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1. What does non-stationary modeling mean?

All real-world systems arising in service operations, logistics, and production

settings exhibit:

time-of-day effects

day-of-week effects

seasonality effects

secular trends
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Modeling with stationary transition probabilities assumes that the dynamics are

independent of time:

constant arrival rate

constant demand distribution

constant abandonment rate
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Models with stationary transition dynamics

• Xn = f (Xn−1,Zn)

↖
iid “noise”

• Markov chain with stationary transition probabilities

P(Xn = y |Xn−1 = x) , P(x , y)

• Dynamics characterized by one-step transition matrix

P = (P(x , y) : x , y ∈ S)
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The vast majority of stochastic modeling papers focus on such “stationary”

models

↓

We will discuss why this is the case later
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In this lecture, we will discuss general tools for dealing with stochastic systems

with non-stationary dynamics:

• Xn = fn(Xn−1,Zn)

↖
independent “noise”

• Markov chain with non-stationary transition probabilities

P(Xn = y |Xn−1 = x) = Pn(x , y)

• Dynamics characterized by a sequence of transition matrices:

P1,P2,P3, . . .

where Pi = (Pi(x , y) : x , y ∈ S)
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2. Why is non-stationary modeling important?

8



These non-stationarities have always been present in the real-world...

Why so little research to date on this class of models?
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Stationary models are much easier to analyze mathematically (e.g. steady-state

behavior)

and

much easier to interpret (e.g. optimal policies are much simpler to describe)

10



Trade-off tractability against model fidelity

Appropriate when model is being used “descriptively”
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Descriptive modeling has perhaps been the principal driver for the use of

OR-based stochastics historically

• Used to generate insight into complex engineering or managerial problems

• Design of communications networks, scheduling rules, etc

• Many important structural insights have been obtained

• Can help identify the right class of policies to consider
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But stochastic modeling has a major role to play in a world in which

predictive analysis

and

prescriptive analysis

will become increasingly important
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In such a world, the need for high-fidelity models increases

↓

Incorporating non-stationarities becomes more important
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Comparison with Stationary Modeling

For Markov chains with stationary transition probabilities, the n-step transition

probabilities

Pn(x , y) = P(Xn = y |X0 = x)

satisfy:

Pn = Pn

where Pn = (Pn(x , y) : x , y ∈ S)
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Result: If X = (Xn : n ≥ 0) is an irreducible aperiodic positive recurrent Markov

chain, then

Pn(x , y)→ π(y)

as n→∞, where π = (π(y) : y ∈ S) is the unique probability mass function

satisfying

π = πP .

π is called the

• steady-state distribution

• stationary distribution

• invariant distribution

• equilibrium distribution
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Computing π in closed form is possible for many Markov chain models:

• birth-death chains

• Jackson/Kelly networks

• product-form networks

• etc

Computing π is the central focus of stationary Markov chain modeling
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Note that

P(Xn = y |X0 = x) ≈ π(y)

is approximately independent of x

“loss of memory”
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For Markov chains with non-stationary transition probabilities, no steady-state

typically exists

Queue with slowly increasing arrival rate
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An important exception:

• Non-stationary periodic Markov chains

Pi+p = Pi , i ≥ 0

•

p =24, 1 day

168, 1 week

etc
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For such chains,

Pnp+i(x , y)→ πi(y)

as n→∞, where

πi = π0P1 · · ·Pi−1, 0 ≤ i ≤ p

and

π0 = π0R

with

R = P1P2 · · ·Pp

“periodic equilibrium”
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• Typical of

many service operations settings

traffic congestion in urban areas

etc

• Note that π0 = π0R involves

R = P1P2 · · ·Pp

• R will almost never be available in closed form
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Almost nothing in the non-stationary setting is computable in closed-form

↓

Focus on:

• fast computational algorithms

• approximations
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Notable exception:

Non-stationary infinite-server queues can be easily analyzed
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4. Approximations for non-stationary Markov chains

Our philosophy:

• approximations that do not rely on model structure

very general

• require numerical computation comparable to stationary case

• are asymptotically valid in regime that arises naturally in practice

• can be easily implemented
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Existing approaches:

• very model-specific (e.g., M/M/1; M/M/s)

• can be difficult to implement in practice (e.g., no guidelines on how to set

parameters)
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The Pointwise Stationary Approximation (PSA)

To approximate the behavior of a non-stationary Markov chain X = (Xk : k ≥ 0)

t time n, use

Er(Xn) ≈
∑
x

πn(x)r(x) = πnr

where πn is the stationary distribution of Pn:

πn = πnPn

Remarks:

• Most widely used general purpose approximation for Er(Xn)

• Valid when the Pj ’s are essentially constant for j “close to” n
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Why it works:

• Let µ = (µ(x) : x ∈ S) be the “initial distribution” for X0

• Then,

Er(Xn) = µP1P2 · · ·Pnr

• If Pn−k ≈ Pn for 0 ≤ k ≤ m, then

µP1 · · ·Pnr ≈ µP1 · · ·Pn−m−1P
m
n r ≈ µP1 · · ·Pn−m−1Πnr = πnr
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We want to improve upon PSA

Assume that Pj ’s change slowly

e.g. Pk = P(kh) where P(·) is “smooth”

i.e. Pn−k = P((n − k)h) ≈ P(nh)− khP ′(nh) + O(h2)
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Step 1:

µP1 · · ·Pnr = µ(P1 · · ·Pn−m−1)(Pn−m · · ·Pn)r

and

Pn−m · · ·Pn ≈ (P(nh)−mhP ′(nh)) · · · (P(nh)− hP ′(nh))P(nh)

≈ P(nh)m+1 − h
m∑
j=1

jP(nh)m−jP ′(nh)P(nh)j

≈ Π(nh)− h
∞∑
j=1

jΠ(nh)P ′(nh)P(nh)j

= Π(nh)− hΠ(nh)
∞∑
j=1

jP ′(nh)P(nh)j
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Step 2:
d

dt

∑
y

P(nh + t, x , y) = 0

so

P ′(nh)P(nh)j = P ′(nh)(P(nh)j − Π(nh))

Also,

(P(nh)− Π(nh))2 = P2(nh)− P(nh)Π(nh)− Π(nh)P(nh) + Π(nh)2

= P2(nh)− Π(nh)

so
∞∑
j=1

jP ′(nh)P(nh)j = P ′(nh)
∞∑
j=1

j(P(nh)− Π(nh))j
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Step 3: ( ∞∑
j=0

Aj
)( ∞∑

j=0

Aj
)

=
∞∑
j=0

(j + 1)Aj

so
∞∑
j=0

jAj = (I − A)−2 − (I − A)−1
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Put it all together...

µP1P2 · · ·Pnr = πnr − hπnP
′
n((I − Pn + Πn)−2 − (I − Pn + Πn)−1)r

Note that

hP ′n ≈ Pn − Pn−1

Er(Xn) ≈ πnr − πn(Pn − Pn−1)((I − Pn + Πn)−2 − (I − Pn + Πn)−1)r

An improved approximation to PSA Zheng, Honnappa, G (2018)
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Approximation involves:

• Computing solution to πn = πnPn

• Solving Poisson’s equation twice:

(I − Pn)gn = r − Πnr

(I − Pn)hn = gn − Πngn

• We can similarly develop higher-order approximations

• related to “uniform acceleration expansion” Massey and Whitt (1998)
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Can also be carried out for

• discounted reward
∞∑
j=0

e−αjEr(Xj)

• expected hitting time

ET

• etc

whenever the Markov chain has slowly changing transition probabilities
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Linear system for time-varying “correction” is always of the same form as linear

system in the stationary case

e.g. discounted reward

(I − e−αPn)g = f
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Extends to:

• Markov jump processes

• Diffusions

• Reflected Brownian motion

etc
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Fast Numerical Solvers for Non-stationary Systems (with A. Infanger)

• In many settings, approximations will not be good enough

• Need fast numerical algorithms for computations

Er(Xn) = µP1P1 · · ·Pnr
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Periodic systems:

Algorithm 1.

• Compute

µP1P2 · · ·Pj

recursively in j until j = n

• Complexity: O(n|S |2)
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Algorithm 2.

• First compute

R = P1P2 · · ·Pp

Complexity: O(p|S |3)

• If n = mp + k , then compute

µRmP1P2 · · ·Pk−1

Complexity: O((m + k)|S |2)

Algorithm 1 is better than Algorithm 2 if |S | >> m.
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Algorithm 3.

• Compute backwards recursively in k

uk , Pn−kPn−k+1 · · ·Pnr

until

sup
x ,y
|uk(x)− uk(y)| < ε

• Then,

‖uk − un‖ < ε
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Why this works:

• Non-stationary chains also exhibit “loss of memory”

(Pn−k · · ·Pn)(x , y)

is independent of x for k large enough

• So, what happens to the chain over [0, n − k] is irrelevant

42



6. Simulation Algorithms for Non-stationary Systems

Goal: Analyze freeway congestion at 5 PM

• Simulate vehicle traffic

• Start with freeway empty at 4:30 PM?

4 PM?

3:30 PM?

• How far back?
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Backward Coupling
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• Xn,k = ϕk(Zn−k−1, . . . ,Zn)

• when

Xn,k ≈ Xn,k+1 ,

then k is large enough

Zheng and G (2019)
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Concluding Remarks

• Non-stationary models will become more important as OR/MS moves toward

more predictive/prescriptive stochastic modeling

• Refined approximations for slowly changing Markov chains are broadly

applicable

• Fast algorithms for non-stationary models are becoming available based on

numerical linear algebra

simulation/Monte Carlo
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