of $1 / \pi^{2} k^{2}$ and thus gives a formula for $\zeta(2 k)$. More precisely, two expansions of $\cot x=(\log \sin x)^{\prime}$ will give

$$
\zeta(2 k)=\frac{(-1)^{k-1} B_{2 k}(2 \pi)^{2 k}}{2(2 k)!}
$$

Euler product

In 1737, Euler discovered another amazing property of $\zeta(s)$ when he was 30 years old:

Euler product

In 1737, Euler discovered another amazing property of $\zeta(s)$ when he was 30 years old:

$$
\zeta(s)=\prod_{p} \frac{1}{1-\frac{1}{p^{s}}} . \quad(s>1)
$$

Euler product

In 1737, Euler discovered another amazing property of $\zeta(s)$ when he was 30 years old:

$$
\zeta(s)=\prod_{p} \frac{1}{1-\frac{1}{p^{s}}} . \quad(s>1)
$$

Its immediate application is to take the expansion of $\log \zeta(s)$ to give

$$
\log \zeta(s)=-\sum_{p} \log \left(1-\frac{1}{p^{s}}\right)=\sum_{p} \frac{1}{p^{s}}+O(1)
$$

Euler product

In 1737, Euler discovered another amazing property of $\zeta(s)$ when he was 30 years old:

$$
\zeta(s)=\prod_{p} \frac{1}{1-\frac{1}{p^{s}}} . \quad(s>1)
$$

Its immediate application is to take the expansion of $\log \zeta(s)$ to give

$$
\log \zeta(s)=-\sum_{p} \log \left(1-\frac{1}{p^{s}}\right)=\sum_{p} \frac{1}{p^{s}}+O(1)
$$

Take $s=1$ to give

$$
\sum \frac{1}{p}=\infty
$$

In 1737, Euler discovered another amazing property of $\zeta(s)$ when he was 30 years old:

$$
\zeta(s)=\prod_{p} \frac{1}{1-\frac{1}{p^{s}}} . \quad(s>1)
$$

Its immediate application is to take the expansion of $\log \zeta(s)$ to give

$$
\log \zeta(s)=-\sum_{p} \log \left(1-\frac{1}{p^{s}}\right)=\sum_{p} \frac{1}{p^{s}}+O(1)
$$

Take $s=1$ to give

$$
\sum \frac{1}{p}=\infty
$$

This is a major refinement of the infiniteness of primes proved by Euclid (300 BC).

Euler zeta function for positive reals

Euler extended $\zeta(s)$ to reals in $(0,1)$ by the following methods:

$$
\zeta(s)-2 \cdot 2^{-s} \zeta(s)=1-\frac{1}{2^{s}}+\frac{1}{3^{s}}-\cdots
$$

Euler zeta function for positive reals

Euler extended $\zeta(s)$ to reals in $(0,1)$ by the following methods:

$$
\zeta(s)-2 \cdot 2^{-s} \zeta(s)=1-\frac{1}{2^{s}}+\frac{1}{3^{s}}-\cdots .
$$

Thus define

$$
\zeta(s)=\frac{1}{1-2^{1-s}}\left(1-\frac{1}{2^{s}}+\frac{1}{3^{s}}-\cdots\right), \quad(s>0) .
$$

Euler extended $\zeta(s)$ to reals in $(0,1)$ by the following methods:

$$
\zeta(s)-2 \cdot 2^{-s} \zeta(s)=1-\frac{1}{2^{s}}+\frac{1}{3^{s}}-\cdots
$$

Thus define

$$
\zeta(s)=\frac{1}{1-2^{1-s}}\left(1-\frac{1}{2^{s}}+\frac{1}{3^{s}}-\cdots\right), \quad(s>0)
$$

It has an asymptotic behavior near $s=1$:

$$
\zeta(s)=\frac{1}{s-1}+O(1)
$$

Euler extended $\zeta(s)$ to reals in $(0,1)$ by the following methods:

$$
\zeta(s)-2 \cdot 2^{-s} \zeta(s)=1-\frac{1}{2^{s}}+\frac{1}{3^{s}}-\cdots
$$

Thus define

$$
\zeta(s)=\frac{1}{1-2^{1-s}}\left(1-\frac{1}{2^{s}}+\frac{1}{3^{s}}-\cdots\right), \quad(s>0)
$$

It has an asymptotic behavior near $s=1$:

$$
\zeta(s)=\frac{1}{s-1}+O(1)
$$

He further extended it to negative of s when the limit exists:

$$
\zeta(s)=\frac{1}{1-2^{1-s}} \lim _{x \rightarrow 1^{-}}\left(x-\frac{x^{2}}{2^{s}}+\frac{x^{3}}{3^{s}}-\cdots\right)
$$

Zeta values at negative integers

In 1739, Euler evaluated the values of ζ at negative integers and obtained

$$
\zeta(-k)=(-1)^{k} \frac{B_{k+1}}{k+1}, \quad k<0
$$

Zeta values at negative integers

In 1739, Euler evaluated the values of ζ at negative integers and obtained

$$
\zeta(-k)=(-1)^{k} \frac{B_{k+1}}{k+1}, \quad k<0
$$

Euler proved his formula by the following expression:

$$
\zeta(-k)=\left.\left(1-2^{k+1}\right)\left(x \frac{d}{d x}\right)^{k}\right|_{x=1} \frac{x}{1+x}
$$

Zeta values at negative integers

In 1739, Euler evaluated the values of ζ at negative integers and obtained

$$
\zeta(-k)=(-1)^{k} \frac{B_{k+1}}{k+1}, \quad k<0
$$

Euler proved his formula by the following expression:

$$
\zeta(-k)=\left.\left(1-2^{k+1}\right)\left(x \frac{d}{d x}\right)^{k}\right|_{x=1} \frac{x}{1+x}
$$

In comparison with $\zeta(2 k)=\frac{(-1)^{k-1} B_{2 k}(2 \pi)^{2 k}}{2(2 k)!}$, there is a "functional equation" between $\zeta(s)$ and $\zeta(1-s)$ for integers.

Arithmetic progress of primes

In 1837, Dirichlet introduced his L-function to study the arithmetic progress of primes.

Dirichlet (1805-1859)

Arithmetic progress of primes

In 1837, Dirichlet introduced his L-function to study the arithmetic progress of primes.

For two integers N, a coprime to each other, there are infinitely many primes p such that $p \equiv a$ $\bmod N$.

Dirichlet (1805-1859)

Arithmetic progress of primes

In 1837, Dirichlet introduced his L-function to study the arithmetic progress of primes.

For two integers N, a coprime to each other, there are infinitely many primes p such that $p \equiv a$ $\bmod N$.
Moreover,

$$
\sum_{p \equiv a \bmod N} \frac{1}{p}=\infty
$$

Dirichlet (1805-1859)

Fourier analysis on finite group

Let G be a finite abelian group with uniform probabilistic measure. Then there is an orthogonal decomposition

$$
L^{2}(G)=\sum_{\chi \in \widehat{G}} \mathbb{C} \chi, \quad \widehat{G}:=\operatorname{Hom}\left(G, \mathbb{C}^{\times}\right)
$$

Fourier analysis on finite group

Let G be a finite abelian group with uniform probabilistic measure. Then there is an orthogonal decomposition

$$
L^{2}(G)=\sum_{\chi \in \widehat{G}} \mathbb{C} \chi, \quad \widehat{G}:=\operatorname{Hom}\left(G, \mathbb{C}^{\times}\right)
$$

Thus for any function f on G, there is a Fourier expansion

$$
f=\sum_{\chi}\langle f, \chi\rangle \chi, \quad\langle f, \chi\rangle=\frac{1}{\# G} \sum_{g \in G} f(g) \bar{\chi}(g) .
$$

Fourier analysis on multiplicative group

Apply to $G=(\mathbb{Z} / N \mathbb{Z})^{\times}$and $f=\delta_{a}$, we obtain

$$
\delta_{a}=\sum_{\chi}\left\langle\delta_{a}, \chi\right\rangle \chi .
$$

Apply to $G=(\mathbb{Z} / N \mathbb{Z})^{\times}$and $f=\delta_{a}$, we obtain

$$
\delta_{a}=\sum_{\chi}\left\langle\delta_{a}, \chi\right\rangle \chi .
$$

Consequently,

$$
\sum_{p \equiv a \bmod N} \frac{1}{p}=\sum_{p} \frac{\delta_{a}(p)}{p}=\sum_{\chi}\left\langle\delta_{a}, \chi\right\rangle \sum_{p} \frac{\chi(p)}{p} .
$$

Apply to $G=(\mathbb{Z} / N \mathbb{Z})^{\times}$and $f=\delta_{a}$, we obtain

$$
\delta_{a}=\sum_{\chi}\left\langle\delta_{a}, \chi\right\rangle \chi .
$$

Consequently,

$$
\sum_{p \equiv a \bmod N} \frac{1}{p}=\sum_{p} \frac{\delta_{a}(p)}{p}=\sum_{\chi}\left\langle\delta_{\mathrm{a}}, \chi\right\rangle \sum_{p} \frac{\chi(p)}{p} .
$$

When $\chi=1, \sum_{p} \frac{\chi(p)}{p}=\infty$ by Euler, it suffices to show when $\chi \neq 1$

$$
\sum_{p} \frac{\chi(p)}{p} \neq \infty
$$

Dirichlet L-function

For χ a character of $(\mathbb{Z} / N \mathbb{Z})^{\times}$, Dirichlet introduce his function

$$
L(\chi, s)=\sum_{n} \frac{\chi(n)}{n^{s}}=\prod_{p} \frac{1}{1-\frac{\chi(p)}{p^{s}}}, \quad s>1
$$

Dirichlet L-function

For χ a character of $(\mathbb{Z} / N \mathbb{Z})^{\times}$, Dirichlet introduce his function

$$
L(\chi, s)=\sum_{n} \frac{\chi(n)}{n^{s}}=\prod_{p} \frac{1}{1-\frac{\chi(p)}{p^{s}}}, \quad s>1
$$

Then

$$
\log L(\chi, 1)=\sum \frac{\chi(p)}{p}+O(1)
$$

Dirichlet L-function

For χ a character of $(\mathbb{Z} / N \mathbb{Z})^{\times}$, Dirichlet introduce his function

$$
L(\chi, s)=\sum_{n} \frac{\chi(n)}{n^{s}}=\prod_{p} \frac{1}{1-\frac{\chi(p)}{p^{s}}}, \quad s>1
$$

Then

$$
\log L(\chi, 1)=\sum \frac{\chi(p)}{p}+O(1)
$$

So is suffices to show that $L(\chi, 1)$ is finite and nonzero.

Now we apply Fourier analysis to $M=\mathbb{Z} / N \mathbb{Z}$.

$$
L^{2}(M)=\sum_{\widehat{M}} \mathbb{C} \psi, \quad \widehat{M}:=\operatorname{Hom}\left(M, \mathbb{C}^{\times}\right)
$$

Extend $G \subset M$, then we have Fourier expansion

$$
\chi=\sum\langle\chi, \psi\rangle \psi, \quad\langle\chi, \psi\rangle=\frac{1}{N} \sum_{m \in M} \psi(m) \bar{\chi}(m)
$$

This implies

$$
L(\chi, s)=\sum_{\psi}\langle\chi, \psi\rangle L(\psi, s), \quad L(\psi, s)=\sum_{n} \frac{\psi(n)}{n^{s}}
$$

Dirichlet special value formula

The value $L(\psi, 1)$ is computable:

$$
L(\psi, 1)=\sum_{n=1}^{\infty} \frac{\psi(1)^{n}}{n}=-\log (1-\psi(1))
$$

Dirichlet special value formula

The value $L(\psi, 1)$ is computable:

$$
L(\psi, 1)=\sum_{n=1}^{\infty} \frac{\psi(1)^{n}}{n}=-\log (1-\psi(1))
$$

Thus, there is an important special value formula:

$$
L(\chi, 1)=-\log \prod(1-\psi(1))^{\langle\chi, \psi\rangle} .
$$

Dirichlet special value formula

The value $L(\psi, 1)$ is computable:

$$
L(\psi, 1)=\sum_{n=1}^{\infty} \frac{\psi(1)^{n}}{n}=-\log (1-\psi(1))
$$

Thus, there is an important special value formula:

$$
L(\chi, 1)=-\log \prod(1-\psi(1))^{\langle\chi, \psi\rangle} .
$$

This would imply that $L(\chi, 1)$ is nonzero and finite, and completes the proof of Dirichlet's theorem.

Dirichlet special value formula

The value $L(\psi, 1)$ is computable:

$$
L(\psi, 1)=\sum_{n=1}^{\infty} \frac{\psi(1)^{n}}{n}=-\log (1-\psi(1))
$$

Thus, there is an important special value formula:

$$
L(\chi, 1)=-\log \prod(1-\psi(1))^{\langle\chi, \psi\rangle} .
$$

This would imply that $L(\chi, 1)$ is nonzero and finite, and completes the proof of Dirichlet's theorem.
Example: $N=4, \chi:(\mathbb{Z} / 4 \mathbb{Z})^{\times} \rightarrow\{ \pm 1\}$, then

$$
L(\chi, 1)=1-\frac{1}{3}+\frac{1}{5} \cdots=\frac{\pi}{4}
$$

Riemann's memoire

In 1859, in his memoire " on the number of primes less than a given quantity", consider zeta function with complex variable $\operatorname{Re}(s)>1$:

Riemann (1826-1866)

Riemann's memoire

In 1859, in his memoire " on the number of primes less than a given quantity", consider zeta function with complex variable $\operatorname{Re}(s)>1$:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p} \frac{1}{1-\frac{1}{p^{s}}}
$$

Riemann (1826-1866)

Riemann's memoire

In 1859, in his memoire " on the number of primes less than a given quantity", consider zeta function with complex variable $\operatorname{Re}(s)>1$:

Riemann (1826-1866)

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p} \frac{1}{1-\frac{1}{p^{s}}}
$$

Riemann discovered several extremely important properties using Fourier analysis on \mathbb{R} and \mathbb{R}^{\times}.

Continuation and functional equation

Using $\Gamma(s):=\left\langle e^{-x}, x^{s-1}\right\rangle=\int_{0}^{\infty} e^{-x} x^{s} \frac{d x}{x}$, one obtains $\zeta(s)$ as the Mellin transform of a theta function:
$\xi(s):=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\int_{0}^{\infty} f(t) t^{s / 2} \frac{d t}{t}, \quad f(t):=\sum_{n=1}^{\infty} e^{-\pi n^{2} t}$.

Continuation and functional equation

Using $\Gamma(s):=\left\langle e^{-x}, x^{s-1}\right\rangle=\int_{0}^{\infty} e^{-x} x^{s} \frac{d x}{x}$, one obtains $\zeta(s)$ as the Mellin transform of a theta function:
$\xi(s):=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\int_{0}^{\infty} f(t) t^{s / 2} \frac{d t}{t}, \quad f(t):=\sum_{n=1}^{\infty} e^{-\pi n^{2} t}$.
Writing $\int_{0}^{\infty}=\int_{0}^{1}+\int_{1}^{\infty}$ and using Poisson summation formula, we have

$$
\xi(s)=\int_{1}^{\infty} f(t)\left(t^{s / 2}+t^{(1-s) / 2}\right) \frac{d t}{t}-\left(\frac{1}{s}+\frac{1}{1-s}\right) .
$$

Continuation and functional equation

Using $\Gamma(s):=\left\langle e^{-x}, x^{s-1}\right\rangle=\int_{0}^{\infty} e^{-x} x^{s} \frac{d x}{x}$, one obtains $\zeta(s)$ as the Mellin transform of a theta function:
$\xi(s):=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\int_{0}^{\infty} f(t) t^{s / 2} \frac{d t}{t}, \quad f(t):=\sum_{n=1}^{\infty} e^{-\pi n^{2} t}$.
Writing $\int_{0}^{\infty}=\int_{0}^{1}+\int_{1}^{\infty}$ and using Poisson summation formula, we have

$$
\xi(s)=\int_{1}^{\infty} f(t)\left(t^{s / 2}+t^{(1-s) / 2}\right) \frac{d t}{t}-\left(\frac{1}{s}+\frac{1}{1-s}\right) .
$$

This gives the meromorphic continuation and the functional equation $\xi(s)=\xi(1-s)$.

Continuation and functional equation

Using $\Gamma(s):=\left\langle e^{-x}, x^{s-1}\right\rangle=\int_{0}^{\infty} e^{-x} x^{s} \frac{d x}{x}$, one obtains $\zeta(s)$ as the Mellin transform of a theta function:
$\xi(s):=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\int_{0}^{\infty} f(t) t^{s / 2} \frac{d t}{t}, \quad f(t):=\sum_{n=1}^{\infty} e^{-\pi n^{2} t}$.
Writing $\int_{0}^{\infty}=\int_{0}^{1}+\int_{1}^{\infty}$ and using Poisson summation formula, we have

$$
\xi(s)=\int_{1}^{\infty} f(t)\left(t^{s / 2}+t^{(1-s) / 2}\right) \frac{d t}{t}-\left(\frac{1}{s}+\frac{1}{1-s}\right) .
$$

This gives the meromorphic continuation and the functional equation $\xi(s)=\xi(1-s)$. This somehow explains the relation between $\zeta(1-k)$ and $\zeta(k)$ given by Euler.

Riemann hypothesis

There is another product formula of $\zeta(s)$ in terms of its zeros (as $\sin x)$.

Riemann hypothesis

There is another product formula of $\zeta(s)$ in terms of its zeros (as $\sin x$).
Together with the Euler product formula, there is an explicit relation between the zeros and the distribution of primes.

Riemann hypothesis

There is another product formula of $\zeta(s)$ in terms of its zeros (as $\sin x$).
Together with the Euler product formula, there is an explicit relation between the zeros and the distribution of primes. Then Riemann bravely made a hypothesis that all zeros of $\xi(x)$ lies on the line $\operatorname{Re}(s)=1 / 2$.

Riemann hypothesis

There is another product formula of $\zeta(s)$ in terms of its zeros (as $\sin x)$.
Together with the Euler product formula, there is an explicit relation between the zeros and the distribution of primes.
Then Riemann bravely made a hypothesis that all zeros of $\xi(x)$ lies on the line $\operatorname{Re}(s)=1 / 2$.
Riemann Hypothesis is equivalent to an asymptotic formula for the number of primes

$$
\pi(x):=\#\{p \leq x\}=\int_{2}^{x} \frac{d t}{\log t}+O_{\epsilon}\left(x^{\frac{1}{2}+\epsilon}\right)
$$

which is a conjectural stronger form of the prime number theorem.

Dirichlet series

A general Dirichlet series takes a form

$$
L(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=\prod_{p} \frac{1}{F_{p}(s)} \quad a_{n} \in \mathbb{C}
$$

with F_{p} a polynomial of p^{-s} with leading coefficient 1 and of a fixed degree.

Dirichlet series

A general Dirichlet series takes a form

$$
L(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=\prod_{p} \frac{1}{F_{p}(s)} \quad a_{n} \in \mathbb{C}
$$

with F_{p} a polynomial of p^{-s} with leading coefficient 1 and of a fixed degree.
It should have meromorphic continuation to the complex plane,

Dirichlet series

A general Dirichlet series takes a form

$$
L(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=\prod_{p} \frac{1}{F_{p}(s)} \quad a_{n} \in \mathbb{C}
$$

with F_{p} a polynomial of p^{-s} with leading coefficient 1 and of a fixed degree.
It should have meromorphic continuation to the complex plane, and satisfies a functional equation.

Dirichlet series

A general Dirichlet series takes a form

$$
L(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=\prod_{p} \frac{1}{F_{p}(s)} \quad a_{n} \in \mathbb{C}
$$

with F_{p} a polynomial of p^{-s} with leading coefficient 1 and of a fixed degree.
It should have meromorphic continuation to the complex plane, and satisfies a functional equation.
How to find a general L-series?

Dedekind

In 1877, Dedekind generalized Dirichlet's work to number fields K.

$$
\zeta_{K}(s)=\sum_{\mathfrak{a}} \frac{1}{N(\mathfrak{a})^{s}}=\prod_{\mathfrak{p}} \frac{1}{1-\mathrm{Np}^{-s}}
$$

Dedekind

In 1877, Dedekind generalized Dirichlet's work to number fields K.

$$
\zeta_{K}(s)=\sum_{\mathfrak{a}} \frac{1}{\mathrm{~N}(\mathfrak{a})^{s}}=\prod_{\mathfrak{p}} \frac{1}{1-\mathrm{Np}^{-s}}
$$

He has managed to prove the meromorphic continuation and a functional equation.

In 1877, Dedekind generalized Dirichlet's work to number fields K.

$$
\zeta_{K}(s)=\sum_{\mathfrak{a}} \frac{1}{\mathrm{~N}(\mathfrak{a})^{s}}=\prod_{\mathfrak{p}} \frac{1}{1-\mathrm{Np}^{-s}}
$$

He has managed to prove the meromorphic continuation and a functional equation.
In particular, $\zeta_{K}(s)$ has a simple pole at $s=1$ with residue given by

$$
\frac{2^{r_{1}}(2 \pi)^{r_{2}} h R}{w \sqrt{d_{K}}} .
$$

Hecke and Tate on Grossen character

The work of Dedekind was generalized by Hecke (1918) by taking Grossencharacters: $L(s, \chi)$.

Hecke and Tate on Grossen character

The work of Dedekind was generalized by Hecke (1918) by taking Grossencharacters: $L(s, \chi)$. Dedekind's work was reformulated by Tate (1950) using harmonic analysis on adeles.

Hecke and Tate on Grossen character

The work of Dedekind was generalized by Hecke (1918) by taking Grossencharacters: $L(s, \chi)$. Dedekind's work was reformulated by Tate (1950) using harmonic analysis on adeles.
There are two different ways to generalize $L(s, \chi)$ with χ replaced by automorphic representations and Galois representations.

Hecke and Tate on Grossen character

The work of Dedekind was generalized by Hecke (1918) by taking Grossencharacters: $L(s, \chi)$. Dedekind's work was reformulated by Tate (1950) using harmonic analysis on adeles. There are two different ways to generalize $L(s, \chi)$ with χ replaced by automorphic representations and Galois representations.
The Langlands program says that these two constructions give essentially the same set of L-functions.

Hecke and Tate on Grossen character

The work of Dedekind was generalized by Hecke (1918) by taking Grossencharacters: $L(s, \chi)$. Dedekind's work was reformulated by Tate (1950) using harmonic analysis on adeles.
There are two different ways to generalize $L(s, \chi)$ with χ replaced by automorphic representations and Galois representations.
The Langlands program says that these two constructions give essentially the same set of L-functions.
Analytic properties of $L(s)$ can be studied using Fourier analysis on GL_{n} and $M_{n \times n}$.

Relation with arithmetic geometry

The cohomology of algebraic varieties provides many Galois representations and thus many L-functions.

Relation with arithmetic geometry

The cohomology of algebraic varieties provides many Galois representations and thus many L-functions.
A web of conjectures assert that the special values of these L-functions often give crucial information about the Diophantine properties of the varieties, such as BSD, Tate, etc.

Relation with arithmetic geometry

The cohomology of algebraic varieties provides many Galois representations and thus many L-functions.
A web of conjectures assert that the special values of these L-functions often give crucial information about the Diophantine properties of the varieties, such as BSD, Tate, etc. Riemann hypothesis, Langlands program, and special values of L-series are three major topics of number theory in the 21st century.

