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Equations of physics

The status of physics his written in the names of equations

What are the fundamental principle of biology ?

“Science is a differential equation” (Alan Turing)



Equations of physics

The status of physics his written in the names of equations

Newton’s fundamental principle of dynamics

{
d
dtX (t) = V (t)

d
dtV (t) = F

(
X (t),V (t)

)



Equations of physics

The status of physics his written in the names of equations

Fluid flows (Navier-Stokes eq., 1823-1845){
∂
∂t u + u.∇u +∇p = ν∆u,

divu = 0



Equations of physics

L. Boltzmann - A gas is the result of collisions between molecules
(1872)

f (x , ξ, t) = density of molecules with velocity ξ ∈ V = R3

∂

∂t
f (x , ξ, t) + ξ.∇x f︸ ︷︷ ︸

Transport with velocity ξ

= Q(f , f )︸ ︷︷ ︸
Binary collisions



Equations of physics

MACROSCOPIC/FLUID{
∂
∂t u + u.∇u +∇p = ν∆u,

divu = 0

KINETIC/DILUTE GAS κ→ 0

∂

∂t
f (x , ξ, t) + ξ.∇x f︸ ︷︷ ︸

Transport with velocity ξ

=
1

κ
Q(f , f )︸ ︷︷ ︸

Binary collisions

PARTICLE SCALE N →∞{
d
dtXi (t) = Vi (t), 1 ≤ i ≤ N,

d
dtVi (t) = F

(
X (t),V (t)

)



Equations of physics

The status of physics his written in the names of equations

−∆u = f (Laplace/Poisson)

∂2u

∂t2
−∆u = 0 = 2u (D’Alembert)

∂u

∂t
−∆u = 0 (Fourier){

divE = 0, curl E = −∂B
∂t

divB = 0, curl B = − 1
c2
∂E
∂t

(Maxwell)

i
∂u

∂t
−∆u = 0 (Schroedinger)



Names of PDE of physics

Euler Lagrange Liouville Boussinesq

Hamilton-Jacobi Bellman Kirchhoff

Allen-Cahn Cahn-Hilliard Vlasov Landau

Ginzburg-Landau Gross-Pitaevski Helmholtz

Thomas-Fermi Einstein Hartree-Fock

Dirac Airy Kolmogorov Fokker-Planck

Monge-Ampère Korteweg de Vries Camassa-Holme

Maxwell-Stefan Kuramoto-Shivashinsky Choquard

Burgers Lorentz Saint-Venant Benjamin-Ono

KPP KPZ Zhakarov Born-Infeld



Equations of physics

And in biology ?



Lotka-Volterra

And in biology ?


dS(t)
dt = aS(t)− bS(t)P(t),

dP(t)
dt = −cP(t) + bS(t)P(t),

(Lotka-Volterra)

Became a generic name for a class of equations in ecology



Lotka-Volterra

x = phenotypical trait (size, type of nutrient,...)

n(x , t) = number of individuals of type x

S(t) = environment (nutrient)



Lotka-Volterra

x = phenotypical trait (size, type of nutrient,...)

n(x , t) = number of individuals of type x

S(t) = environment (nutrient)

change in number︷ ︸︸ ︷
∂n(x , t)

∂t
= R(x , S(t))︸ ︷︷ ︸

growth/death rate

n(x , t) +

mutations︷ ︸︸ ︷
µ

∫
b(y ,S(t))M(y→x)n(y , t)dy

S(t) = S([n(t)] S(t) =
S0

1 +
∫
n(x , t)dx

This expresses selection by competition with finite resources



Lotka-Volterra
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There is a small parameter for mutations



Epidemics : Kermack-McKendrick

Propagation of flew
dS(t)
dt = B − rS(t)[I (t)− dS(t) + bI (t)

dI (t)
dt = rS(t)[I (t)− (b + dI )I (t)

Theorem. With r =constant
(i) S(t) + I (t) are bounded
(ii) the solutions are global
(iii) they converge to the unique steady state.



Epidemics : Kermack-McKendrick

Include age after infection
dS(t)
dt = B − S(t)

∫∞
0 r(a)I (t, a)da− dS(t)

∂I (t,a)
∂t + ∂

∂a I (t, a) + dI (a)I (t, a) = 0

I (t, a = 0) = S(t)
∫∞

0 r(a′)I (t, a′)da′



Epidemics : Kermack-McKendrick

Stage structured equations

Generalized relative entropy

d

dt

∫
φ(a)N(a)H

(
I (t, a)e−λt

N(a)

)
≤ 0

Doeblin’s method

Spatial propagation

Networks

Calculations by Nguyen-Van-Yen, B. Cazelles



Neuroscience

The electrically active cells are described by

action potential v(t)

ionic chanels gi (t)

                                 



Neuroscience

The electrically active cells are described by

action potential v(t)

ionic chanels gi (t)

Hodgkin-Huxley

Morris-Lecar

Mitchell-Schaeffer

FitzHugh-Nagumo


dv(t)
dt =

∑
i gi (t)

(
Vi − v(t)

)
+ I (t)

dgi (t)
dt = Gi (v(t))−gi (t)

τi
,



Neuroscience

The electrically active cells are described by

action potential v(t)

ionic chanels gi (t)

↑ ↑Hyperpolarisation
spike



Leaky Integrate and Fire (linear)

The Leaky Integrate & Fire model is simpler

dv(t) =
(
− v(t) + I (t)

)
dt + σdW (t), v(t) < VFiring

v(t−) = VFiring =⇒ v(t+) = VReset

0 < VR < VF

I (t) input current

Noise intensity σ

Much simpler that Hodgkin-Huxley/Morris-Lecar models

The idea was introduced by L. Lapicque (1907)



A short break

Brother of Charles Lapicque



Leaky Integrate and Fire (linear)

The Leaky Integrate & Fire model is simpler

dv(t) =
(
− v(t) + I (t)

)
dt + σdW (t), v(t) < VFiring

v(t−) = VFiring =⇒ v(t+) = VReset
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Fit to measurements (with more realistic dynamics)



Leaky Integrate and Fire (linear)

From C. Rossant et al, Frontiers in Neuroscience (2011)



Noisy LIF networks

It is now possible to write a system of N interacting neurons,

For 1 ≤ j ≤ N

with tkj the spiking times : vj(t
k−
j ) = VF

vj(t
k+
j ) = VR

d

dt
vi (t) = −vi (t) +

β

N

N∑
j=1

∑
k

δ(t − tkj )︸ ︷︷ ︸
current generated by spikes

+σdWi (t), vi (t) < VF



Noisy LIF networks

See Delarue, Inglis, Rubenthaler, Tanre, Tallay, Locherbach, Lucon,
Fournier :
For assemblies, the mean field limit yields a current I = bN(t)

∂n(v ,t)
∂t + ∂

∂v

[(
− v+bN(t)

)
n(v , t)

]
− a
(
N(t)

)∂2n(v ,t)
∂v2 = N(t) δVR

(v),

v ≤ VF ,
n(VF , t) = 0, n(−∞, t) = 0,

N(t) := −a
(
N(t)

)
∂
∂v n(VF , t) ≥ 0, flux of firing neurons at VF

Constitutive laws

b = connectivity

b > 0 excitatory neurones b < 0 inhibitory neurones

a(N) = a0 + a1N



Noisy LIF networks (blow-up)

Theorem (M. Cáceres, J. Carrillo, BP) [excitatory, blow-up]
Assume a ≥ a0 > 0. Solutions blow-up in finite time for b large.

Surprisingly

Noise does not help

value of b does not count
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Excitatory integrate and fire model. Blow-up case. Left p(v, t), Right : N(t)



Noisy LIF networks (blow-up)

Possible interpretation

N(t)→ ρδ(t − tBU) and tBU > 0,

partial synchronization

Simplified models : Kuramoto, Carillo-Ha-Kang, Dumont-Henry,
Giacomin, Pakdaman

Huygens



Spontaneous activity (regularized)
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Left : Excitatory integrate & fire with refractory state and random firing threshold

Right : Conhaim et al (2011) J. of physiology 589(10) 2529-2541.



Bacterial motion

Paradigm for collective organisation

Left :Courtesy S. Seror, B. Holland (Paris-Sud),

Right : Numerical simulation of a mathematical model



Bacterial motion

Adler’s famous experiment for E. Coli (1966) - chemotactic

Explain this pattern ; its asymmetry (experiments Curie institute)

How can a model of chemotaxis (Keller-Segel) generate robust
traveling pulses ?



Bacterial motion

E. Coli is known to move by run and tumble Alt, Dunbar, Othmer,
Stevens, Hillen, Schmeiser...

A beautiful example of multiscale motion



Bacterial motion

f (t, x , ξ) population density of cells moving with velocity ξ

c(t, x) the chemoattractant concentration

∂

∂t
f (t, x , ξ) + ξ · ∇x f︸ ︷︷ ︸

run

= K[c ,S ]f︸ ︷︷ ︸
tumble

,

K[c ,S ]f =

∫
B
K (c ,S ; ξ, ξ′)f (ξ′)dξ′ −

∫
B
K (c ,S ; ξ′, ξ)dξ′ f ,

−∆c = n(x , t) :=

∫
f (t, x , ξ)dξ

Typical is pathwise sensing

K (c ; ξ, ξ′) = K
(
∂tc + ξ′.∇xc)

)



Bacterial motion

Multiscale analysis based on the stiffness

With Zhi-An Wang, we define the small parameter ε

K (c ; ξ, ξ′) = Kε

( ∂c
∂t

+ ξ′.∇c︸ ︷︷ ︸
Dtc

)
{

∂
∂t fε(t, x , ξ) + ξ·∇x fε

ε = K[cε,fε]
ε2 ,

−∆cε(t, x) = nε(t, x) :=
∫
fε(t, x , ξ)dξ.



Bacterial motion

Multiscale analysis based on sensing stiffness

Theorem (Diffusion limit)

As ε vanishes, fε → n(x , t)1I{v∈V } and
∂
∂t n(t, x)−∆n(t, x) + div(nU) = 0

−∆c(t, x) = n(t, x)

U = φ(|∇c |) ∇c

Flux Limited Keller-Segel system

Soler, Bellomo, Winkler, Tao

Mazon, Caselles



Bacterial motion

POPULATION SCALE
∂
∂t n(t, x)−∆n(t, x) + div(nU) = 0

−∆c(t, x) = n(t, x), U = φ(|∇c |) ∇c

KINETIC/INDIVIDUAL SCALE

∂

∂t
fε(t, x , ξ) +

ξ · ∇x fε
ε

=
K[cε, fε]

ε2
,

MOLECULAR SCALE

∂

∂t
fε(t, x , ξ, y) + ξ · ∇x fε +

1

ε
divy [Rεfε] = Λε(y)

∫
[fε(ξ

′)− fε(ξ)]dξ′



Aspects of living tissues

Another area where

pieces. We model the migration of cells by the Metropolis
algorithm and a proper definition of time scales. A cell in
isolation performs a random-walk-like movement while in
the neighborhood of other cells it tends to move into the
direction which minimizes the free energy. We quantify the
migration activity of a cell by its diffusion constant D in
isolation. We perform a number of successive migration and
orientation trials between two successive growth trials. The
trials are accepted with probability min(1,exp{−∆V/FT}.
FT is a parameter that controls the cell activity: it may be
compared to the thermal energy kBT in fluids (kB: Boltzman
constant, T : temperature). Together with the choice of step
sizes for growth, orientation change, and migration, our
algorithm mimics a multi-cellular configuration changing
with time. The step sizes are chosen in such a way, that the
simulation reflects a realistic growth scenario. (The details
of our model are explained in [8])
We recently used this single-cell based model to study
tumor spheroid growth in liquid suspension [8], which has
been extensively studied experimentally [21], [14] (for an
overview of tumor growth models, please see Ref. [8] and
references therein). Here, we study growing tumors in a
tissue-like medium composed of cells to analyze the influ-
ence of an embedding medium on the tumor morphology
(for a simulation example, see Fig. 1)

Fig. 1. Typical simulated tumor growth scenario. Red: embedding
cells, white: cells of the expanding clone. The embedding cells are
initially placed on the nodes of a square lattice and subsequently
relaxed before the growth of the embedded clone is started.

The embedding medium was modeled as non-dividing
cells with the same parameters as the dividing cell clone
with the following exceptions: (1) ”motX” within the name
of the dataset denotes that D → D/X with D being the
Diffusion constant mentioned above, (2) except of the dataset
”id100_mot1_adh” the embedding cells do not adhere.
The id-value refers to the initial distance of embedding cells
which is l for id100 and l = 1.2 (= 120/100) for id120.
For selected parameter sets, we have validated that the results
do not change if we replace the embedding cells by granular
particles with the same physical properties, but with only

passive movement (i.e., no capability to migrate actively).
Experiments to validate our findings can thus be easily
conducted in in-vitro studies with an experimental setting
similar to that in Ref. [10] by growing tumor spheroids in a
granular embedding medium.

IV. GEOMETRIC SHAPE PROPERTIES

A. Morphological Operators

All datasets were given as binary 3D images, which are
generally defined as the quadruple P = (Z3,m,n,B), where
every element of Z3 is a point (voxel) in P. The set B ⊆ Z3

is the image foreground, or the object, whereas Z3 \B is the
background. The neighborhood relation between the voxels
is given by m and n with m being the connectivity of object
voxels and n the connectivity of the background. To avoid
topological paradoxa, only the following combinations are
possible: (6,26), (26,6), (6,18) and (18,6) [15].

Morphological operators are well-known in image proces-
sing. Erosion and Dilation are in fact binary convolutions
with a mask describing the background-connectivity of a
voxel [11]. The Hit-Miss-Operator extracts specific features
of a binary image. For morphological Thinning, this operator
is used with a set of masks, where each mask is applied to
the original image, and all resulting images undergo a logical
OR-operation and will be subtracted from the original image
[15].

B. Distance Transform

The distance field of a binary digital image is a discrete
scalar field of the same size with the property, that each
value of the scalar field specifies the shortest distance of
the voxel to the boundary of the object. The signed distance
transform contains negative values for distances outside the
object. Distance transforms using the L1 or L∞ metrics can be
computed using Erosion for successive border generation and
labeling of the removed voxels until the object is completely
removed [11]. The computation of the Euclidean distance
transform is described in [19].

C. Medial Axis Transform and Skeletonization

In a continuous space, the medial axis of an object is the
set of points, which are the centers of maximally inscribed
spheres. A sphere is maximally inscribed, if it touches the
object boundary in at least two points, if it lies completely
within the object, and if there is no larger sphere with
the same properties. The skeleton of a binary object is a
compact representation of its geometry and shape. It is a
subset of the object with three properties [17]: (1) topological
equivalence, (2) thinness, and (3) central location within the
object. Topological equivalence implies that the medial axis
has the same number of connected components, enclosed
background regions and holes as the original object.

In discrete space, the medial axis can be approximated by
iterative Thinning as described in [15].



Aspects of living tissues

Simplest model is mechanical only :

n(x , t) = population density of tumor cells at location x , time t,

v(x , t) = cell velocity at location x and time t,

p(x , t) = pressure in the tissue,

Change in number of cells︷ ︸︸ ︷
∂n

∂t
= −div

(
nv
)︸ ︷︷ ︸

movement of cells

+division − death

Darcy’s law for friction (with ECM) dominated flow

v = −∇p(x , t),

Constitutive law (compressible fluid)

p(x , t) ≡ Π(n) := nγ , γ > 1



Aspects of living tissues

The compressible mechanical model
∂
∂t n + div

(
nv
)

= nG
(
p(x , t)

)
, x ∈ Rd , t ≥ 0,

v = −∇p(x , t), p(x , t) ≡ Π(n) := nγ , γ > 0.

Byrne, Drasdo, Chaplain, Joanny-Prost-Jülicher...etc ’homeostatic
pressure’



Aspects of living tissues

Spatial domain Ω(t)
v(x , t) = −∇p(x , t)

Compute the pressure as{
−∆p = G (p) x ∈ Ω(t),

p = 0 on ∂Ω(t).

Surface tension may be included (κ = mean curvature)

p(x , t) = ηκ(x , t), on ∂Ω(t)



Aspects of living tissues


∂
∂t nγ + div

(
nγvγ

)
= nγG

(
pγ(x , t)

)
, x ∈ Rd

vγ = −∇pγ(x , t), pγ(x , t) ≡ Π(nγ) := nγ ,

Theorem (F. Quiros, J.-L. Vazquez, BP) : As γ →∞

nγ → n∞ ≤ 1, pγ → p∞ ≤ pM
∂
∂t n∞ − div

(
n∞∇p∞

)
= n∞G

(
p∞
)

p∞ = 0 for n∞(x , t) < 1

p∞
(
∆p∞ + G (p∞)

)
= 0

Remarks

1. Unique solution to the equation on n∞ (Oleinik, Crowley)

2. This is a weak formulation of the geometric problem

3. Benilan, Caffarelli-Friedman, Gil, Quiros, Vazquez...etc



Aspects of living tissues
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From N. Jagiella PhD thesis, INRIA and UPMC (2012)



Model with nutrient

∂
∂t n + div

(
nv
)

= nG
(
p(x , t), c(x , t)︸ ︷︷ ︸

nutrients

)
,

v = −∇p, p = nγ ,

∂
∂t c −∆c + R(n)c = cB︸ ︷︷ ︸

nutrients consumption/release

Open question. p∞
(
∆p∞ + G (p∞, c∞)

)
= 0

effect of nutrient consumption. Credit for pictures M. Tang, N. Vauchelet



Model with different cells

∂
∂t nP + div

(
µPnPv

)
= nPG

(
p(x , t)

)
− αnP ,

∂
∂t nH + div

(
µHnHv

)
= 0,

v = −∇p, p = (nP + nH)γ

Credit for picture A. Lorz, T. Lorenzi (Saffman-Taylor instability ? growth is important)



Concrete applications

Image based predictions : include

Active cells

Nutrients and vasculature

Quiescent, necrotic, healthy cells
Result of our method

• Simulation of second and 
third scans.

• Second and third scans.

Real case

System identification in tumour growth modeling Lyon, 9-10 avril

Simulations of 
the second 
and third scan

second and 
third scan

• Introduction;

• Procedure;

• Real case;

• Conclusion;

Tuesday, April 7, 2009

Real case

System identification in tumour growth modeling Lyon, 9-10 avril
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Volume history:
- Simulation (continuous line);
- scan (circle)

Errors:
Simulations reach the volume of the  
third scan a little bit after;

Why?
1) We have only 2D partial information;
2) The model is approximated, not 
explicitly designed for a lung;
3) We do not have considered 
angiogenesis.

• Introduction;

• Procedure;

• Real case;

• Conclusion;

Tuesday, April 7, 2009

Credit for pictures : INRIA team Monc (Bordeaux)



Conclusion

Examples where Partial Differential Equations arise
• Darwinian evolution
• Epidemics propagation
• Neuroscience
• Bacterial population organization

• Tissue growth

Many asymptotic problems

There are quantitative fit with experiments

There are concrete applications

Unlike physics, parameters are not known (distributed)
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