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| Computational
Tools

Experimental Digital
Tools Data

Materials Innovation
Infrastructure

In June 2011, the US President Obama
announced AMP(Advanced
Manufacturing Partnership), in which
“Materials Genome Initiative”(MGlI)
IS @ key component. The core is to
Integrate computation, experimentation
and database, “to discover, develop,
manufacture, and deploy advanced
materials at twice the speed than is
possible today” and at a half of the
current cost.

Half Time, Half Cost



I MGI in China

On Dec 21-23, 2011, under the leadership of Profs. Changxu Shi and
Kuangdi Xu, CAE and CAS jointly held the S14 Xiangshan Science

Conference: “Systematic Materials Science and Engineering”

Four Topics:

(1) MGl databases;

(2) Development of computational
methods and software;

(3) High-throughput material
preparation & characterization
tools;

(4) Key materials research and
breakthrough.




tesasarars - iG MGI Strategic Plan, USA, Dec 2014

Four Strategic Goals of MGI

Enable a Paradigm Shift in Culture

A Culture Shift in Materials Research, Development, and Deployment
Integration of Experiments, Computation, and Theory
Facilitate Access to Materials Data

Equip the Next-Generation Materials Workforce



I MGI & Materials Informatics

Integrated %
Computation %
High-throughput | | Database & S
Experiments ‘ Data Science

.‘Materials
Innovation
Micro- Algorithm
structure & Software
%,

High through

%), MGI in China

Materials Informatics employs techniques, tools, and theories drawn
from the emerging fields of data science, internet, computer science
and engineering, and digital technologies to the materials science and
engineering to accelerate materials, products and manufacturing
innovations.
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Artificial intelligence
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Fast development of data science, artificial intelligence,
machine learning, and materials informatics

AﬁbsverMsiQo

ART]:CLE dok 10,1038/ natura2 4, 270

\ - G . Nature 542 (2017), 115 Nature 533 (2016), 73
astering the game of Go without . ‘.l

human knowledge 22210.1038/nature21 2(3);.10.1038/nature17

. Lucas Baler', Matthew L ian Boltor’,
Georgevan den Driessche’, Thore Graepe!! & Demis Hassabis'



MACHINE LEARNING .

New tool in the box

A recent burst of activity in applying machine learning to tackle fundamental questions in physics suggests that
associated techniques may soon become as commeon in physics as numerical simulations or calculus.

Lenka Zdeborova

I'.-\:H"“'-"I : \
\““——-__
nature, LETTERS %
phySICS PUBLISHED ONLINE: 13 FEBRUARY 2017 | DOI: 10.1038/NPHYS4035 ??:% )

learning®. Another

group recently showed
that a support vector machine can
be used to classify which particles

LETTERS

FUBLISHED DNLINE" T3 FEBRUMEY 2007 | DO W00 38, MPHYS4E7

Machine learning phases of matter

Juan Carrasquilla™ and Roger G. Melko'?

learning’. Despite this curse, the machine learning community
has developed techniques with remarkable abilities to recog- ] . ]
nize, classify, and characterize complex sets of data. Here, we Learning phase transitions by confusion
show that modern machine learning architectures, such as fully Evert P. L. van Nieuwenburg*, Ye-Hua Liu and Sebastian D. Huber
connected and convolutional neural networks®, can Identify large Hilb ) .

ge Hilbert space. With modern computing power and access
phases and phase transitions In a varlety of condensed-matter to ever-larger data sets, classification problems are now
Hamiltonlans. Readily programmable through modern soft- routinely solved using machine-learning techniques'. Here,
ware librarles**, neural networks can be tralned to detect multi- we propose a neural-network approach to finding phase

. transitions, based on the performance of a neural network
pletypesnfurderparameter,aswellashlghlynun trivial states after it is trained with data that are deliberately labelled

with no conventional order, dlfﬂﬂ".if from raw state configura- incorrectly. We demonstrate the success of this method on
tions sampled with Monte Carlo®’, the topological phase transition in the Kitaev chain?, the
B T ’ ' thermal phase transition in the classical Ising modelF, and
the many-body-localization transition in a disordered quantum
spin chain*. Our method does not depend on order parameters,
knowledge of the topological content of the phases, or any other
specifics of the transition at hand. It therefore paves the way
to the development of a generic tool for identifying unexplored
phase transitions.
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APPLIED MATHEMATICS
Data-driven discovery of partial differential equations

Samuel H. Rudy,’™ Steven L. Brunton,” Joshua L. Proctor,® J. Nathan Kutz’

la. Data collection . \ lc. Solve sparse
1b. Build nonlinear regression
library of data and inllOf — w2 4+ A
ary of data = arg min O — wul + Nl
P
3 ;s \ 4
= 5
= 5| = |=32288 23 g we=0O(w u,v)f
i o .
d. Identified dynamics
wy + 0.993 1w, + 0.9910vw,,
= 0.0099%z + 0.0099%w,,
Compare to true
__________________ e Navier-Stokes (Re = 100)
. w,+{u-\_f']u;=p_‘?'2w
I wy = O(w, u,v)§ 2b. Compressed library -
_g I — wa—CSwut}E
- 5H - *
% Samp].mg
§ = 2¢. Solve compressed
E LTI * sparse regression
C.G) - — argmin||COE — Cw, ||% + Al€llo
£

Fig. 1. Steps in the PDE functional identification of nonlinear dynamics (PDE-FIND) algorithm, applied to infer the Navier-5tokes equations from data. (1a)
Data are collected as snapshots of a solution to a PDE. (1b) Numerical derivatives are taken, and data are compiled into a large matrix €, incorporating candidate terms
for the PDE. (1c) Sparse regressions are used to identify active terms in the PDE. (2a) For large data sets, sparse sampling may be used to reduce the size of the problem.
(2b) Subsampling the data set is equivalent to taking a subset of rows from the linear system in Eq. 2. (2c) An identical sparse regression problem is formed but with

fewer rows. (d) Active terms in £ are synthesized into a PDE.

Rudy et al., Sci. Adv. 2017;3:e1602614 26 April 2017 2of 6
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Materials Informatics
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Materials informatics integrates artificial intelligence and
materials science and engineering.

Experiment Data
/Computation Preprocessing

Domain
knowledge

Design of Machine

Experiment learning

/Computation modeling

evaluation

Domain knowledge means the knowledge of materials science
and engineering, which is the hub of materials informatics.

Ty




B et (G| Knowledge from data

. ‘ Machine learning model ‘ Knowledge

» To understand why things happened (explanation)
» To predict what will happen (prediction)
» To manage things that are happening (control)

Leaning can be done by individual human being, especially genius, or/and
by machine.

The development of Natural Science is the continuous and endless progress
that human being observe nature behaviors, develop learning models, and
then gain knowledges.
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1 ultimate fracture
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12 4 8 16 32 64 128 Paris’ law is widely used in the

Stress intesity factor range, AK, (MPavm), log scale

prediction of fatigue life.
P.C. Paris, M.P. Gomez, and W.E. Anderson. A rational analytic theory of fatigue. The Trend in Engineering,

1961, 13: p. 9-14.

Paris’ law is purely a data-driven formula and no theoretical derivation has
been yet published so far.



ey = Gi - Hall-Petch Equation for grain size dependent strength

ky
Oy =0y + E How to determine the form of 1/\/d

where g, is the yield stress, o, is a materials constant for the starting stress for dislocation
movement (or the resistance of the lattice to dislocation motion), k is the strengthening
coefficient (a constant specific to each material), and d is the average grain diameter.

In the early 1950s two groundbreaking series of papers were written independently on the
relationship between grain boundaries and strength.

In 1951, E. O. Hall wrote three papers which appeared in volume 64 of the Proceedings of

the Physical Society. In his third paper, Halll®l showed that the length of slip bands or crack

lengths correspond to grain sizes and thus a relationship could be established between the
two. Hall concentrated on the yielding properties of mild steels.

Based on his experimental work carried out in 1946—-1949, N. J. Petch published a paper in
1953 independent from Hall's. Petch's paperZ concentrated more on brittle fracture. By
measuring the variation in cleavage strength with respect to ferritic grain size at very low
temperatures, Petch found a relationship exact to that of Hall's. Thus this important
relationship is named after both Hall and Petch.



https://en.wikipedia.org/w/index.php?title=E._O._Hall&action=edit&redlink=1
https://en.wikipedia.org/wiki/Proceedings_of_the_Physical_Society
https://en.wikipedia.org/wiki/Grain_boundary_strengthening#cite_note-6
https://en.wikipedia.org/wiki/Mild_steel
https://en.wikipedia.org/w/index.php?title=N._J._Petch&action=edit&redlink=1
https://en.wikipedia.org/wiki/Grain_boundary_strengthening#cite_note-7
https://en.wikipedia.org/wiki/Brittle_fracture
https://en.wikipedia.org/wiki/Ferrite_(iron)

Shanghai University &, (= Hume-Rothery’s Rules for Solid Solution

LEXEMHERETENRR .

(1) The atomic size factor. If the atomic diameters of the solute and solvent differ by
more than 14%o, the solubility is likely to be restricted because the lattice distortion

IS too great for substitutional solubility.

(2) The electrochemical factor. Strongly electropositive components are more likely to
form compounds with electronegative components than to form solid solutions.

(3) The relative valency factor: Other factors being equal, a lower valence metal is
more likely to dissolve one of higher valency than vice versa, i.e., the tendency for
two metals to form solid solutions is not necessarily reciprocal. This has been found
to be valid mainly for alloys of copper, silver or gold combined with metals of

higher valency.

Hume-Rothery W, Mabbott GW, Channel-Evans KM. Philos Trans Soc A 1934;233:1.



el o €T Machining leaning

System
God black box
h,h,,...,h,
Input Variables: X = (Xl, Xoyurey Xy )
Hidden Variables: h= (hl, h2 - hK )
Output Variables: Y = (yl, Voreres Yie )
y=f(x) +e There is an intrinsic error €o
Stock market: % ~ 0% —= 200%
Well controlled experiments or computations — x 0



e Error analvsis

Sop(x) =argmin ||| g(x)—f(x) || dx

The error in machine learning contains two parts

&(f)= [lgtx)— f(x)|dx
< [1g(0) = £, () [ dx + [| £, (x) = £ (x) | dx

v . v
s
variance

y
bias

Error = intrinsic error + bias + variance

g(x) is an approximate function
obtained from machine learning.

Closest fit in population
Realization
"\ Closest fit

! A
\ |

MODEL

Truth {0
- N SPACE

|I W
Model bias— |
S ey )

Estimation Bias ___

Estimation L N

Variance

. Shrunken fit

RESTRICTED
MODEL SPACE



temaaarams i Gl Difficulties in Machining Leaninc

The regressed expression for the continuous A

function y =f (X), X € R", is not unique, due to the

fact that the sampling data of y and Xy, ..., X, are

finite and discrete. xl, X,

Example: Linear regression (housing prices)

Price
Price

Size Size Size
—79{)+91;Ff —9[‘9“-1-8];1?4—(92;!'2 '29”-1—01-'—{—9;! +f);r‘+9;r
: PO, . a8 - te \4 i

A data set is usually divided into two subsets: training set and testing set.

wnws zg\\\\\hﬂg,/
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Features (Descriptors, Attributes)

Two critical issues in machine learning:

Feature selection and Search space selection

week ending

PRL 114, 105503 (2015) PHYSICAL REVIEW LETTERS 13 MARCH 2015

Big Data of Materials Science: Critical Role of the Descriptor

Luca M. Ghiringhelli,"* Jan Vybiral,2 Sergey V. Levchenko.' Claudia Draxl.® and Matthias Scheffler’

» In mechanism-based analysis of data, descriptors are well defined and
targeted properties are explicitly or implicitly expressed in terms of
descriptors, and the expressions appear in analytic form or others.

» Descriptors are called variables in mechanism-based formulation and
modeling, where it is very much straightforward to identify whether
these variables are independent variables or not.

» In mechanism-independent machine leaning, the situation is completely
different from the mechanism-based data analysis, especially in the
machine learning of first-principles calculation data.
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Big Data of Materials Science: Critical Role of the Descriptor

g _ Luca M. (ihi(i:l:.:hulli.. " Jan \"I\I\im],‘ Sergey V. Lev chenko,' Claudia Draxl,” and Matthias SchelTler
3 LiF S
r =R .
ol Naf +mawz  RS: rocksalt
: ZB: zinc blende
— 15
> . 1 N % L | S T
o WZ: wurtzite sop ¥ RS %
© 10 AL, = E(ABy ) - E(AB,,)
F 40 * ZB AE L >02eV
[ Q & Y q ) e ZB,0.1eVAE, £02eV
St B0k v R N ® o ZB,0.05eV <AE, <0.1eV
i o —005eV< AE, £005eV
0(; T s bk 0 RS, -0.1eV<AE <-005eV
E, [eV] N '!;. & \ L] ¥ T m RS, -02eV<AE, <-01eV

] RS.AEABS-D.IEV
The original classification.
Eh: the real part of a complex energy gap z
C: theimaginary part of the complex energy gap 025

The descriptor was started with atomic
features. The initial atomic features were
combined in physical sense manner to form
sums and absolute differences of
homogeneous quantities. The combined
features were combined further, which finally
formed about 4500 feature candidates.

Then, lasso (least absolute shrinkage and
selection operator) was used to select the

0.15

0.1

0.05

re(A) — 7, (B)| exp(—r4(A)) [A]

IP(B) — EA(B)|/r,(A)* [V A7?]

best 1D, 2D and 3D features. FIG. 2 (color online). Calculated energy differences between
! RS and ZB structures of the 82 octet binary AB materials,
[p(g) —EA[B) |_,v‘_(/1) _;-P(B” |"p{8) — _,v‘_(f;” arranged by using the nuclear numbers (Z,, Zg) as descriptor

(top) and according to our optimal two-dimensional descriptor
(bottom). In the bottom panel, seven ZB materials with predicted
AE,g = 0.5 eV are outside the shown window (see Supplemen-
tal Material [6]).

rp(AP explr,(A)] exp|ry(A)]
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Accelerated search for materials with targeted
properties by adaptive design

Dezhen Xuel?, Prasanna V. Balachandran!, John Hogden3, James Theiler?, Deqging Xue? & Turab Lookman'

| 2
Domain knowledge, |, > Statistical model
physics models inference

0.02 K

Cycle 60—/ = Cycle 1

(%3]
T

2791 2792 2793 2794
- E——

o
T

Heat flow (w g™')

‘IIIII-IIII

|
[&)]
T

Database New first experimental . - . . ' '
p”.ncjples 276 278 280 282 284 286
Temperature (K)
Materials
synthesis and
characterization

Differential Scanning Calorimetry (DSC)
Design alloy with the smallest AT

Success

An adaptive design loop integrating data mining, design, and experimental feedback.
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1234
Compositions
Features

.8+j—»@—»

|' Alloy dataset |

1. ..
0 0

Adaptive design

Experiments

Inference Design

Q<

(V) (v)

Unexplored alloys

(iif

TisgNis..,.. ,CuFe Pd, ¢ Valerlce electron nurpper . Train_ n‘_nc-del for  TigNisg..,...CuFe Pd,  + Choice of candi.date
« 22 initial alloys * Pauling elecirgnega?mty ?r:)enﬂlfgg rﬁel— « 797,482 alloys with alloys for experiments
« AT measured * Pseudopotential radius features

with associated
uncertainties

* Metallic radius
* Afomic radius
* Pettifor chemical scale

Regressor: Data mining

* AT predicted from model
with uncertainties

o X <=20%

* y<=5%

* 7<= 20%

s 50-X-v-Z >= 30%

Gaussian Process Model (GPM), which gives means and uncertainties naturally, and Support Vector Regressions with
a radial basis function kernel (SVR, ;) and with a linear kernel (SVR,,,).

Selector: Experiment design
Min, efficient global optimization (EGO), and Knowledge Gradient (KG)

Regressor and selector combination
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vs. actual AT values in the training set. '8 n
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Acc rated search for materials with targeted
properties by adaptive design

Dezhon 12, Peasanna V. Balachandean!, lohn Hogden®, lamas T

Shanghai University :, G
.‘.: I

ESASHNERETETS | Machine learning Xue et al.’s data

»0Original Dataset

58 NiTi-based shape memory alloys
TigNisg ., ,Cu,Fe Pd,

»Preliminary data selection by considering only B2-R

B2 (Pmim)
n

transformation leads to 53 alloys - °§°§ Y
»Features L
X(Cu), y(Fe) and z(Pd)
> Target Value

Low thermal hysteresis (47)

Unpublished work
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Decision tree is based on information gain, which gml — 04913
partitions the feature space. samples = 53
value = [30, 23]
Decision Tree Classifier Mi’- x> 43
(CART): Class 1: AT<4.0K Eﬂ',g‘;ple‘; 3?;}
value [30, 1ﬂ]

Class 2: AT > 4.0 Kyields a

subset of data {x<4.3,z < {gm, 02449

zZ=07

samples = 35
value = [305]

0.7, and y no restrict}.

The Gini index is decreased from 0.4913 to 0.2449, which indicates the
Information gain.

There is an outlier of Tig,Ni,g ,Cu, gFe, oPd, 3 with AT = 11.05 K, which is

removed and the data number is 34 now.
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aeee Accelerated search for materials with targeted
rexsmemmerewsr 21 Machine learning Xue et als data Accelerated search for mater!

Bootstrap + SVR (Leave-two-out validation)

50F

451

a0} $
I % 1§

Predict

ol 3 .
i !

15}

1.5 2.0 25 3.0 35 4.0 4.5 5.0
Actual

Measured 4T versus predicted mean AT with variance

___MRE___ | R ____ | RMSE

11.06% 0.7229 0.4271
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texsmssmeremw -1 Machine learning Xue et al’s data Accelerated search for materials with targeted

properties by adaptive design
Dezrhon Xue'Z, Peasannn V., Balnchandean' s T

SVR + Bootstrap search in the search space
TisoNig.y.,-.ClUyFe,Pd,

( x < 4.3%
z < 0.7%
)= 5.0% Total 17952 alloys

50—x—y—2z=230%

.

Violin plot of the best five predicated alloys

m Predict s
2.84 * Actual

2.6 4

AT 241 n 1 1 1] 1]

2.2 —

2.0 ~

A

1.8 A —_— —1 1 —1 N

T T T T T T
TispNig7.3CugeFer sPdp3  TisgNigz 2CuioFersPdo 3  TisgMNisz sCupsFer sPdp3  TispNigz 2CupaFer gPdo3  TisgNis7 aCuggFersPdos  TispNigs 7CupsFea 3Pdp 2

lohn Hogden?, Jamaes Thailer®, Deging Xue? & Turab Lookman'



Our recent work on Materials Informatics

S. Ning et al./ Ultramicroscopy 184 (2018) 274-283

Scanning distortion
correction in STEM
images

Image matching is similar
to face recognition, but
much simple.

Fig. 5. (a) and (d) are two STEM images of a gold sample obtained by scanning the sample from the horizontal and perpendicular directions, i.e., 0° and 90°, respectively,
where the red square boxes highlight the feature zone. Comparison of the feature zone between (d) and (a) indicates that (d) image shifts towards left by 1.9 nm. In the
present work, the atomic column positions are represented by the intensity centers, see text for detailed description. Some characteristic column positions in the feature
zone are used as the starting match points. As an example, (b) and (e) show the cross correlation match of the feature points in the 0° and 90° images, where each of the
color lines links the images of one same real atomic column. Extending the starting matched atomic column positions with the consideration of only atom column positions
will result in one-to-one match of some regions in the two images without any corrections of distortions in the positions. The matched regions of the 0° and 90° images
are taken from a same area of the probed sample. After that, it is straightforward to find two smaller matched square areas in (a) and (d), which are highlighted by the
yellow boxes in the 0° and 90° images. Then, the 0° squared area is enlarged in (c), where a common origin is set on the atomic image at the left bottom of each image,
meaning this atomic image is set to be the common reference point. In (c), the yellow dots and red dots mark the atomic column positions in the 0° and 90° images,
respectively. After the distortion correction, (f) shows the atomic column positions with yellow and red dots for the two correction methods, respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Scanning distortion correction in STEM images

by using the (a) (b) and (d) (e) pairs, respectively. The distortion wavelengths in (a) and (b) are 150 and 230 pixels, respectively, and the amplitudes are both 2 pixels. The

distortion wavelengths in and (e) are 150,000 and 200,000 pixels, respectlvelj,.r,' and the amplitudes are both 6 pixels. (For interpretation of the references to color in this
fizure legend, the reader is referred to the web version of this article.)

(=
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Size dependent strength of concrete (unpublished)

In the literature there is academic argument regarding the size-dependent strength of
concrete. Hu et al. published a paper entitled “Comparison of boundary and size effect
models based on new development ” in Engineering Fracture Mechanics 175 (2017) 146-167.

ABSTRACT

Hoover, Bazant and colleagues have published a number of papers in recent years (Bazant
and Yu, 2009; Yu, 2010; Hoover and Bazant, 2013a, 2013b, 2014) on comparisons between
Bazant size effect model (SEM) and Hu-Duan boundary effect model (BEM ) for quasi-brittle
fracture of concrete. With the recent developments of BEM (Wang et al., 2016; Guan et al.,
2016; Wang and Hu, 2017) on irregular and discrete crack growth in concrete shaped by
coarse aggregate structures, it is time to clarify issues on the SEM and BEM comparison
raised by Bazant and Yu (2009), Yu (2010), Hoover and Bazant (2013a, 2013b, 2014). The
experimental results of Hoover and Bazant (2013a, 2013b, 2014) are analyzed again using
BEM, and new findings and in-depth understandings that have not been achieved by SEM
are presented in this study. BEM is one concise equation, containing only two fundamental
material constants, tensile strength f;, and fracture toughness K, applicable to both
notched and un-notched concrete specimens. Most importantly, BEM explains the inevita-
ble influence of coarse aggregate structures on quasi-brittle fracture of concrete through
modeling irregular and discrete crack formations and by considering the critical role of
the maximum aggregate dp.. In contrast, SEM has three different equations, one for
notched, one for un-notched, and one for shallow-notch specimens, containing total 18
empirical parameters to be determined from curve fitting. Despite with the staggering
18 parameters, the three SEM equations still overlook the crucial role of coarse aggregate
structures in concrete fracture; dy,a and discrete crack formation are not considered. After
establishing the relation between discrete fictitious crack formation Aag. and dy,ax at the
peak load P, based on four different sets of independently obtained experimental results
of concrete and rock with d., from 2 to 10 and 19 mm, BEM becomes a predictive design
model which only needs strength f; and toughness K.
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Size dependent strength of concrete (unpublished)
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There point bending test on concrete beams

J,P
\ ] @ Max bending stress
- L 3 _ __3PS ‘
S

N 2BW?

N

Loading configuration

L=2.4W S5=2.176W B=40mm

w Peak stress w Peak stress w Peak stress w Peak stress
(mm)| (MPa) (mm) (MPa) (mm) (MPa) (mm)| (MPa)
7.17 6.74 5.99 5.68
7.32 6.95 6.21 5.83
7.37 7.02 6.23 6.36
40 7.56 93 7.37 215 6.75_ 500 4.92_
7.62 7.4 8.28(Failed) 5.63(Failed)
8.57 7.69 8.46(Failed) 5.65(Failed)
8.68 7.78
7.86

Dataset of three point bending concrete beams.[Bazant, 2013]
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Weibull distribution

Failure probability Py (“N>:1‘exp{_v_N(G_NJm]

(Equivalent volume V)

Failure probability density f<GN)=§Pf - (Jj exp[‘\\//_Nﬁa_Nj }

oy oV,

The EM (Expectation Maximization) algorithm, which simplifies
difficult maximum likelihood problems, is used to determine m
and o, for a given V,

Z'“l[%vﬂ(%f1]—L($—;J(%;T
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Size dependent strength of concrete (unpublished)

Derivation
m m
0 ni1 o, "V o o. 0 nm < V.m [ o
—InL(moy)=>| =+In| = [|-> | L =L | In—= ——InL(m,0,)=——+ Y ——*| =L
1.0 1.0
. NI [ B et
@ > >
N 2 2
(7 S 6 S 6
c 2 2
Q % 4 % A4
& ° 5
extremum El::' P s L
©
( a “6 0.0 \ 0.0 ; .
0 2 4 10 2 4 10
—InL(m,o0,)=0 Fy
Jom a Oy Op
o c
EML(m,GO):O % 1.0
o £ || e 10 o S o
E 2 = 8-
® = .| g
_g g g 6
£3+ -
s S 4
S S
o o
2 A 2
0.0 \ \ 0.0 ; -
0 2 4 6 10 2 4 10
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AR R € ] Size dependent strength of concrete (unpublished)

Survival probability

Plow)=1-Pi (o) Vi 1676  8.16
- eXp[—V—N(G_ij] Vs 16.76 7.38

0\ % Vs 16.76 6.67

Voo 16.76 6.03

Taking logarithm twice

(] S A\

Oy

Inln

1
I:)s (GN ) 0 0. 99

=milno, +InV, —miIno, -InV,

0. 95

With survival probability of 99%, no »
failure will occur if the max bending

stress is lower than 6.2 MPa for 0.7
W=40mm, 5.6 MPa for W=93mm, 5.1 0.1
MPa for W=215mm, and 4.6 MPa for 0.01 1
W=500mm.

Inin(1/Pg)

The smaller the stronger!
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Data driven development of formula for creep and stress relaxation

Experimental data curves of Inoc versus In & during the tensile creep tests appear

approximately linear and linearly fitting versus determines the value of m. Then
integrating the above equation gives a power-law relation of € o™

S +»* Strain rate sensitivity m, reflects the strain
/ rate dependence on stress o, which is
Y defined as:
E? [ .
N _Ologo 5In
Andrade, J Iron Steel Inst
1952; 171: 217-282 8 Iog 8 In
(:} i [ I 1

600 800

1000 1200
STRESS, g/sq.mm.

\/
0’0

Logarithm of steady-state strain rate as a

function of logarithm of stress for copper at

Stress exponent n is based on the power-
683 K.

law relation between stress and strain rate:

_aln _
oino|; m

The temperature effect has not been considered yet.

Yang et al., Acta Mat 2016; JMPS 2016
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LEXEMHERETENRR .

a qo*it = RT b -rT | © F
. 4| = RT
e 30°C 107k o 30°C Z e 30°C
st o s 0
cg-Cu@1” cycle + 40°C . ng-Cu@1* cycle » 40°C 10 ko nt-Cu@1% cycle 4 40°C
v —_— —
@ o
g 10° 2
@ @
£ £
g g
7} 7
10°
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (s) Time (s) Time (s)
d 10%F 197 e 75°C f’ 'ﬁ € [ 107 475 H f EE | J
. A ; 4l ¢ b4 ¥ o '
T 10° P é 10 e o € 2 o "s‘{’” ¥ X
T 9. P 2.5 &4 g o P ¥ oA,
r R %q' [ ®10 g j po 10%ES N § 1°
~ 10°F§ 10° —-‘Jj‘ ----- ‘g’ ~ g £ Jaa qu’ — =ik Formenne s oy
A £ ond linear S # < 2 ond jingar  “23 A - ® | oondjinear VAo
) 0 o ey .'gy K2 . @ & ior o290 » & ., £ ior R e
e 50760 70 80 0 100110 oo4g 2 10 10100 750 200 250 300 350 8 ¥ 2 ""260 300 400 500 _4® v@'!
né 10-6 L ”WW,( \,\,&\m@g&?ﬂvv’ ¢ Dé w/ : % 10 51 Stress (MPa) g ﬁ‘ ]
I " RTO § ® [ = RT ‘© s RT
T ° 30°C B[ 3% & s 30°C
L & 40 mC 107F 2 40°C 10°L* 40°C
R SRS Y v 50°C u v 50°C o
F e 75 chlg-Cu @ 1 cyclle ! . [ e 75°C nlg-CUI@1 . Cyclle T » 75° NtCu@1” cycle . .
50 60 70 80 90 100 110 100 150 200 250 300 350 200 300 400 500
Stress (MPa) Stress (MPa) Stress (MPa)

+» from a linear high stress relaxation region to a subsequent nonlinear stress
relaxation region and finally to a linear low stress relaxation region

Yang et al., Acta Mat 2016; JMPS 2016°
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)

% Temperature dependency is usually described by the Arrhenius equation:

a 10*k cg-Cu@1” cycle
B = =
i R AG
it pp-Sl ol TR
_ BRI | &0, 7) = & expl — —
) ;"‘-..,_‘_";-—J,_ TR -— kT
2 10° SRty -LE Tk T
[ o= T v
o I"'-|:"'-._! "'4-..,__‘_ *1"'-..
= = 113 MPa ~Ig--p -2 e
[ e 112 MPa T~ --d g .
@ A 111MPa < 108MPa ~~27"5 o prefactor
0%k v 110MPa » 107 MPa "8 ) )
¢ 109MPa © 106MPa AG: apparent activation energy
2.0x10* 2 2x10% 2 4x10™

KT (J7)

Hypothesis: prefactor and apparent activation energy do not depend on temperature.

+* The apparent activation energy is the real activation energy reduced by the applied
stress and the activation volume V, as a conjugate of applied stress, is introduced to
count the reduction in activation energy.

AG = AG, — 2V

V3

where AG, is called the intrinsic activation energy and 1/+/3 is the numerical factor to
convert shear stress to tensile stress.
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linear high stress relaxation regions

Strain Rate (s™)

o

o
~

Activation Energy (eV)

e e o o 9o o
- N w0 @

e
o

L cg-Cu@1® cycle
i §lI---- -
:-:::‘-~.~_::“"“‘1
I L S g
R S
N St e N b
1 N -
= 113 MPa Y- e i S
- e 112 MPa T-E-ad Ty
[ A4 111MPa < 108MPa ~~2 "%
L v 110 MPa P 107 MPa "o
F ¢ 109MPa © 106 MPa
2.0x10” 2.2x10% 2.4x10
KT (J7)
1} i F
A cg-Cu@ 1" cycle .
N m 4
® ng-Cu@ 1" cycle “‘
[ = nt-Cu@ 1% cycle 3eV\\.
L V"”—4?9b |
A LY
I QQQ Te_ 4G, =32406V 1
I WAG, =3.98eV .J/ —2039b’ ]
'I/ —BDTSD
I " ]
1 1 l‘}l 1 1 Ii}l 1 1
108 112 330 336 342 455 490 525

Stress (MPa)

AG(0) — -
Arrhenius plotting / (O-) AG(0) =AG, —oV
™~ In(&(c)) — &Ko) = &,

.‘-.
b 10°E ng-Cu@1® cycle ¢ : ~It-ol nt-Cu@1® cycle
F "~ R 1
-- VoI~ T~
- Rl -4 sl Te TR
s~ g-v Te~e_ ® i""-l\_ ‘_“10 3 g-‘\-u_“-\\""__ ".._““':_‘-‘
" F~_"~._ ;-8 = . BoTsIs TR _TA S0 Ty
o -~ “-vf—‘\‘_\ “-._“‘. 0 ’:“\\.\\\.‘\\\H "-.“‘_ __‘.
g Sema e | s R P
v ““"-.\.""“ﬁ 0:10.5_ \:::i\\‘g\.‘\?\\\‘
§10°F = 345MPa Tl T 5 = 540 MPa Sl Ty
73 ® 340 MPa Tel B o 530MPa < 490 MPa r e
4 335MPa Y A 520MPa » 480MPa  “~lw. -«
¢ 330 MPa 10%F v 510MPa @ 470 MPa e :
0 500 MPa & 460 MPa ®
! 1 i 1 " 1
2.0x10% 2.2x10% 2.4x10% 2. 0):1020 2.2x10™ 2.4x10%
/KT (J7) 1T (J7)
€ 4f 4 cg-Cu@1” cycle f al o ngCu@i“cyce] 9 2 B nt-Cu@Tst cycle
0
h\ ‘\ .‘_.\
TOA or s 101 ™
2l \, n=99.9 ®,  n=-120.48 _ n=-30.19
Fay . - =
T -3F \ o 2F N = ~
© \A Lo ™ bR L ~
£ 4r s = « ~ £ 8 .\
'Y ~ [ §
-5 \\ -4 L -\. ] \-
18 -,
Tk = 6r
106 108 110 112 114 330 335 340 345 460 480 500 520 540

Stress (MPa)

Stress (MPa)

Stress (MPa)

= AG, ——.

V3

38

V

n

o)

o

Yang et al., Acta Mat 2016; JMPS 2016
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linear low stress relaxation regions

a F of C ax10°F
1.5x10° F - cg-Cu@1 cycle b 500 : B N ng-Cu@1® cycle A \ nt-Cu@1* cycle
~ E -8
g~ Average:0.106 eV ax10°E 8, R Average:0.283 eV 6x10°F Ay 5 Average:0.442 eV
NN : ¥ . LI
9 of RSN = of ¥ < 4x10° F £
£ 1.2x10°F TRt~ £ 3x107 F s L2 L 39
L NN ] g f5. 2 LR
& [ TR~ 4 : TN 4 *33
c [ = 90MPa AN RN . [ = 260 MPa (N e sf = 340 MPa I3,
g [ e 85MPa A SN 8 2x10°F o 255MPa N g 2107 o 330MPa s34
@ b 2 sompa NN Z | 4 250 MPa Yy Z A 320 MPa T3y
x10'F v 75MPa *:g v 245MPa X v 310 MPa X
¢ 70 MPa % 240 MPa < 300 MPa
2.1x10% 2.2 x10%° 23x10% 21x102  22x10°  23x 102 24x10°  22x10®  23x10%
1KT (07 KT (J7) KT (J7)
-6 2 7
d T it e A cg-Cu@1® cycle f e ng-Cu@1® cycle g B nt-Cu@1® cycle
—~05F & cgCu@ 1% cycle Th 6
3 ® ng-Cu@ 1% cycle ot 5[
= B nt-Cu@ 1% cycle BEoa-sa 8 I
g 04} 4G, ,=0.52 3eV ol 5 4 r
g V,_=41b “r 3l m--m - m_ g
ué03 " L 1 E R e . -~ ¢ O -@®--e--9 ~ n_'221. e
o ol o _ ~ - = = 2L ==£.
= & o-2 0o P n=0 £ 4} n=-2.4 =
2 4G, ,=0.36 eV 1L
— 3
E 0.2 _AGQ 2=0.11 eV l/ng_2—5.05 b 12+ 6 0k
] T _08b° or I
D v, ,=08b 13l 4L
Soqleaacaa I
2‘ _14 1 1 1 1 1 _8 1 1 1 1 1 - pasilasnaanay lasissias PR ERET Llosiaaass Loyl
1 " 1 " 1 1 i 1 i 1 | " 1 " 1
I T LT A ST B B 70 75 80 85 9 240 245 250 255 26 300 310 320 330 34
Stress (MPa) Stress (MPa) Stress (MPa) Stress (MPa)

- AG(0) — AG(6) =AG, — oV =AG, ——V

; V3

39

rrhenius plottin o
* Pone \In(&%(a))—» &(0) = &, —

Yang et al., Acta Mat 2016; JMPS 2016
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/

+* In the multi-temperature approach, the prefactor is given by a stress power law and the

apparent activation energy is the difference between the intrinsic activation energy and
mechanical work.

AG, N oV
KeT ~ k,T+/3

a2 el
& (o0, T) =&, > exp

one has the relationship among the Strain rate sensitivity m, the athermal stress component
n’, and the activation volume V:

1 g
m 3k, T

» The equation shows that only when the ratio of mechanical work over the thermal energy

approaches zero, i.e., (aV)/(kBTx/g) — 0, we shall have L= ifn' > 0, 1__ov
i m 3k, T

> If the value of (aV)/(kBT\/§) is large and positive, the m value is still positive even the
value n'is negative.
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X/

** One-temperature approach, in which experiments are conducted at only one
temperature, determines the stress component n=1/m from the isothermal data of
curves of Ino versus In &, i.e., from
oln
n=

With the same isothermal data, one-temperature approach determines the value of
activation volume V with

_Clogo| cJhno

m

cln &

 ologé

T

1
m 3k, T

This implies that one-temperature approach simultaneously uses the power law equation
and the Arrhenius equation. It is mathematically inconsistent. The fundamental issue is
that one-temperature could not provide sufficient data to develop a formula for the
stress- and temperature-dependent strain rate.

41
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One-dimensional toy model

f(x) =1.18145 + 0.81x + (—4 + 4x?)x?

x € [-1.0,1.0]

End
Actual minimum: Tves

£(—0.7538) = 0.2226 o
Optimize range: cyclqu—c:co A\

x € [-1.0,1.0]
feature split 1000 points. \ /
Experiments/
Computations
Bootstrap:

Bootstrap sampling number: 10
Bootstrap sampling feature count between 70% to 90%.
Using SVR regressor with RBF kernel function.

How to find X for min Y with the least number of cycles if the
initial data number is 5?
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A R C Dne-dimensional toy model

/ Initial training data distribution
—~

&/ Homogeneous distribution with the minimum of

0.0 = = == = e 0.660

3.0

25

10

0.5

Bias distribution with the minimum of 1.438.

254

20t

Random distribution with the minimum of 0.470.

05¢
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Boot

iter 1;

3.0

251

2.0
15
1.0

0.5F

0.0
—0.2

—0.af
—0.6}

-0.8
—-1.0

712 -
-14f

-1.6

—1.
0.6
0.4}

02
0.0
—0.2

-0.4f

-0.6

-1.0

1.0

€]
strap SVR:EGO

New point —0.8358 and —0.8338; current best 0.2917

d
oy
)
L I 4
L
)
[

Predict ]
0.5 1.

-0.5

0.0

R*:0.7296; M3E:0.1717

-0.5

Fesidual §
1.0

0.0 0.5

Bootstrap SVR:Min

iter 1;

3.0

251
2.0F

1.5

1.0

0.5

0.0
0.8

0.6
0.4

0.2}
0.0t
—0.2}
-0.4F

-0.6

New point —0.7157 and —0.7177; current best 0.2341

Predict |
0.5 1.

1.0 0.0

Residual
1.0

R%0.7106; MSE:0.1924
-0.5

1.0 0.0 0.5

SVR Homogeneous distribution of training

Bootstrap SVR:Mix

iter 1; New point —0.6216 and —0.6717; current best 0.28C1

3.0
2.5+ h
2.0
15
1.0
0.5F
0.0

]
L

Residual =y;-y;

{
Residual
1.0

I R%0.6650; MSE:0.2083

.
0.0

-0.6

=10 -05 0.5

Two data are added in each cycle.

v' EGO: First two largest Eis
v' Min: Two mins predicted by the regressor

v" Mix: The Min predicted by the regressor plus
the largest El
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Bootstrap SVR:EGO
iter 1; New point 0.4354 and 0.4374; current best 1.4377 Only Iocal minimum is reaChEd.

SVR Bias distribution of training data

2.8
2.6E 4
241 E
2.2t -
20 Bootstrap SVR:Mix
1.6 - — rEredict . .
;%1,0 o5 00 o5 10 iter 1; New point 0.3854 and 0.3954; current best 1.4377
—0.2
-0.4
-0.6 Sg
-0.8 54
0 El 2.2
~1.0 -0.5 0.0 0.5 1.0 2.0
8;‘, ] ] 1.8 'S o)
0.2 1.6 redict
0.1 7 o p
00 ¢ Sy ] 1.4 B
_0.2_ hd 4
:8-2’ R*:0.6927; MSE:0.0450 Residual |
~-1.0 -0.5 0.0 0.5 1.0

Bootstrap SVR:Min

iter 1; New point 0.4915 and 0.4895; current best 1.4377

2.8
2.6 d
2.4F

2.2
2.0
1.8

1.6 Predict
1.4 [

-1.0 —0.5 0.0 0.5 1.0

- R%0.6716; MSE0.0461 ™ Residual 1
-0.5 0.0 0.5 1.0

CO000o00L

5
4
3
2k i
1
0
1
2

=
=

[
0.2

0.0

—-0.2

—0.4}

o RZ:0.61892; M3E:0.0592 Residual
~1.0 —-0.5 0.0 0.5 1.0



Shanghai University :

LS HERE TERTRR

Bootstrap SVR:EGO

iter 1; New point —1.0000 and —0.9980; current best 0.4700

Bootstrap SVR:Mix

| | iter 1; New point —1.0000 and —1.0000; current best 0.4700

1.5}
1.0

3.0
25}
2.0 ™

15/ L O
1.0

051 & Predict |
210 —05 0.0 05 1.0

o

[ R*:0.6748; MSE:0.1367 . Residual |
-1.0 -0.5 0.0 0.5 1.0

Bootstrap SVR:Min

iter 1; New point —1.0000 and —0.9980; current best 0.4700

3.0

2.5}
2.0F

1.5

1.0

) =0.6F RZ.0.5440; MSE:0.1490 Residual T
0.0 =1.0 =05 0.0 05 1.0

0.5F ¢

-1.0 —-0.5 0.0 0.5 1.0
0.8
0.6
0.4
0.2
0.0

—0.2} - L]

—0.4} i
G R?*:0.6724; MSE:0.1377 Residual

=1.0 -0.5 0.0 0.5 1.0
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GPR Homogeneous distribution of training data

GPR:EGO In a Gaussian process, every point in some continuous input
iter 1; New point ~0.5576 and ~0.8817; current best 0.2674 space is associated with a normally distributed random
3.0 variable. Moreover, every finite collection of those random
25¢ . . . . . .
20| /ﬁ\\#*/ vz.arla-bles. has a multlva.rlate norma.l dIStrI.b%Jtlon.. The |
Lo ) distribution of a Gaussian process is the joint distribution of
0.5 W’ Predict ] . . . . H
*org o5 oo o5 Lo all those (infinitely many) random variables, and as such, it
—osf ] is a distribution over functions with a continuous domain.
‘iz The Gaussian Process Regression (GPR) implements
20l — - - N Gaussian processes (GP) for regression purposes.
0.10 - - ‘ : : ‘
0.0 .
U‘OZI .' [ [ 4 GPR:MIX
Y ———— Residual | iter 1; New point —0.5015 ond —0.7237; current best 0.2306
0103 05 0.0 0.5 1.0
. 3.0
GPR:Min 2.5}
2.0
iter 1; New point —0.7237 and —0.7217; current best 0.2306 15b /\)_/
1.0}
3.0 0.5r Predict T

250 0.0

=10 -0.5 0.0 0.5 1.0
2.0 0.0

> ’/\\ﬂ’/ —-0.5F
1.0 E

-1.0
e3r Predict | _1s|

0.0

1.0 —0.5 0.0 0.5 1.0 0 E
0.12 . ~1.0 -0.5 0.0 0.5 1.0
0.10 glg N

1
0.08 0.08
0.06} , 006l
0.04} ] 0.04l
0.02} g 0.02} E
0.00p . . . ) 4 0.00p R2.0 gopo: M®0.0018 L . Fesidual
R*:0.9947; MSE:Q.0036 Residual —0.02

—0.027 0% 0 o= 0 -1.0 -0.5 0.0 0.5 1.0
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mewasarsns Gl GPR Bias distribution of training data
GPR:EGO

iter 1; New point 0.6476 and 0.6797; current best 1.3651

Global minimum is reached.

3.0p ]
2.5}
2.0t O /
12 Q—“"{redict
D'—Ol.o 0.5 0.0 05 1.0
=t \ GPR:Mix
-o.g| 1
e \ iter 1; New point 0.7497 and 0.6496; current best 1.3651
Tl £l
155 05 0.0 05 1.0
0.001 : s s 3 3.5
0.000 . . . [}
~0.001 3.0 ]
—0.002} E 25
—0.003 ]
—0.00a} . 2.0
—0.005F R2.0 9999, MSE:0.0000  Residual | 15
—0.006 - :
-1.0 -0.5 0.0 05 1.0 10
0._01'0
GPR:Min 02
-0.4
iter 1; New point 0.6496 and 0.6476; current best 1.3651 —gg
-1.0
3.5 -1.2
-1.4
3.0f E —%g
2.5} - -1
0.001
2.0 e 0.000 . . . . [
Lsl : ) —0.001
redict —0.002} i
185 —0.5 0.0 0.5 1.0 _gggi [ ]
0.001 ' i ]
0.000 . . . . -gggg R?:1.0000; MSE:0.0000 _ Residual ]
—0.001 =10 -0.5 0.0 0.5 1.0
—0.002} ]
—0.003}
—0.004 |
—0.005} 2 1
R*:0.9999, MSE:0.0000 Residual
—0.006 -

-1.0 —0.5 0.0 0.5 1.0



Shanghai University :, G
raxemnamaTER | \J|

GPR:EGO

iter 1; New point —0.8837 and —0.6757; current best 0.2650

3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.0
-0.5
—1.0
-1.5
-2.0

-25

0.04
0.02
0.00
-0.02
—0.04

1.0

o Predict |

0.5 1.0

El

1.0

-0.5 0.0

0.5 1.0

L L] L] L] 4

R%:0.9999; MSE0.0001

Residual

1.0

-0.5 0.0

GPR:Min

iter 1; New point —0.7317 and —0.7297; current best 0.2269

3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.05
0.04
0.03
0.02
0.01
0.00
—-0.01

0.5 1.0

e

.

Predict |

1.0

—-0.5 Q.0

a.5 1.0

- [ ] - L ] 4

R%:0.9993; MSE:0.0005

Residual

1.0

-05 Q.0

a.5 1.0

GPR:

Mix

GPR Random distribution of training data

iter 1; New point —0.6837 and —0.7317; current best 0.2269

3.0
2.5
2.0
15
1.0
0.5
0.0
0.0
—-05
-1.0
-1.5
—2.0
-2.5
0.05
0.04
0.03
0.02
0.01
0.00
-0.01

i f\———\(_\(/
ine Predict ]
=1.0 0.5 0.0 0.5 1.0
i El
Z1.0 0.5 0.0 0.5 1.0
| L |
- . .
[ 2.0.9996; MSE:0.0003 ¢ * Residual
~1.0 —-0.5 0.0 0.5 1.0
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Concluding Remarks

» Itis urgent to building up materials database.
» Integration of Experiments, Computation, Theory and Data Science

» Educate the Next-Generation Materials Workforce with artificial
Intelligence

» Knowledge from data is achieved by leaning of human being, especially
genius, or/and of machine.
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Thanks for your attention !

Questions ?
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