Modeling and Analysis of Markov Processes with Non-stationary Transition Probabilities

Peter W. Glynn

Stanford University Institute for Advanced Study, City University of Hong Kong

IAS Distinguished Lecture Series Frontiers in Operations Research/Operations Management October 29th, 2018

1

1. What does non-stationary modeling mean?

- 2. Why is non-stationary modeling important?
- 3. Comparison with stationary modeling
- 4. Approximations for non-stationary systems
- 5. Fast numerical solvers for non-stationary systems
- 6. Simulation algorithms for non-stationary systems

All real-world systems arising in service operations, logistics, and production settings exhibit:

time-of-day effects

day-of-week effects

seasonality effects

secular trends

Modeling with stationary transition probabilities assumes that the dynamics are independent of time:

constant arrival rate

constant demand distribution

constant abandonment rate

Models with stationary transition dynamics

•
$$X_n = f(X_{n-1}, \frac{Z_n}{N})$$
 iid "noise"

• Markov chain with stationary transition probabilities

$$P(X_n = y | X_{n-1} = x) \triangleq P(x, y)$$

• Dynamics characterized by one-step transition matrix

$$P = (P(x, y) : x, y \in S)$$

The vast majority of stochastic modeling papers focus on such "stationary" models

We will discuss why this is the case later

 \downarrow

In this lecture, we will discuss general tools for dealing with stochastic systems with *non-stationary* dynamics:

•
$$X_n = f_n(X_{n-1}, \mathbb{Z}_n)$$

independent "noise"

• Markov chain with non-stationary transition probabilities

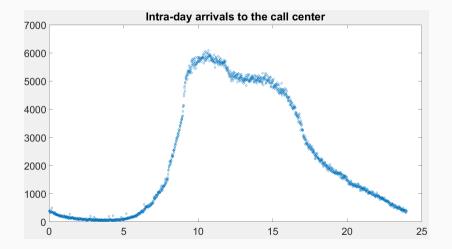
$$P(X_n = y | X_{n-1} = x) = P_n(x, y)$$

• Dynamics characterized by a sequence of transition matrices:

 P_1, P_2, P_3, \ldots

where $P_i = (P_i(x, y) : x, y \in S)$

2. Why is non-stationary modeling important?



These non-stationarities have always been present in the real-world...

Why so little research to date on this class of models?

Stationary models are much easier to analyze mathematically (e.g. steady-state behavior) $% \left({\left({{{\rm{s}}_{\rm{s}}} \right)_{\rm{s}}} \right)$

and

much easier to interpret (e.g. optimal policies are much simpler to describe)

Trade-off tractability against model fidelity

Appropriate when model is being used "descriptively"

Descriptive modeling has perhaps been the principal driver for the use of OR-based stochastics historically

- Used to generate insight into complex engineering or managerial problems
 - Design of communications networks, scheduling rules, etc
- Many important structural insights have been obtained
- Can help identify the right class of policies to consider

But stochastic modeling has a major role to play in a world in which

predictive analysis

and

prescriptive analysis

will become increasingly important

In such a world, the need for high-fidelity models increases $$\downarrow$$

Incorporating non-stationarities becomes more important

For Markov chains with stationary transition probabilities, the *n*-step transition probabilities

$$P_n(x,y) = P(X_n = y | X_0 = x)$$

satisfy:

$$P_n = P^n$$

where $P_n = (P_n(x, y) : x, y \in S)$

<u>Result</u>: If $X = (X_n : n \ge 0)$ is an irreducible aperiodic positive recurrent Markov chain, then

$$P_n(x,y) \to \pi(y)$$

as $n \to \infty$, where $\pi = (\pi(y) : y \in S)$ is the unique probability mass function satisfying

$$\pi = \pi P.$$

 π is called the

- steady-state distribution
- stationary distribution
- invariant distribution
- equilibrium distribution

Computing π in closed form is possible for many Markov chain models:

- birth-death chains
- Jackson/Kelly networks
- product-form networks
- etc

Computing π is the central focus of stationary Markov chain modeling

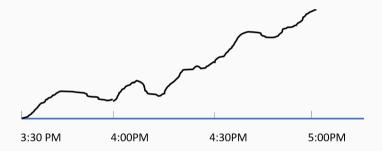
Note that

$$P(X_n = y | X_0 = x) \approx \pi(y)$$

is approximately independent of x

"loss of memory"

For Markov chains with non-stationary transition probabilities, no steady-state typically exists



Queue with slowly increasing arrival rate

An important exception:

• Non-stationary periodic Markov chains

$$P_{i+p}=P_i, \quad i\geq 0$$

$$p = 24$$
, 1 day
168, 1 week
etc

For such chains,

$$\mathsf{P}_{np+i}(x,y) o \pi_i(y)$$

as $n \to \infty$, where

$$\pi_i = \pi_0 P_1 \cdots P_{i-1}, \quad 0 \le i \le p$$

and

$$\pi_0 = \pi_0 R$$

with

$$R = P_1 P_2 \cdots P_p$$

"periodic equilibrium"

• Typical of

many service operations settings traffic congestion in urban areas etc

• Note that
$$\pi_0 = \pi_0 R$$
 involves

$$R = P_1 P_2 \cdots P_p$$

• R will almost never be available in closed form

Almost nothing in the non-stationary setting is computable in closed-form ${\scriptstyle \downarrow}$

Focus on:

- fast computational algorithms
- approximations

Notable exception:

Non-stationary infinite-server queues can be easily analyzed

Our philosophy:

• approximations that do not rely on model structure

very general

- require numerical computation comparable to stationary case
- are asymptotically valid in regime that arises naturally in practice
- can be easily implemented

Existing approaches:

- very model-specific (e.g., M/M/1; M/M/s)
- can be difficult to implement in practice (e.g., no guidelines on how to set parameters)

The Pointwise Stationary Approximation (PSA)

To approximate the behavior of a non-stationary Markov chain $X = (X_k : k \ge 0)$ t time *n*, use

$$\mathbb{E}r(X_n)\approx\sum_{x}\pi_n(x)r(x)=\pi_n r$$

where π_n is the stationary distribution of P_n :

$$\pi_n = \pi_n P_n$$

Remarks:

- Most widely used general purpose approximation for $\mathbb{E}r(X_n)$
- Valid when the P_i 's are essentially constant for j "close to" n

Why it works:

• Let $\mu = (\mu(x) : x \in S)$ be the "initial distribution" for X_0

• Then,

$$\mathbb{E}r(X_n) = \mu P_1 P_2 \cdots P_n r$$

• If $P_{n-k} \approx P_n$ for $0 \le k \le m$, then

 $\mu P_1 \cdots P_n r \approx \mu P_1 \cdots P_{n-m-1} P_n^m r \approx \mu P_1 \cdots P_{n-m-1} \prod_n r = \pi_n r$

We want to improve upon PSA

Assume that P_i 's change slowly

e.g. $P_k = P(kh)$ where $P(\cdot)$ is "smooth"

i.e. $P_{n-k} = P((n-k)h) \approx P(nh) - khP'(nh) + O(h^2)$

Step 1:

$$\mu P_1 \cdots P_n r = \mu (P_1 \cdots P_{n-m-1}) (P_{n-m} \cdots P_n) r$$

 and

$$P_{n-m} \cdots P_n \approx (P(nh) - mhP'(nh)) \cdots (P(nh) - hP'(nh))P(nh)$$

$$\approx P(nh)^{m+1} - h \sum_{j=1}^m jP(nh)^{m-j}P'(nh)P(nh)^j$$

$$\approx \Pi(nh) - h \sum_{j=1}^\infty j\Pi(nh)P'(nh)P(nh)^j$$

$$= \Pi(nh) - h\Pi(nh) \sum_{j=1}^\infty jP'(nh)P(nh)^j$$

Step 2:

$$\frac{d}{dt}\sum_{y}P(nh+t,x,y)=0$$

SO

$$P'(nh)P(nh)^{j} = P'(nh)(P(nh)^{j} - \Pi(nh))$$

Also,

$$(P(nh) - \Pi(nh))^{2} = P^{2}(nh) - P(nh)\Pi(nh) - \Pi(nh)P(nh) + \Pi(nh)^{2}$$

= P²(nh) - \Pi(nh)

SO

$$\sum_{j=1}^{\infty} jP'(nh)P(nh)^j = P'(nh)\sum_{j=1}^{\infty} j(P(nh) - \Pi(nh))^j$$

Step 3:

$$\Big(\sum_{j=0}^\infty A^j\Big)\Big(\sum_{j=0}^\infty A^j\Big)=\sum_{j=0}^\infty (j+1)A^j$$

SO

$$\sum_{j=0}^{\infty} jA^j = (I - A)^{-2} - (I - A)^{-1}$$

Put it all together...

$$\mu P_1 P_2 \cdots P_n r = \pi_n r - h \pi_n P'_n ((I - P_n + \Pi_n)^{-2} - (I - P_n + \Pi_n)^{-1}) r$$

Note that

$$hP_n' \approx P_n - P_{n-1}$$

$$\mathbb{E}r(X_n) \approx \pi_n r - \pi_n (P_n - P_{n-1})((I - P_n + \Pi_n)^{-2} - (I - P_n + \Pi_n)^{-1})r$$

An improved approximation to PSA

Zheng, Honnappa, G (2018)

Approximation involves:

- Computing solution to $\pi_n = \pi_n P_n$
- Solving Poisson's equation twice:

$$(I - P_n)g_n = r - \prod_n r$$
$$(I - P_n)h_n = g_n - \prod_n g_n$$

- We can similarly develop higher-order approximations
- related to "uniform acceleration expansion" Massey and Whitt (1998)

Can also be carried out for

• discounted reward

$$\sum_{j=0}^{\infty} e^{-\alpha j} \mathbb{E}r(X_j)$$

• expected hitting time

 $\mathbb{E}T$

• etc

whenever the Markov chain has slowly changing transition probabilities

Linear system for time-varying "correction" is always of the same form as linear system in the stationary case

e.g. discounted reward

$$(I-e^{-\alpha}P_n)g=f$$

Extends to:

- Markov jump processes
- Diffusions
- Reflected Brownian motion

etc

- In many settings, approximations will not be good enough
- Need fast numerical algorithms for computations

 $\mathbb{E}r(X_n) = \mu P_1 P_1 \cdots P_n r$

Periodic systems:

Algorithm 1.

• Compute

$$\mu P_1 P_2 \cdots P_j$$

recursively in j until j = n

• Complexity: $O(n|S|^2)$

Algorithm 2.

• First compute

$$R = P_1 P_2 \cdots P_p$$

Complexity: $O(p|S|^3)$

• If n = mp + k, then compute

 $\mu R^m P_1 P_2 \cdots P_{k-1}$

Complexity: $O((m+k)|S|^2)$

Algorithm 1 is better than Algorithm 2 if |S| >> m.

Algorithm 3.

• Compute backwards recursively in k

$$u_k \triangleq P_{n-k}P_{n-k+1}\cdots P_n r$$

until

$$\sup_{x,y}|u_k(x)-u_k(y)|<\epsilon$$

• Then,

 $\|u_k-u_n\|<\epsilon$

Why this works:

• Non-stationary chains also exhibit "loss of memory"

 $(P_{n-k}\cdots P_n)(x,y)$

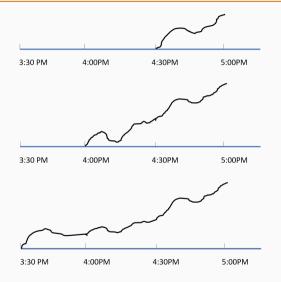
is independent of x for k large enough

• So, what happens to the chain over [0, n - k] is irrelevant

Goal: Analyze freeway congestion at 5 PM

- Simulate vehicle traffic
- Start with freeway empty at 4:30 PM?
 4 PM?
 3:30 PM?
- How far back?

Backward Coupling



•
$$X_{n,k} = \varphi_k(Z_{n-k-1},\ldots,Z_n)$$

$$X_{n,k} \approx X_{n,k+1}$$
,

then k is large enough

Zheng and G (2019)

- Non-stationary models will become more important as OR/MS moves toward more predictive/prescriptive stochastic modeling
- Refined approximations for slowly changing Markov chains are broadly applicable
- Fast algorithms for non-stationary models are becoming available based on numerical linear algebra simulation/Monte Carlo