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Some equations from mathematical biology
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Equations of physics

4L
B The status of physics his written in the names of equations

m What are the fundamental principle of biology ?




Equations of physics Jil

B The status of physics his written in the names of equations
m What are the fundamental principle of biology ?

M Is mathematics the good language for life sciences?



Equations of physics Jil

B The status of physics his written in the names of equations

m What are the fundamental principle of biology ?

m “Science is a differential equation” (Alan Turing)



Equations of physics Jil

B The status of physics his written in the names of equations

H Newton's fundamental principle of dynamics

{ 4X(t) = V(t)
SV(t) = F(X(1), V(1))




Equations of physics JiL

B The status of physics his written in the names of equations

m Fluid flows (Navier-Stokes eq., 1823-1845)

divu =0

{ %u—i— uVu-+Vp=rvAu,




Equations of physics Jil

L. Boltzmann - A gas is the result of collisions between molecules
(1872)

f(x, €, t) = density of molecules with velocity £ € V = R3

88 f(X7§7 t)+£vxf: Q(f7f)
t ———

e . Binary collisions
Transport with velocity & Y



Equations of physics Jil

MACROSCOPIC/FLUID

%u +u.Vu+Vp=vrAu,
divu =0

KINETIC/DILUTE GAS | x — 0

0 1
af(xvga t)+€vxf: ; Q(f7 f)

Binary collisions

~
Transport with velocity &

| PARTICLE SCALE| N —

{ LXi(t) = Vilt),  1<i<W,
2LVi(t) = F(X(t), V(t))



Equations of physics Jil

B The status of physics his written in the names of equations

—Au=f (Laplace/Poisson)
o
a—tg —Au=0=0u (D’'Alembert)
% —Au=0 (Fourier)
divE =0, curl E = _%_‘?
. 1 OF (Maxwell)
divB = 0, curl B = -5%
0
iS5~ Au=0 (Schroedinger)

ot



Names of PDE of physics
Euler

Jit
Lagrange Liouville Boussinesq
Hamilton-Jacobi Bellman Kirchhoff
Allen-Cahn Cahn-Hilliard Vlasov Landau
Ginzburg-Landau Gross-Pitaevski Helmholtz

Thomas-Fermi Einstein Hartree-Fock

Dirac Airy Kolmogorov
Monge-Ampere

Fokker-Planck
Korteweg de Vries Camassa-Holme
Maxwell-Stefan
Burgers

Kuramoto-Shivashinsky
Lorentz

Saint-Venant
KPP

Choquard
KPZ

Benjamin-Ono
Zhakarov

Born:Infeld .



Equations of physics

And in biology ?

JiL



Lotka-Volterra JiL

And in biology ?

(Lotka-Volterra)
P — _cP(t) + bS(t)P(t),

Became a generic name for a class of equations in ecology



Lotka-Volterra

4L
B x = phenotypical trait (size, type of nutrient,...)

B n(x, t) = number of individuals of type x

B S5(t) = environment (nutrient)




Lotka-Volterra JiL

B x = phenotypical trait (size, type of nutrient,...)
B n(x, t) = number of individuals of type x

B S5(t) = environment (nutrient)

change in number mutations

—
on(x, t)
ot

= RUS(0) (1) + 1 [ bly, S(E)MU-n(y. t)dy
—_———
growth /death rate

So

() =S 5 = e

This expresses selection by competition with finite resources



Lotka-Volterra JiL
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There is a small parameter for mutations



Epidemics : Kermack-McKendrick

Propagation of flew

B — B rS()[I(t) — dS(t) + bl(t)

IO~ S(e)I(2) — (b+ di)I(t)

Theorem. With r =constant

(i) S(t) + I(t) are bounded

(i) the solutions are global

(iii) they converge to the unique steady state.
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Epidemics : Kermack-McKendrick

A Coutribution to the Mathematical Theory of Epids
By W. 0. Kervack and A. G. McKENDRICK.

(Communicated by Sir Gilbert Walker, F.R.S—Received May 13, 1927.)
(From the Laboratory of the Royal College of Physicians, Edinburgh.)

Introduction.

(1) One of the most striking features in the study of epidemics is the difficulty
of finding a causal factor which appears to be adequate to account for the
‘magnitude of the frequent epidemics of disease which visit almost every popula-
tion. It was with a view to obtaining more insight regarding the effects of the
various factors which govern the spread of contagious epidemics that the present
investigation was undertaken. Reference may here be made to the work of Ross
and Hudson (1915-17) in which the same problem is attacked. The problem is
here carried to a further stage, and it is considered from a point of view which
R il o Ll

Include age after infection

B — B S(t) [5° r(a)l(t, a)da — dS(t)

W“Hwa@@+m@mm@=0
I(t,a=0)=S(t) [,° r(d)I(t,a')da



Epidemics : Kermack-McKendrick Jil

W Stage structured equations

H Generalized relative entropy

& [ oamian (

m Doeblin's method
B Spatial propagation

m Networks

Calculations by Nguyen-Van-Yen, B. Cazelles

I(t,a)e
N(a) ) =0

city = NEW YORK

6000
5000
4000
3000
2000
1000

o

city = BEING

50
5000
4000
3000
2000
1000
0

city = HO CHI MINH CITY

saag | ANDAARRAARAAARAARAAARAAAAAANARAARAAARARRAAARAAAARA

city = RIO DE JANEIRO

2533 (VUAUARARRARANARAARARAARAARANAAARANAAARANAARARAARARRAARRA

city = BUENOS AIRES

0%
%208
1o
5009 JUL AL AL A J M AL AL S AL SRV S SO S S LIV

[m] = = =




Ji

The electrically active cells are described by

B action potential v(t)

B ionic chanels g;(t)




Ji

The electrically active cells are described by

B action potential v(t)

B ionic chanels g;(t)

m Hodgkin-Huxley 5
D =3, (1) (Vi — (1)) + I(t)

® Morris-Lecar dgi(t) _ Gi(v(t))—gi(t)
dt Ti ’

m Mitchell-Schaeffer

m FitzHugh-Nagumo



Ji

The electrically active cells are described by

B action potential v(t)

B ionic chanels g;(t)

uuuuuuuuuuuuuuuuuuuuuuu

spikeT Tl:lm;gérpolarisation mmmmmmmmmmm



Leaky Integrate and Fire (linear) JiL

The Leaky Integrate & Fire model is simpler
dv(t) = (— v(t) + I(t))dt + cdW(t), v(t) < Viiring

V(t—) = VFiring — V(t-l-) = VReset
0< Vg < VE

m /(t) input current

H Noise intensity o

® Much simpler that Hodgkin-Huxley /Morris-Lecar models

B The idea was introduced by L. Lapicque (1907)



A short break JiL

Brother of Charles Lapicque




Leaky Integrate and Fire (linear) JiL

The Leaky Integrate & Fire model is simpler
dv(t) = (— v(t) + I(t))dt + odW(t), v(t) < Viiring

V(t—) = VFiring — V(t-l-) = VReset

0.0 D‘E 0‘4 D‘S O‘B 1‘0 12 1a 1‘6 1‘5 2.0
Solution to the LIF model

® N. Brunel and V. Hakim, R. Brette, W. Gerstner and W. Kistler,
Omurtag, Knight and Sirovich, Cai and Tao...

® Fit to measurements (with more realistic dynamics)



Leaky Integrate and Fire (linear)

JiL

From C. Rossant et al, Frontiers in Neuroscience (2011)




Noisy LIF networks Jil

It is now possible to write a system of N interacting neurons,
HBForl1 < ;<N
B with t}‘ the spiking times : v;(t<") = V¢

() = VR

N
v,(t) e %ZZ S(t—t) +odWi(t),  vi(t) < Vi

j=1 k

current generated by spikes



Noisy LIF networks Jil

See Delarue, Inglis, Rubenthaler, Tanre, Tallay, Locherbach, Lucon,
Fournier :
For assemblies, the mean field limit yields a current | = bN(t)

B"(V D 4 & [(=v+bN(t)n(v, )] — a(N(t))% = V(1) ov(v),
v < Vg,
n(VE, t) =0, n(—o0,t) =0, -

N(t) := —a(N(t))%n(VF, t) >0, flux of firing neurons at Vf
Constitutive laws
B b = connectivity

B b > 0 excitatory neurones B b < 0 inhibitory neurones

| a(N) =ay+ a1N



Noisy LIF networks (blow-up) Jil

Theorem (M. Caceres, J. Carrillo, BP) [excitatory, blow-up]
Assume a > a9 > 0. Solutions blow-up in finite time for b large.

Surprisingly
m Noise does not help

M value of b does not count

T T T T T T T T
05 oo os o & s0 100 | 150 200 250 @00 = 350 400

Excitatory integrate and fire model. Blow-up case. Left p(v, t), Right : N(t)




Noisy LIF networks (blow-up) Jil

Possible interpretation
| N(t) — p5(t - tBU) and tgy > 0,
M partial synchronization

Simplified models : Kuramoto, Carillo-Ha-Kang, Dumont-Henry,
Giacomin, Pakdaman

Huygens



Spontaneous activity (regularized) JiL

&

P4

. Pacemaker

WA

J
] J L Pacemaker
Dorsal
S

T T T T T T T T T
S0 100 150 2000 2500 3000 300 4000 4500

Left : Excitatory integrate & fire with refractory state and random firing threshold
Right : Conhaim et al (2011) J. of physiology 589(10) 2529-2541.



Bacterial motion

Paradigm for collective organisation

N\

Left :Courtesy S. Seror, B. Holland (Paris-Sud),

Right : Numerical simulation of a mathematical model

&




< [1.8+0,1pm/s

500 um

-2 —; o
[:..) Position along the channe! (mm)

m Adler’s famous experiment for E. Coli (1966) - chemotactic
m Explain this pattern; its asymmetry (experiments Curie institute)

® How can a model of chemotaxis (Keller-Segel) generate robust
traveling pulses?



Bacterial motion

E. Coli is known to move by run and tumble Alt, Dunbar, Othmer,
Stevens, Hillen, Schmeiser...

JiL

A beautiful example of multiscale motion




Ji

m f(t,x,&) population density of cells moving with velocity &

® c(t,x) the chemoattractant concentration

i)
—f V.f = Klc, SIf,
o (6.6 + € Vuf = Klc. ]

run tumble
Kle, SIf = /B K(c.S:€,€)F(e)de’ /B K(c.S;€'.€)de’ f,
—Ac = n(x,t) ::/f(t,x,ﬁ)dﬁ

B Typical is pathwise sensing

K(c;€,€) = K(0ec + €.V o))



Bacterial motion

Multiscale analysis based on the stiffness
With Zhi-An Wang, we define the small parameter ¢
0
K(ei6.€) =K (5 +¢€.ve)
D
tC

£

"V xle K Eyfe
{ 0 (b0, ) + S = Kt

—Ac.(t,x) = n(t,x) := [ f-(t,x,£)d¢.

JiL



Ji

Multiscale analysis based on sensing stiffness

Theorem (Diffusion limit)

As ¢ vanishes, f. — n(x, t)I¢,cy) and
2.n(t,x) — An(t, x) + div(nU) = 0

—Ac(t, x) = n(t, x)

U= ¢(|Vc|) Ve

Flux Limited Keller-Segel system

Soler, Bellomo, Winkler, Tao
Mazon, Caselles

concentration (a.u.)

T T
1 mm Positionin channel



Ji

| POPULATION SCALE |

{ %n(t,x) — An(t,x) +div(nU) =0
—Ac(t,x) = n(t,x),  U=¢(|Vc|) Vc

KINETIC/INDIVIDUAL SCALE

é" vxfe o IC[CEa fz-?]
€

0
Efa(txvé‘)—}_ 62

9

| MOLECULAR SCALE]|

0 1
SeEE X E) € Va4 v [RE] = A(y) [I£€) ~ £O)d€



Aspects of living tissues Jil

Another area where




Aspects of living tissues Jil

Simplest model is mechanical only :

n(x, t) = population density of tumor cells at location x, time t,
v(x, t) = cell velocity at location x and time t,

p(x, t) = pressure in the tissue,

Change in number of cells

0
an _ —div(nv) +division — death
ot NI
movement of cells
Darcy's law for friction (with ECM) dominated flow
v=—Vp(x, 1),

Constitutive law (compressible fluid)

p(x,t)=M(n):=n", y>1



Aspects of living tissues Jil

The compressible mechanical model
%n + div(nv) = nG(p(x, t)), xeRY t>0,
v =—Vp(x,t), p(x,t)=MN(n):=n", ~>0.

Byrne, Drasdo, Chaplain, Joanny-Prost-Jilicher...etc "homeostatic

pressure’

3
i




Aspects of living tissues Jil

Spatial domain Q(t)
v(x,t) = =Vp(x, t)

Compute the pressure as

—Ap=G(p)  xeq),
p=0 on 09(t).

Surface tension may be included (k = mean curvature)

p(x, t) = nkr(x, t), on 09Q(t)



Aspects of living tissues Jil

%rw +div(nyvy) = nyG(py(x, t)), x € RY

vy = —Vpy(x, t), py(x,t) = N(ny) := n7,

Theorem (F. Quiros, J.-L. Vazquez, BP) : As v — oo
Ny = Noo < 1, Py = Poo < PM

%noo — div(nse Vpos) = Moo G (po)
Poo =0 for ne(x,t) <1

Poo (Apso + G(ps)) =0

Remarks
1. Unique solution to the equation on Ny, (Oteinik, Crowley)

2. This is a weak formulation of the geometric problem

3. Benilan, Caffarelli-Friedman, Gil, Quiros, Vazquez...etc



Aspects of living tissues Jil
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Left : The model solution

Right : Cell culture data in vitro at two different times.
From N. Jagiella PhD thesis, INRIA and UPMC (2012)



Model with nutrient

%n +div(nv) = nG(p(x,t), c(x,1) ),
nutrients

V= —Vp, p = n’Ya

%C—Ac+ R(n)c = cg
————

nutrients consumption/release

Open question. po (Apss + G(Poss €x)) =0

eﬂ:ect Of nutrient COnSUmpthn Credit for pictures M. Tang, N. Vauchelet



Model with different cells Jil

%np + diV(,LLpnPV) = an(p(X, t)) — anp,

%nH + div(;anHv) =0,

v=-Vp,  p=(np+ny)

Credit for picture A. Lorz, T. Lorenzi (Saffman-Taylor instability ? growth is important)



Concrete applications Jil

Image based predictions : include

m Active cells
® Nutrients and vasculature

m Quiescent, necrotic, healthy cells

Credit for pictures : INRIA team Monc (Bordeaux)



Ji

B Examples where Partial Differential Equations arise
e Darwinian evolution
e Epidemics propagation
e Neuroscience
e Bacterial population organization

e Tissue growth
B Many asymptotic problems

B There are quantitative fit with experiments

B There are concrete applications

® Unlike physics, parameters are not known (distributed)
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